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A theoretical study is performed for the excitation of a single atom localized in the center of twisted light
modes. Here we present the explicit dependence of excitation rates on critical parameters, such as the polarization
of light, its orbital angular momentum projection, and the orientation of its propagation axis with respect to the
atomic quantization axis. The effect of a spatial spread of the atom is also considered in detail. The expressions
for transition rates obtained in this work can be used for any atom of arbitrary electronic configuration. For
definiteness we apply them to the specific case of the 2S1/2(F = 0) → 2F7/2(F = 3, M = 0) electric octupole
(E3) transition in 171Yb

+
ion. Our analytical and numerical results are suitable for the analysis and planning of

future experiments on the excitation of electric-dipole-forbidden transitions by twisted light modes in optical
atomic clocks.

DOI: 10.1103/PhysRevA.102.012812

I. INTRODUCTION

Since the groundbreaking work of Allen et al. in 1992
[1], there has been growing interest in light beams with
helical phase fronts. Such twisted (or vortex) beams have
many attractive features which can be adapted to the needs
of applications [2]. In particular, twisted photons carry a
nonzero projection of the orbital angular momentum (OAM)
onto the propagation direction and their intensity pattern
has an annular character with an intensity minimum in the
center [3]. These characteristic features make twisted light a
valuable tool for various studies, ranging from the production
of coherent superpositions of vortex states in Bose-Einstein
condensates [4] to the direct generation of twisted photons
by ultrarelativistic electrons [5,6] or intense vortex harmonics
in a plasma [7]. Additionally, a number of studies explored
applications of the OAM of light to the generation of specific
electric currents in semiconductor structures [8,9].

In recent years, much interest has been placed on the
interaction of twisted light beams with single trapped atoms
[10–14]. A remarkable experiment by Schmiegelow and
coworkers [15] showed that if atoms are positioned near the
low-intensity center of the beam, the twisted light can modify
the selection rules and efficiently induce higher-order mul-
tipole transitions, in agreement with theoretical predictions
[16,17]. These effects have been demonstrated on the electric
quadrupole excitation of 40Ca

+
ions, resulting in character-

istic population of magnetic sublevels. Moreover, the use of
twisted light in this experiment has been shown to result in
strong suppression of the AC-Stark shift in the dark beam
center. This suppression together with the efficient excitation
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of nondipole channels makes twisted light promising for
studying and employing atomic clock transitions.

The application of twisted beams to the excitation of single
trapped atoms requires a detailed theoretical analysis of the
experimental geometry. A typical setup includes a trapped
atom whose quantization axis is defined by an applied mag-
netic field. The atom interacts with a beam of light that is
characterized by its polarization and propagation direction.
Excitation rates are then strongly affected by the orientation
of the atomic quantization axis relative to the propagation
direction. Moreover, the strength of atomic transitions may be
sensitive not only to the polarization state of the incident light,
but also to the spatial spread of atomic position near the beam
axis. As a first step towards analyzing such geometrical effects
for perfectly localized atoms, recent work [18] considered a
number of forbidden transitions induced by linearly polarized
light. Furthermore, the effect of the center-of-mass motion
of atoms on transitions excited by twisted light has been
discussed in Refs. [19,20].

In the present study, we lay down a general theoretical
framework for any atom of arbitrary electronic configuration
and for various polarization states of light. In addition, a
realistic experimental scenario of atoms localized with a finite
spatial spread is taken into account. Before discussing our
approach for twisted light, in Sec. II A we briefly recall the
basic equations governing the excitation of atoms by con-
ventional plane-wave radiation. Here we derive the rates for
transitions between magnetic hyperfine sublevels and show
that they are sensitive to the polarization of the light beam and
to its orientation with respect to the atomic quantization axis.
Later in Sec. II B we discuss the optical excitation by twisted
light for the specific case of paraxial Bessel beams. General
expressions are derived for the excitation of hyperfine tran-
sitions of a particular multipolarity by linearly, radially, and
azimuthally polarized beams. While the resulting formulas
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can be applied to an arbitrary atom or ion, in Sec. III we con-
sider the 2S1/2(F = 0) → 2F7/2(F = 3) electric octupole (E3)
transition in 171Yb

+
, receiving much interest as a candidate

for atomic clocks [21,22]. Based on our calculations, we show
that by choosing proper polarization states of incident twisted
light, the transition rate can be significantly enhanced under
certain orientations of the applied magnetic field when the
atom is placed in the center of the beam. Similar enhancement
can also be seen for the ion spatial spread of a few tens of
nanometers. Section IV provides concluding remarks.

Hartree atomic units (h̄ = e = me = 1, c = 1/α) are used
throughout the paper.

II. THEORY

A. Excitation by plane-wave photons

1. Transition amplitude

We begin by considering a single trapped atom exposed to a
static magnetic field B determining the quantization zatom axis
of the atom. Moreover, it is assumed that the atomic nucleus
has nonzero spin I, and hence atomic states |αFM〉 are char-
acterized by the total angular momentum F = I + J, its pro-
jection M on the atomic quantization axis, the total electron
angular momentum J , and all additional quantum numbers α.
We focus on the atomic excitation process |αiFiMi〉 + γ →
|α f Ff M f 〉 driven by a light field propagating at the angle θ

with respect to the magnetic field. It is well known that all the
properties of the excitation process can be traced back to the
evaluation of the transition amplitude of the form [23]

M(pl)
M f Mi

= 〈α f Ff M f |
∑

q

αq A(pl)
λ (rq)|αiFiMi〉 . (1)

Here q runs over all electrons in an atom, and αq denotes
the vector of Dirac matrices for the qth particle. The incident
field is assumed to be a circularly polarized plane wave with
helicity λ = ±1. In the Coulomb gauge, the vector potential
of this plane wave is given by

A(pl)
λ (r) = ekλ eik·r, (2)

with the polarization vector ekλ and frequency ω = kc.
In order to evaluate the transition amplitude (1), it is con-

venient to use the multipole expansion of this vector potential,

ekλ eik·r =
√

2π
∑
LM

∑
p=0,1

iL[L]1/2 (iλ)p

× DL
Mλ(φk, θk, 0)ap

LM (r) , (3)

where [L] = 2L + 1 and ap
LM (r) stands for magnetic (p = 0)

or electric (p = 1) multipole components [24]. In addition,
DL

Mλ is the Wigner D function, which depends on the light
propagation direction k̂ = k/k = (θk, φk ) with respect to the
quantization z axis of the entire system, θk and φk being
the polar and azimuthal angles. For the further analysis,
it is very important to choose this quantization axis in a
convenient manner. When the light does not propagate along
the magnetic field, one can take either B or k vectors as the
quantization z axis of the entire system “atom plus light.”
Although it is clear that the observables are independent of
a particular choice of coordinate system, we choose here the

light propagation (zlight) direction as the quantization z axis,
so that θk = φk = 0◦. This allows us to simplify Eq. (3) by
using the relation DL

Mλ(0, 0, 0) = δMλ. On the other hand, we
need to perform a rotation of the atomic states |αiFiMi〉 and
|α f Ff M f 〉 originally defined in the coordinate system with the
quantization zatom axis oriented along the magnetic field. Such
a general transformation

|αFM〉atom =
∑
M ′

dF
M ′M (θ )|αFM ′〉light (4)

can be performed by using the Wigner (small) d functions
[25]. In this expression the state vector |αFM〉atom describes
the state quantized along the zatom axis, while |αFM ′〉light de-
scribes the state quantized along the zlight axis. Using Eq. (4),
we can rewrite the transition matrix element (1) as

M(pl)
M f Mi

=
∑
M ′

i M
′
f

dFi

M ′
i Mi

(θ )dFf

M ′
f M f

(θ )

× 〈α f Ff M ′
f |

∑
q

αq A(pl)
λ (rq)|αiFiM

′
i 〉 , (5)

where all atomic and photonic states on the right-hand side
are already defined with respect to the light quantization zlight

axis.
To proceed further, we assume that the electromagnetic

field interacts only with atomic electrons and does not affect
the nuclear spin. Therefore, it is natural to write the hyperfine
wave functions |αFM ′〉 as a linear combination of the corre-
sponding atomic |αJM ′

J〉 and nuclear |IM ′
I〉 states [23]:

|αFM ′〉 =
∑
M ′

J M ′
I

〈JM ′
J , IM ′

I |FM ′〉|αJM ′
J〉|IM ′

I〉 . (6)

If we substitute this expression for the atomic states into
Eq. (5) and make use of the multipole expansion (3) together
with the Wigner-Eckart theorem, we find after some angular
momentum algebra that the transition amplitude reduces to

M(pl)
M f Mi

=
∑
Lp

C
FiFf I
αiJiα f J f

(pL) (iλ)p

× dL
λ 
M (θ ) 〈FiMi, L
M|Ff M f 〉 , (7)

where 
M = M f − Mi is the difference of the two angular
momentum projections on the zatom axis. Here the Clebsch-
Gordan coefficients along with the Wigner d functions de-
scribe the geometry of the experiment, whereas the factors
C

FiFf I
αiJiα f J f

(pL) contain information about the coupling to a par-
ticular multipole of the electromagnetic field and are defined
by

C
FiFf I
αiJiα f J f

(pL) =
√

2π iL [L, Fi]
1/2 (−1)Jf +I+Fi+L

×
{

Ff Fi L
Ji Jf I

}
〈α f J f ||Hγ (pL)||αiJi〉 . (8)

Here, we have also introduced the notation for the reduced
matrix element

〈α f J f ||Hγ (pL)||αiJi〉 = 〈α f J f ||
∑

q

αq ap
L,q||αiJi〉 , (9)

which depends on the specific wave functions of the states.
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As can be seen from Eq. (7), the transition amplitude in-
cludes a sum over all multipole (pL) contributions. In atomic
spectroscopy, however, we can usually restrict ourselves to
only a leading multipole term allowed by the angular mo-
mentum and parity selection rules. Thus the transition matrix
element (7) is greatly simplified and can be written as

M(pl)
M f Mi

=C
FiFf I
αiJiα f J f

(pL) (iλ)p

× dL
λ 
M (θ ) 〈FiMi, L
M|Ff M f 〉 . (10)

This is a very good approximation for light neutral atoms or
ions with a small ionic charge of interest.

2. Transition rate for linearly polarized light

Formulas (8)–(10) were obtained for photons with definite
helicity and therefore can be used to describe the excitation
of atoms by circularly polarized light. However, it is also
instructive to consider linearly polarized incident light. Along
this way, we first need to construct the vector potential for
linearly polarized radiation. For example, we can write a plane
wave, which is linearly polarized parallel to the reaction x-z
plane defined by the vectors k and B, as a superposition of the
two circularly polarized waves (2) according to

A(pl)
‖ (r) = 1√

2

(
A(pl)

λ=+1 + A(pl)
λ=−1

) = ex eikz . (11)

Similarly, a plane wave linearly polarized perpendicular to the
reaction plane is defined by

A(pl)
⊥ (r) = i√

2

(
A(pl)

λ=−1 − A(pl)
λ=+1

) = ey eikz . (12)

By using these formulas and the absolute-value-squared ma-
trix elements (10), we can then introduce the normalized
transition rates for absorption of parallel and perpendicular
polarized plane-wave light,

W (pl)
‖ (θ ) = N

W (pl)
tot

∣∣∣∣ 1√
2

[
M(pl)

M f Mi
(λ=+1) + M(pl)

M f Mi
(λ=−1)

]∣∣∣∣2

= [L]

8

∣∣ip dL
+1 
M (θ ) + (−i)p dL

−1 
M (θ )
∣∣2

(13)

and

W (pl)
⊥ (θ ) = N

W (pl)
tot

∣∣∣∣ i√
2

[
M(pl)

M f Mi
(λ=−1)−M(pl)

M f Mi
(λ=+1)

]∣∣∣∣
2

= [L]

8

∣∣ − ip dL
+1 
M (θ ) + (−i)p dL

−1 
M (θ )
∣∣2

, (14)

where N is some constant factor and W (pl)
tot denotes the total

plane-wave transition rate summed over photon polarizations
and integrated over magnetic field angles θ . Therefore, ex-
pressions (13) and (14) are defined to be dimensionless and
independent of the line strengths. The combination of Wigner
d functions in the last lines of the expressions for W (pl)

‖ (θ )

and W (pl)
⊥ (θ ) in turn reflects the geometry of the excitation

process. In fact, these formulas can be rewritten in terms
of polynomials in the sine and cosine functions of θ . For
example, the explicit form of the normalized transition rates

reads

W (pl)
‖ (θ ) = 21

32
sin2 θ (1 − 5 cos2 θ )2,

W (pl)
⊥ (θ ) = 0, (15)

where we have assumed 
M = 0 for an E3 transition.

B. Excitation by twisted photons

1. Transition amplitude

Having recalled the theory of atomic excitation by plane
waves, we can start to discuss the excitation of atoms by
twisted light. In this work, we consider a twisted beam with
helicity λ, the longitudinal component kz of the linear momen-
tum, the absolute value of the transverse momentum |k⊥| =
κ, the photon energy ω = c

√
k2

z + κ
2, and the projection of

the total angular momentum mγ . This so-called Bessel state is
characterized by the vector potential [26]

A(tw)
mγ λ(r) =

∫
aκmγ

(k⊥) ekλ eik·r d2k⊥
(2π )2

, (16)

where the amplitude aκmγ
(k⊥) is given by

aκmγ
(k⊥) = 2π

κ

(−i)mγ eimγ φk δ(k⊥ − κ) . (17)

As seen from Eq. (16), a Bessel beam can be represented
as a superposition of plane waves whose wave vectors k are
uniformly distributed upon the surface of a cone with an
opening angle θk = arctan(κ/kz ).

After integrating over k⊥, the vector potential (16) can be
written as

A(tw)
mγ λ(r) =

∑
ms=0,±1

ems (−i)ms cms Jmγ −ms (κr⊥)

× ei(mγ −ms )φ eikzz , (18)

with Jmγ −ms (κr⊥) being the Bessel function of the first kind.
Moreover, e±1 = (ex ± iey)/

√
2 and e0 = ez are the polariza-

tion vectors, while the coefficients cms read as c±1 = ±λ(1 ±
λ cos θk )/2 and c0 = − sin θk/

√
2. We note that experiments

usually deal with the so-called paraxial light beams, for which
the transverse momentum of the photon is much smaller than
its longitudinal counterpart, κ 
 kz [26]. For this case the
opening angle θk is small, and the coefficients cms can be
written as c±1 ≈ ±λ(1 ± λ ∓ λθ2

k /2)/2 and c0 ≈ −θk/
√

2.
By inserting these coefficients into Eq. (18) and restricting the
summation to the leading term ms = λ, for which cλ ≈ 1, we
obtain the vector potential in the paraxial approximation

A(tw)
mγ λ(r) ≈ A(par)

ml λ
(r) = eλ (−i)λJml (κr⊥) eiml φ eikzz . (19)

Here ml = mγ − λ can be interpreted as the projection of
the orbital angular momentum of light decoupled from the
spin (SAM) projection λ. In contrast to the general case (18)
of the Bessel beam, the vector potential (19) and hence the
corresponding electric field are purely transversal. However,
as reported in Ref. [11], a usually weak longitudinal (z) com-
ponent of the electric field can contribute significantly to the
transition matrix elements if the SAM and OAM projections
are opposite to each other. Therefore, in the analysis of the
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matrix elements below we use the general vector potential
(16)–(18), whereas the paraxial approximation (19) will be
utilized for the discussion of polarization and OAM properties
of light and for the interpretation of our results.

As in the case of plane-wave photons (1) the interaction
between the atoms and the twisted light (16) can be described
by the matrix element

M(tw)
M f Mi

= 〈α f Ff M f |
∑

q

αq A(tw)
mγ λ(rq)|αiFiMi〉

=
∫

aκmγ
(k⊥) e−ik⊥b

× 〈α f Ff M f |
∑

q

αq ekλ eik·rq |αiFiMi〉 d2k⊥
(2π )2

. (20)

Here the impact parameter b = (bx, by, 0) specifies the po-
sition of a target atom with regard to the beam axis. The
introduction of this parameter is necessary, since the Bessel
beam (19) has an inhomogeneous field distribution in the
transverse plane, thereby making the excitation process very
sensitive to b. Calculations of the transition amplitude (20)
can again be simplified through use of the standard multipole
expansion of a plane wave (3). Then, upon integrating over
k⊥ with the delta function δ(k⊥ − κ) and making use of the
integral representation of the Bessel function [16]∫ 2π

0
ei(mγ −M )φk−iκb cos(φk−φb) dφk

2π

= (−i)mγ −Mei(mγ −M )φbJmγ −M (κb) , (21)

we readily find, after some algebraic manipulations similar to
those in Eqs. (4)–(10), that

M(tw)
M f Mi

(b) = C
FiFf I
αiJiα f J f

(pL) (iλ)p (−1)ml +λ

× 〈FiMi, L
M|Ff M f 〉
∑

M

iM ei(ml +λ−M )φb

× Jml +λ−M (κb) dL
M λ(θk ) dL

M 
M (θ ) , (22)

where, again, the C
FiFf I
αiJiα f J f

(pL) is given by Eq. (8), the relation
mγ = ml + λ is implied, and summation over multipoles (pL)
is restricted to the single leading term.

By comparing the transition amplitudes for plane waves
(10) and twisted light (22), we observe that the key difference
between them arises from the summation over the projection
quantum numbers M in M(tw)

M f Mi
. This sum contains the Bessel

functions Jml +λ−M (κb) and the exponential factors exp[i(ml +
λ − M )φb] that describe the impact-parameter dependence of
the matrix element. It is worth stressing that the transition
amplitude (22) for twisted light can be greatly simplified when
the single atom is placed on the beam axis (b = 0), namely,

M(tw)
M f Mi

(b = 0)

= C
FiFf I
αiJiα f J f

(pL) (iλ)p (−i)ml +λ

× 〈FiMi, L
M|Ff M f 〉 dL
ml +λ, λ(θk ) dL

ml +λ, 
M (θ ) . (23)

This equation explicitly expresses the fact that M(tw)
M f Mi

de-
pends on the opening angle θk , helicity λ, and OAM ml of

FIG. 1. Geometry of the optical excitation of a single atom
centered on the beam axis (b = 0) by twisted light with the polar-
ization vector e. The angle θ determines the direction of the applied
magnetic field B defining the quantization zatom axis of the atom with
respect to the light propagation direction taken along the zlight (or z)
axis.

twisted light, as well as on the angle θ between the light
propagation direction and the external magnetic field (cf.
Fig. 1).

2. Transition rate for linear polarization

Formula (22) shows how to calculate the amplitude for
excitation by twisted light with definite helicity λ. Similarly
to before, we can again use this amplitude to analyze the
absorption of linearly polarized twisted photons. This can
be done easily within the paraxial approximation in which
the OAM and SAM are independent of each other [26]. In
analogy with plane waves, it is possible to construct the vector
potential for twisted photons linearly polarized within the
reaction x-z plane defined by the magnetic field B direction
and the light propagation kz direction,

A(tw)
‖ (r) = i√

2

(
A(tw)

mγ =ml +1, λ=+1 − A(tw)
mγ =ml −1, λ=−1

)
≈ i√

2

(
A(par)

ml , λ=+1 − A(par)
ml , λ=−1

)
= ex Jml (κr⊥) eiml φ eikzz , (24)

while for twisted photons polarized perpendicular to the reac-
tion plane we find

A(tw)
⊥ (r) = 1√

2

(
A(tw)

mγ =ml +1, λ=+1 + A(tw)
mγ =ml −1, λ=−1

)
≈ 1√

2

(
A(par)

ml , λ=+1 + A(par)
ml , λ=−1

)
= ey Jml (κr⊥) eiml φ eikzz . (25)

Here in the second line of both equations we have approxi-
mated the Bessel vector potential (18) by its paraxial counter-
part (19). The intensity profile of these beams with an OAM
ml = +2 is shown in Figs. 2(a) and 2(b) together with the
polarization vectors.

By using the vector potential (24) and the matrix element
(22), we find the normalized transition rate for absorption of
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(b)

(d)

(a)

(c)

FIG. 2. Intensity profiles of paraxial Bessel beams of light of
wavelength 467 nm and opening angle θk = 7.5◦. The directions
of the electric field are indicated by black arrows: (a) parallel and
(b) perpendicular linearly polarized twisted beams with OAM ml =
+2; (c) radially polarized beam; (d) azimuthally polarized beam.

parallel polarized twisted light:

W (tw)
‖ (θ, b) = N

W (pl)
tot

∣∣∣∣ i√
2

[
M(tw)

M f Mi
(ml , λ=+1)

− M(tw)
M f Mi

(ml , λ=−1)
]∣∣∣∣

2

. (26)

On the other hand, for perpendicular polarized twisted light
(25) we have

W (tw)
⊥ (θ, b) = N

W (pl)
tot

∣∣∣∣ 1√
2

[
M(tw)

M f Mi
(ml , λ=+1)

+ M(tw)
M f Mi

(ml , λ=−1)
]∣∣∣∣

2

. (27)

If the atom is placed on the beam axis (b = 0), these expres-
sions simplify to

W (tw)
‖,⊥ (θ, b = 0) = [L]

8

∣∣ − ip+1 dL
ml +1, +1(θk ) dL

ml +1, 
M (θ )

∓ (−i)p−1 dL
ml −1, −1(θk ) dL

ml −1, 
M (θ )
∣∣2

,

(28)

where we have made use of Eq. (23). Moreover, using the
explicit expressions of Wigner d functions, we obtain

W (tw)
‖,⊥ (θ, b = 0)

= 21

8192
|5 sin2 θk (1 + cos θk ) sin3 θ ∓ (1 − cos θk )

× (1 − 10 cos θk − 15 cos2 θk ) (1 − 5 cos2 θ ) sin θ |2 ,

(29)

which corresponds to 
M = M f − Mi = 0 and ml = +2 for
an E3 transition.

3. Transition rate for radially and azimuthally polarized beams

With twisted light modes, it is possible to generate richer
polarization patterns compared to plane waves [27,28]. For
example, the so-called radially polarized beam, whose vector
potential

A(tw)
r (r) = − i√

2

(
A(tw)

mγ =0, λ=+1 + A(tw)
mγ =0, λ=−1

)
≈ − i√

2

(
A(par)

ml =−1, λ=+1 + A(par)
ml =+1, λ=−1

)
= er J1(κr⊥) eikzz (30)

can be constructed as a linear combination of two twisted
beams with helicity λ = ±1 and OAM ml = ∓1 [29]. The
corresponding intensity profile and electric field directions are
shown in Fig. 2(c). We see that in this case the electric field
vector at any point on the beam profile is oriented in the radial
direction er . With Bessel beams we can also obtain another
solution, namely, the azimuthally polarized beam defined as

A(tw)
az (r) = 1√

2

(
A(tw)

mγ =0, λ=−1 − A(tw)
mγ =0, λ=+1

)
≈ 1√

2

(
A(par)

ml =+1, λ=−1 − A(par)
ml =−1, λ=+1

)
= eφ J1(κr⊥) eikzz , (31)

where the polarization vector eφ implies that its electric field
vector is always perpendicular to the radial vector, as depicted
in Fig. 2(d). We note that neither radially nor azimuthally
polarized beams have a well-defined OAM projection ml ; they
can be seen as a superposition of two twisted modes with
different OAM values, ml = ±1 [29].

Similarly to before, we can use the vector potential (30)
to calculate the transition rate for absorption of radiation of
radial polarization for arbitrary impact parameters,

W (tw)
r (θ, b) = N

W (pl)
tot

∣∣∣∣ − i√
2

[
M(tw)

M f Mi
(ml =−1, λ=+1)

+ M(tw)
M f Mi

(ml =+1, λ=−1)
]∣∣∣∣

2

. (32)

In the case of azimuthal polarization (31), we find

W (tw)
az (θ, b) = N

W (pl)
tot

∣∣∣∣ 1√
2

[
M(tw)

M f Mi
(ml =+1, λ=−1)

− M(tw)
M f Mi

(ml =−1, λ=+1)
]∣∣∣∣

2

. (33)

Again, these formulas are significantly simplified if one con-
siders the atom with b = 0. By substituting Eq. (23) into
Eqs. (32) and (33), we obtain the normalized transition rates

W (tw)
r,az (θ, b = 0) = [L]

8

∣∣dL
0 
M (θ )

∣∣2

× ∣∣(−i)p dL
0 −1(θk ) ± ip dL

0 +1(θk )
∣∣2

, (34)

where we have used the fact that both twisted components
have the total angular momentum projection mγ = ml + λ =
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0. In particular, the explicit expressions for W (tw)
r,az are

W (tw)
r (θ, b = 0) = 21

128
sin2 θk (1 − 5 cos2 θk )2

× cos2 θ (3 − 5 cos2 θ )2 ,

W (tw)
az (θ, b = 0) = 0 , (35)

assuming that 
M = 0 and ml = +2 for an E3 transition.

4. Nonlocalized atoms

The transition rates for excitation by twisted light have
been derived above for an atom whose position with respect
to the beam axis is well defined. Of course, this idealistic
scenario is impossible to achieve in a real atom-trap exper-
iment. For example, in recent experiments [15,17], a single
laser-cooled 40Ca

+
ion trapped in a Paul trap had a thermal

spatial spread of about 60 nm. To account for this spatial
distribution effect, we introduce the probability of finding an
atom at distance b from the beam center:

f (b) = 1

2πσ 2
e− b2

2σ2 . (36)

This Gaussian distribution is assumed to be centered on the
beam axis and characterized by the width σ . The mean tran-
sition rates are then obtained by integrating over the impact
parameter

W (tw)
‖,⊥,r,az(θ ) =

∫
f (b)W (tw)

‖,⊥,r,az(θ, b) d2b . (37)

This formula enables us to understand how the excitation
probability depends not only on the mutual orientation of
photon and atomic axes, but also on the width σ of the atomic
spatial distribution.

5. Laguerre-Gaussian beams

In this study, we present the theory of excitation of
trapped atoms by Bessel light beams. In some recent exper-
iments, however, another type of twisted light modes, namely,
Laguerre-Gaussian modes, is employed [15,16]. While the
detailed discussion of these modes is beyond the scope of
our work, we mention here that both Bessel and Laguerre-
Gaussian solutions behave like r|ml |

⊥ eiml φ near the optical vor-
tex, i.e., for small r⊥. This implies that the formulas derived
above can be applied to the excitation by Laguerre-Gaussian
beams of the same polarization and OAM if the spatial distri-
bution of atoms is smaller than the characteristic size of the
first bright ring of the beam, which is of the order of a few
microns in our case (cf. Fig. 2).

III. RESULTS AND DISCUSSION

In the previous sections, we obtained the formulas which
allow us to calculate the (normalized) excitation rates for
twisted light and plane waves. While the developed formalism
can be applied to any atom or ion, we focus here on the
4 f 146s 2S1/2 → 4 f 136s2 2F7/2 electric octupole (E3) transi-
tion in singly ionized ytterbium. This transition has attracted
much experimental and theoretical attention as a candidate for
a frequency standard [22,30]. For the specific case of 171Yb

+
,

FIG. 3. Normalized transition rate for absorption of plane-wave
light linearly polarized parallel to the reaction plane (solid black line)
as a function of the tilt angle θ of the magnetic field for the 2S1/2(Fi =
0, Mi = 0) → 2F7/2(Ff = 3, Mf = 0) electric octupole (E3) transi-
tion in 171Yb

+
. The transition rate for perpendicular polarized plane

waves (dashed red line) vanishes identically for all angles θ .

we consider the initial and final hyperfine levels Fi = 0 and
Ff = 3. A weak magnetic field is applied to split the hyperfine
multiplet of the excited state by the Zeeman effect, making
the individual M f sublevels distinguishable. In what follows,
we concentrate on the transition between the Mi = 0 and the
M f = 0 magnetic hyperfine sublevels that do not show a linear
Zeeman effect.

A. Excitation by plane waves

Before considering the excitation of an 171Yb
+

ion by
Bessel beams, we briefly review the results for plane waves
[31]. Figure 3 shows the transition rates normalized to
the factor W (pl)

tot for the 2S1/2(Fi = 0, Mi = 0) → 2F7/2(Ff =
3, M f = 0) transition induced by plane-wave radiation with
a wavelength of 467 nm. Calculations are performed for the
light polarized either parallel (solid black line) or perpendicu-
lar (dashed red line) to the reaction plane. As shown in Fig. 3,
the transition rates (13) and (14) depend strongly on both the
tilt angle θ of the magnetic field and the polarization of light.
For example, the excitation rate W (pl)

⊥ vanishes identically
for all angles θ when the incident light is perpendicularly
polarized [cf. Eq. (15)]. In the case of parallel polarization,
in contrast, W (pl)

‖ is nonzero and exhibits oscillations with
maxima at θ = 30◦, θ = 90◦, and θ = 150◦. The fundamental
difference in results obtained for two orthogonal polarizations
can be understood from symmetry considerations. Namely,
the entire system “atom in the ground state Fi = 0 plus
linearly polarized light” is symmetric under reflection in the
x-z plane for parallel polarization and in the y-z plane for
perpendicular polarization. This symmetry should also be
preserved for the final state of the atom. To construct this state,
we first remember that linearly polarized light can be viewed
as a linear combination of two circular components with
helicity λ = ±1. Therefore, the absorption of a photon leads
to the population of only two magnetic sublevels |Ff M f =
±1〉light. This is a direct consequence of the conservation of
the angular momentum projection M f = Mi + λ, which holds
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for the quantization axis chosen along the light propagation
direction. For parallel polarized light (11), the corresponding
final atomic state is given by

|ψ f 〉‖light = 1√
2

(|Ff M f = +1〉light − |Ff M f = −1〉light ) .

(38)

The minus sign on the right-hand side of this expression has
been chosen to make the final state |ψ f 〉‖light invariant under
reflection with respect to the x-z plane. Namely, this reflection
is equivalent to rotation about the y axis through an angle of
180◦ followed by the inversion and gives

|ψ̃ f 〉‖light = Pf√
2

∑
M ′

f

[
D

Ff

M ′
f +1(0, π, 0)

− D
Ff

M ′
f −1(0, π, 0)

]|Ff M ′
f 〉light = |ψ f 〉‖light , (39)

where we have made use of the parity Pf = −1 of the final
state | 2F7/2 : Ff = 3〉 [25]. For perpendicular polarized in-
cident light (12), the final atomic state follows in a similar
manner:

|ψ f 〉⊥light = 1√
2

(|Ff M f = +1〉light + |Ff M f = −1〉light ) .

(40)

Here the plus sign ensures that state (40) is invariant under
reflection in the symmetry y-z plane. It is interesting to note
that states (38) and (40) closely resemble px and py functions,
which are well suited for describing the directional properties
of chemical bounds [32].

Symmetry properties of the wave functions (38) and (40)
suggest a different qualitative behavior of the excitation prob-
abilities W (pl)

‖ and W (pl)
⊥ . In order to see this, we express

|ψ f 〉‖,⊥light in terms of the substates |Ff M ′
f 〉atom defined with

respect to the quantization axis oriented along the applied
magnetic field:

|ψ f 〉‖,⊥light = 1√
2

∑
M ′

f

[
d

Ff

+1M ′
f
(θ ) ∓ d

Ff

−1M ′
f
(θ )

]|Ff M ′
f 〉atom .

(41)

From this equation it follows that the probability of finding
the atom in the excited state |Ff = 3, M f = 0〉atom of interest
is W (pl)

‖,⊥ (θ ) ∼ |d3
+10(θ ) ∓ d3

−10(θ )|2. This relation reproduces
the observed behavior of the transition rates (15) for incident
plane waves, including a vanishing excitation probability for
perpendicular polarization.

B. Excitation by twisted light: Atoms on the beam axis

Having examined the excitation by linearly polarized plane
waves, we can study the effects of twisted beams on transition
probabilities. Again, we focus on paraxial Bessel beams po-
larized parallel or perpendicular to the reaction plane. Here
the atom is assumed to be placed directly on the beam axis,
b = 0. The corresponding transition rates (28) are displayed
in Fig. 4 for two OAM values of incident light, ml = +1 (top
panel) and ml = +2 (bottom panel). It is apparent that the

FIG. 4. Normalized transition rates for absorption of parallel
(solid black lines) and perpendicular (dashed red lines) linearly
polarized twisted Bessel light with OAM ml = +1 (top panel) and
ml = +2 (bottom panel) by a single 171Yb

+
ion placed on the

beam axis (b = 0), while the opening angle is θk = 7.5◦. All other
parameters are as in Fig. 3.

θ dependence of W (tw) differs significantly from its plane-
wave counterpart. In particular, while W (pl)

⊥ is identically 0
for arbitrary orientation of the magnetic field, this is not the
case for W (tw)

⊥ . For example, for OAM projection ml = +1,
the normalized transition rate for twisted photons exhibits
maximum values of 0.043 at θ = 0◦ and 180◦. On the other
hand, the positions of the absorption peaks for OAM ml = +2
are shifted to θ = 35◦ and 145◦. It is worth stressing that the
transition rate for twisted light polarized within the reaction
plane W (tw)

‖ is also very sensitive to the OAM projection. For
ml = +1 the maxima occur at θ = 0◦, 60◦, 120◦, and 180◦,
while for ml = +2 there are maxima at θ = 30◦, 90◦, and
150◦. This sensitivity of atomic transitions to the photon’s
OAM allows one to build quantum memories based on en-
coding the phase information of light in the internal states of
an atom [33,34].

Figure 4 shows that the transition rates for ml = +1 and
+2 also exhibit qualitatively different behavior at θ = 0◦ and
180◦. Namely, while W (tw)

‖,⊥ (ml = +2) = 0 if the magnetic
field is directed parallel or antiparallel to the light axis, the
W (tw)

‖,⊥ (ml = +1) is apparently nonzero. This behavior can be
explained by the conservation of the projection of the total
angular momentum. As seen from Eqs. (24) and (25), linearly
polarized twisted light is composed of twisted components of
OAM ml and helicity λ = ±1. Furthermore, previous studies
[13,15,35,36] have demonstrated the modified selection rules
M f = Mi + ml + λ for atoms at the beam center with the
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FIG. 5. The same as Fig. 4, but for the radially polarized Bessel
beam (dashed green line). The transition rate for the azimuthally
polarized beam (solid orange line) equals 0 for all angles θ if b = 0.

quantization axis along the light kz vector. Therefore, the

M = M f − Mi = 0 transition is only possible at θ = 0◦ and
180◦ if the beam has a component with ml + λ = 0, i.e., when
ml = ±1.

As shown in Fig. 4, not only the angular pattern, but also
the absolute values of transition rates depend on the OAM of
light. They are reduced by almost two orders of magnitude
when the OAM projection ml is increased from +1 to +2.
This is caused by the reduction of the intensity of light near
the vortex line as the OAM increases [26,37].

So far we have discussed the excitation of atoms by linearly
polarized light. In order to further study the polarization
dependence of the transition rates, we also consider radially
and azimuthally polarized incident beams. The calculations
(34) for these nontrivial polarization states and for an atom
located on the beam axis are displayed in Fig. 5. This figure
shows that the maximal excitation probability for a radially
polarized beam can be achieved by applying the external
magnetic field along the light axis. In contrast, no excitation
by an azimuthally polarized beam (35) is observed for b = 0.
As demonstrated in the next section, this suppression is par-
tially removed if the spatial spread of the trapped atom is not
negligible with respect to the inverse transverse momentum
κ

−1 of the beam.
In fact, the vanishing transition rate for azimuthal polar-

ization and b = 0 is again related to the symmetry of the
problem. To illustrate this, we recall that radially (30) and
azimuthally (31) polarized beams are superpositions of two
twisted components with helicity λ = ±1 and OAM ml =
∓1. Hence, only the |FiMi = 0〉light → |Ff M f = 0〉light transi-
tion is allowed owing to the conservation of the total angular
momentum projection M f = Mi + ml + λ = Mi. This final
atomic state of parity Pf = −1 and total angular momentum
Ff = 3 turns out to be unaltered by reflection with respect to
the x-z plane,

|Ff M̃ f = 0〉light = Pf

∑
M ′

f

D
Ff

M ′
f 0(0, π, 0)|Ff M ′

f 〉light

= |Ff M f = 0〉light, (42)

in analogy to Eq. (39). The x-z plane, therefore, should also
be the plane of symmetry for the initial system “atom plus

FIG. 6. Transition rates for absorption of parallel (top panel) and
perpendicular (bottom panel) linearly polarized twisted Bessel light
with OAM ml = +2 and opening angle θk = 7.5◦ when a single ion
is placed on the beam axis (solid black lines) and when the centered
ion has a spatial spread of σ = 20 nm (dashed red lines) or σ =
50 nm (dotted blue lines) in the beam center. All other parameters
are as in Fig. 3.

light.” For the spherically symmetric state |Fi = 0 Mi = 0〉,
this condition is fulfilled for the radially polarized beam
(30). In contrast, the azimuthally polarized beam (31) is not
symmetric under reflection with respect to the x-z plane. Its
absorption, therefore, does not preserve the symmetry of the
final state, and hence the transition |FiMi = 0〉 → |Ff M f = 0〉
is forbidden.

C. Excitation by twisted light: Spatial spread of ions

The above calculations have been carried out for the atom
positioned precisely at the beam center, b = 0. Such an ideal
scenario, however, is impossible to attain in real atom-trap ex-
periments in which the atomic spatial spread has been found to
be about 60 nm [15]. We make use of Eq. (37) for the Gaussian
distribution (36) to study the effect of atomic delocalization,
and the corresponding transition rates are displayed in Fig. 6
for Bessel beams linearly polarized parallel and perpendicular
to the reaction plane. Calculations have been done for OAM
ml = +2 and for atomic spatial distributions of width σ = 20
nm (dashed red lines) or σ = 50 nm (dotted blue lines) cen-
tered on the beam axis. In addition, these results are compared
with idealized predictions for single atoms located exactly at
the beam center (solid black lines). The atomic delocalization
significantly affects the rates W (tw)

‖ , as shown in the top
panel in Fig. 6. For example, the oscillations of the transi-
tion rate become less pronounced at θ < 60◦ and θ > 120◦.
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FIG. 7. The same as Fig. 6, but for the azimuthally polarized
Bessel beams.

The principal maximum of the transition rate remains un-
changed and occurs for the perpendicular orientation of the
trap magnetic field. The finite spatial spread of the atom also
modifies the transition rates for absorption of Bessel photons
polarized perpendicular to the reaction plane. As shown in
the bottom panel in Fig. 6, the rate W (tw)

⊥ is enhanced at θ <

45◦ and θ > 135◦, and the positions of the maxima become
slightly shifted.

It should be noted that the spatial delocalization of the atom
can strongly affect the transition rates also for other types of
polarization. In particular, we see in Fig. 7 that while W (tw)

az for
azimuthal polarization vanishes identically when the atom is
positioned precisely at b = 0, the rate of photon absorption
increases with the width of the atomic distribution σ . For
example, if σ = 50 nm, W (tw)

az reaches the maximum value
of 2.3 × 10−3 at θ = 30◦ and 150◦. For spatially distributed
atoms, the deviations from the excitation rates expected for
b = 0 can be explained by the fact that, apart from M =
ml + λ, other photon angular momentum projections |M| � L
may contribute to radiative transitions when b �= 0 [36,38].

IV. SUMMARY AND OUTLOOK

In summary, we have performed a theoretical study of
the excitation of a single trapped atom by twisted light.
Special attention has been paid to the dependence of the

excitation rates on the polarization of incident light and on
the orientation of the beam axis with respect to the atomic
quantization axis, which is defined by the applied magnetic
field. In order to investigate this geometrical dependence, we
have employed first-order perturbation theory to describe the
coupling between paraxial Bessel beams and trapped atoms.
Based on this approach, we have derived simple analytical
expressions for the excitation rates when considering linear,
radial, and azimuthal polarization of incident light. While the
theory is general and can be applied to any atom or ion, we
have investigated the particular case of the 2S1/2(F = 0) →
2F7/2(F = 3, M = 0) electric octupole transition in 171Yb

+
.

Our calculations have demonstrated that a proper choice of
light polarization as well as of the mutual orientation of the
beam direction and atomic quantization axis can strongly
enhance this E3 transition. In particular, we expect that ex-
citation by a radially polarized beam is most useful because
a relatively low drive power is required to obtain a targeted
transition rate at low AC-Stark shifts. This can be beneficial
for optical atomic clocks based on the E3 transition that
presently require complex interrogation methods to ensure
sufficient AC-Stark shift cancellation [39,40]. For a more
accurate description of the excitation process we also took
into account the effect of the atomic spatial distribution in a
trap. It was found that the uncertainty in the determination of
atomic position significantly affects both the absolute value
and the geometrical dependence of the transition rates. Thus,
our study paves the way to understanding the optimal condi-
tions for future experiments with trapped atoms and twisted
photons.
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