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Quantum dynamics of 17O in collision with ortho- and para-17O17O

Grégoire Guillon ,* Maxence Lepers , and Pascal Honvault
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne Franche-Comté 21078 Dijon Cedex, France

(Received 18 April 2020; accepted 24 June 2020; published 16 July 2020)

We report full quantum scattering cross sections for the peculiar 17O + 17O 17O system, at relatively low
collision energies. We consider different types of collision-induced transitions, as the indistinguishability of the
three nuclei allows for the mixing of reactive, inelastic, and elastic processes. Furthermore, due to the nonzero
nuclear spin of 17O and the existence of nuclear spin isomers ortho- and para-O2, we pay particular attention to
transitions between these two species, that is, the ortho-para conversion process. We find that the corresponding
cross section has a magnitude comparable to that of the H+ + H2 counterpart.
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I. INTRODUCTION

Oxygen, with three stable isotopes 16O, 17O, and 18O, with
abundances 99.76%, 0.04%, 0.20%, and nuclear spins s = 0,
s = 5/2, s = 0, respectively, plays an important role in atmo-
spheric elementary as well as complex chemical processes,
and O2 is the next but most abondant molecule in the atmo-
sphere, after nitrogen N2. The upcoming oxygen compound
in complexity, ozone O3, which absorbs a huge amount of UV
radiation from the sun in the stratosphere, is mainly formed
from metastable states of excited transcient complex O∗

3 of
the O + O2 reaction, eventually stabilized. Many studies have
thus been dedicated to the measurement [1] or calculation [2]
of rate constants for this so-called oxygen exchange reaction.
To facilitate measurements and in relation to the secular mass-
independent fractionation problem of ozone [3], these studies
have focused on isotope effects, replacing 16O by 18O (most
often) or 17O in the atomic (O) [2,4,5] or molecular (O2) [6,7]
species. Totally symmetric systems with zero total nuclear
spin, such as 16O + 16O 16O and 18O +18O 18O have also been
theoretically explored [6,8], giving in particular much larger
cross sections, hence much faster rate constants.

In relation to another completely different field, the O2

molecule in its ground 3�−
g state has been a subject of interest

in itself, as a prototype of simple open-shell paramagnetic
species approaching a Hund’s case (b), in the context of buffer
gas loading and evaporative cooling experimental techniques,
for subsequent magnetic trapping [9]. The study of the ratio
of rates for elastic to inelastic collisions of the target molecule
with a rare gas atom (most often 3He because of its higher
vapor pressure at sub-Kelvin temperatures than 4He) at very
low collision energies is important in this context for the
optimization of the parameters of the experiment. The par-
ticular 17O 17O diatom has been among the first molecules
to be proposed as a serious potential candidate for cooling
and trapping in the view of the obtaining of cold molecular
samples [9–14]. It has been shown to be much more adapted
[12,15,16] than 16O 16O and 18O 18O because of the possibility
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of population of the ground rotational level j = 0 (or N = 0
in the context of cold molecules), leading to stability with
respect to evaporative cooling and avoiding losses, which is
precisely forbidden in the two other zero nuclear spin isomers.
The possible ortho-para or para-ortho conversion of 17O 17O
that might happen when encountered with residual O atoms in
the O2 beam or trap may be of importance in this context of
cold chemistry, as it may change the parity of the rotational
quantum number j, the fine structure associated to it, and
might lead to trap loss. Therefore, the findings reported in
this paper might serve as a preliminary result toward a more
refined description, even if, as we shall describe in the next
section, the fine structure of O2 ought to be considered for a
complete study of this process at low energies.

We present here a theoretical study of the 17O + 17O 17O
reaction, thereafter systematically abbreviated as 7 + 77,
involving nonzero nuclear spin totally symmetric 17O 17O 17O
(777) complex as an intermediate. In addition to the existence
of two diatomic nuclear spin isomers ortho-17O 17O (o77) and
para-17O 17O (p77), this reaction allows for the possibility of
ortho-para interconversion which is not arising from hyperfine
structure couplings, as could possibly happen in a strongly
inhomogeneous magnetic field.

The 777 isotopomer of ozone is of course the rarest,
due to the extremely low natural abundance in 17O. As a
consequence, the 7 + 77 process is not such as to be relevant
in an atmospheric context. Nevertheless, as a prototype for
a fully symmetric three-particle system with nonzero total
nuclear spin, it sheds light on physics of processes involving
indistinguishable entities.

II. THEORY

As in all our previous studies, we basically assume in this
paper that no nuclear spin-dependent terms are included in
the Hamiltonian governing the dynamics of the nuclei. This
is entirely justifiable, given the very low magnitude of the
nuclear magneton.

As we are considering collision energies in the range [1,10]
meV, it seems reasonable to also neglect fine structure and
magnetic interactions due to electronic spin of open-shell O
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(3Pg) and O2 (3�−
g ) in their ground state [17–21]. In fact,

for the lowest collision energies, the spin-spin interaction
coupling constant in O2, being roughly of 0.25 meV, is not en-
tirely negligible, being in particular higher than the rotational
constant of 0.18 meV, while the spin-rotation constant of
−0.001 meV seems to be. But we definitely neglect transitions
between rotational sublevels correlating to a pure Hund’s case
(b) as described in Ref. [17] and Ref. [21]. On the side of the
O atom, the spin-orbit interaction of roughly 20 meV is not
completely negligible either, but has been accounted for in the
potential energy surface (PES) we use, which switches at long
range to an accurate multipolar expansion including the fine
structure of O and O2 [22].

On the other hand, the nuclear spin of 17O plays a key
role, in an indirect way, in connection with the spin-statistics
theorem, or Pauli principle. Indeed, it has the effect of relent-
lessly constraining the nuclear motion. This in turn results in
dramatically changed cross sections when compared to the
situation when spin symmetry is neglected, as we have shown
in the case of zero nuclear spin for oxygen 16O or 18O [6,8].

The 7 + 77 collision system is of X + X2 type, as were
the previously studied processes 6 + 66 and 8 + 88. The main
difference with the latter is that the spin of the 17O nucleus is
not zero anymore (for 17O s = 5/2), and thus the total nuclear
spin S does not reduce to zero as was the case for 6 + 66 and
8 + 88. Also 17O nuclei are fermions and thus subjected to
Fermi-Dirac spin statistics. As for the 6 + 77 system [7], the
entrance channel is still defined in reference to the 77 spin
species, that is, we can have either 7 + o77 or 7 + p77. At
this point, we see that there is already a constraint on the
acceptable spin functions of the 777 complex in the entrance
channel. Furthermore, we need to separate cross sections
between components of a given symmetry species (which is
the space symmetry for the motion of nuclei), based on the
restrictions imposed by the different symmetries of nuclear
spin functions, in agreement with the Pauli principle. Finally,
we have to properly enumerate the number of nuclear spin
functions of each allowed symmetry to obtain spin weights
for different symmetry cross sections. All relevant details are
explicit in Appendixes A and B.

The formalism we base upon to obtain dynamical observ-
ables is time-independent quantum mechanics (TIQM). We
solve the time-independent Schrödinger equation by expand-
ing the nuclear wave function in terms of body-fixed demo-
cratic hyperspherical harmonics. Full details of the method
can be found in Ref. [23]. The correct symmetry cross sections
are obtained with a proper choice of hyperspherical harmonics
included in the expansion, respecting the constraints brought
by the operations of the S3 permutation symmetry group [24].

Numerical computations are supported by a recently de-
veloped PES, referred to as the DLLJG PES, after the names
of its authors [25]. The PES is extrapolated in the O + O2

asymptotic region using the quadrupole-quadrupole and van
der Waals interactions calculated in Ref. [22]. This latest
PES has been shown to give observables in good agreement
both in the fields of high-resolution vibrational spectroscopy
and, more recently, reactive molecular dynamics. Our group
has already used it on previous scattering calculations, for
example, with the 6 + 66 [6] and 8 + 88 [8] systems. We
have chosen collision energies ranging from 1 to 10 meV, as

this is the domain where most resonances occur and where
the most pronounced difference in behaviors between o77
and p77 is expected. Moreover, higher energies would only
be of use for the calculation of rate constants at temper-
atures relevant for stratospheric ozone, which is somewhat
pointless in the present study. We selected a maximal value
�max = 40 for the projection of the total angular momen-
tum on the least inertia axis of the 777 complex. This has
proved after various numerical tests to yield well-converged
results. We have initially included 100 channels at J = 0
for the computation of A1 and A2 symmetry cross sections
(see Appendix B) and 200 channels for the computation of
E symmetry cross sections. This allows for the inclusion of
vibrational quantum numbers of the diatom 77 up to v = 4.
The maximum value of total angular momentum we used is
Jmax = 45, sufficient for this relatively low-energy domain.
The close-coupled equations in the hyper-radius have been
solved with the help of the so-called Johnson-Manolopoulos
log-derivative propagator [26,27]. The reactance matrix was
obtained by matching the propagated solution to the form
imposed by the boundary conditions of a scattering problem
[23]. Integral cross sections are then readily obtained from it.

III. RESULTS AND DISCUSSION

We show in this section both state-to-state and initial state-
selected integral cross sections (ICSs) for the 7 + o77 and
7 + p77 collision processes.

As in our previous works on the 6 + 66 and 8 + 88 systems
involving three identical nuclei, the classical view of bond
breaking and reforming during the “reaction” is blurred. So
we have to distinguish between the (energetically) elastic, the
(energetically) nonelastic, and the total process cross sections.
In the elastic process, products, which are identical with
reagents, are found in the exact same quantum state after
scattering. In the nonelastic one, products exit the reaction
in a quantum state differing from that of the reagents by at
least one quantum number. The total process is the sum of
the former two. In this paper, we will restrict ourselves to
the case of an initial vibrational level set equal to v = 0. For
this low-energy range, the products will obviously remain in
this vibrational level v′ = 0, and we shall not mention this
quantum number anymore.

We will first focus on specific state-to-state transitions,
especially when it comes to possible ortho-para (o-p) or
para-ortho (p-o) conversions. We will then show overall cross
sections for transitions toward all accessible outcomes com-
patible with the collision energy, including the weight factor
brought by the possibility of numerous spin functions.

Figure 1 shows, for the 7 + o77( j = 0) process, pure state-
to-state cross sections (regardless of the spin factors) associ-
ated with the first three o-p transitions allowable in this energy
range. They are plotted as a function of collision kinetic
energy, from 1 to 10 meV. All processes, being endothermic,
present a threshold, but the one for the transition j = 0 →
j′ = 1 appears at an energy too low to be apparent here, the
rotational constant of 77 being around 0.17 meV [28].

So, as a global tendency, ICSs rise sharply to a maxi-
mum, then progressively decrease and seem to converge to
a common almost constant value, below 20 a2

0 at the highest
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FIG. 1. State-to-state integral cross sections (in the unit of a2
0), as

a function of collision energy, for the reactive ortho-para conversion
process 7 + o77( j = 0) → 7 + p77( j′) with v = 0. The first three
values of j ′ are shown. Spin weights are not included.

energies. ICSs for the j = 0 → j′ = 1 process exhibit very
marked oscillations at low energies and can reach values as
high as 150 a2

0. These resonance structures, constituting a
massif of narrow peaks and troughs in the ICS, are mainly
shape resonances characteristic of long-lived metastable states
supported by a deep well (1.13 eV) in the PES. This general
behavior has already been observed for the H+ + H2 o-p
transition [29] with a well four times as deep. Also the values
of state-to-state ICSs for the present system are of the same
order of magnitude as for H+ + H2.

Figure 2 presents, this time for the 7 + p77( j = 1) colli-
sion, pure state-to-state cross sections corresponding to the
reverse p-o processes, starting from the p77 species, for the
same energy range. In this reaction, as we expect for a bar-
rierless entrance channel, there is of course no threshold for
the exothermic j = 1 → j′ = 0 process. In fact, for lower en-
ergies than those presented here, the j = 1 → j′ = 0 process

FIG. 2. State-to-state integral cross sections (in the unit of a2
0), as

a function of collision energy, for the reactive para-ortho conversion
process 7 + p77( j = 1) → 7 + o77( j′) with v = 0. The first three
values of j ′ are shown. Spin weights are not included.

FIG. 3. Spin-averaged initial state selected integral cross sections
(in the unit of a2

0), as a function of collision energy, for the reactive
process 7 + o77( j = 0) with v = 0.

would likely dominate the j = 1 → j′ = 2 process. But for
the [1,10] meV energy range reported here, it appears the latter
mentioned transition lies above all other allowable p-o conver-
sions. We also notice that in this case, the ICSs oscillations are
much less marked than for the o-p process. This is because, for
the latter, additional Feshbach resonances are occuring, due
to the coupling with bound states belonging to above closed
channels, waiting to be open at threshold energies, and absent
from the present exothermic j = 1 → j′ = 0 transition. The
maximum value of the highest ICS (for the j = 1 → j′ =
2 process) is barely 100 a2

0. Also, the exothermic process
j = 1 → j′ = 0 seems to tend to a very low value, a shade
above zero, at the highest collision energies. The ICS for the
j = 1 → j′ = 4 has the same global shape as those described
above. It shows nevertheless more damped oscillations, and
presents a threshold at around 3 meV. It seems to take values
extremely close to that for the j = 1 → j′ = 2 transition at
collision energies of 10 meV and higher.

We now turn to discuss in some detail the spin-averaged
cross sections starting from the ortho or para species, irre-
spective of the final states, i.e., summed over final rotational
states j′. Figure 3 shows the overall cross sections for the 7 +
o77( j = 0) reaction, again plotted as a function of collision
energy, including the averaging over nuclear spin functions,
as explained in Appendix B. It can be written

7 + o77( j = 0) −→
{

7 + o77( j′)
(
σ oo

j=0→ j′
)

p77( j′) + 7
(
σ

op
j=0→ j′

)
,

and the corresponding cross sections are, here for j = 0, given
by (see Appendix B)

σ j → j′ =
{

σ oo
j→ j′ = 4

9σ
A1
j → j′ + 5

9σ E
j → j′ [ j′ even]

σ
op
j→ j′ = 5

9σ E
j → j′ [ j′ odd].

Thus, transitions preserving the parity of the (even) ro-
tational quantum number have both A1 and E components.
On the other hand, those for the o-p conversion process are
E only. The first feature we notice is that the ICS for the
parity conserving reaction is huge, reaching nearly 1000 a2

0.
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FIG. 4. Spin-averaged initial state selected integral cross sections
(in the unit of a2

0), as a function of collision energy, for the reactive
process 7 + p77( j = 1) with v = 0.

It oscillates widely but remains 10 to 50 times higher than the
o-p one. This is due to the entering of the elastic component
for this process. This phenomenon has already been met with
the sibling 666 and 888 zero-spin collision systems. Now,
as we have seen, here is the additional possibility of o-p
nuclear spin isomer conversion, coming exclusively from the
existence of nuclear spin for the 777 system. As we can see on
the figure, the global o-p process is comparable with the o-o
nonelastic one, and at sufficiently low energies, it becomes
even more important. However, it also presents a threshold,
not visible in Fig. 3, because it occurs at a collision energy
lower than 1 meV. It decreases slowly in a quasimonotonic
way to reach a value of barely 15 a2

0 at higher energies.
Figure 4 shows the exact same observables as in Fig. 3 but

for the 7 + p77( j = 1) reaction;

7 + p77( j = 1) −→
{

7 + p77( j′)
(
σ

pp
j=1→ j′

)
o77( j′) + 7

(
σ

po
j=1→ j′

)
and the related cross sections, for j = 1 here, are now

σ j → j′ =
{

σ
pp
j→ j′ = 2

9σ
A2
j → j′ + 7

9σ E
j → j′ [ j′ odd]

σ
po
j→ j′ = 7

9σ E
j → j′ [ j′ even].

Again, the total p-p process dominates, because of the p-p
elastic component. However, if we turn our attention toward
the nonelastic ICSs, we notice that the p-p component exhibits
a threshold corresponding to the opening of the j = 3 channel.
So, for collision energies up to 1.7 meV, the p-o process,
which is exothermic, is the strongest and is of course the only
possible reaction at low energies. It then decreases rapidly, as
was the case for the H+ + H2 system, toward nearly the same
value as for the o-p reaction described earlier. Finally, if we
compare the o-o and p-p processes, we see that the total ICS,
as well as the elastic and nonelastic ones, are of the same order
of magnitude in both cases. In addition, the global ICS profile
is much more structured for o-o than for p-p. This all comes
from the elastic component, which presents a highly peaked
resonance at an energy slightly less than 2 meV, and many

pikes, ridges, and valleys at higher energies, having survived
the partial wave summation.

IV. CONCLUSIONS

To conclude, we have performed a full quantum description
of the 17O + o/p-17O 17O collision. This peculiar system nat-
urally requires, because of the indistinguishability of the three
nuclei, a quantum investigation. We have computed ICSs for
an energy range chosen to reveal the different thresholds and
numerous resonance structures. A deepened study at very low
collision energies would certainly be extremely interesting,
but would require the inclusion of magnetic fine-structure
coupling parameters in the diatomic Hamiltonian [18,19]. We
have witnessed a somewhat interesting spin isomer effect
when starting from the diatomic nuclear spin isomer ortho- or
para-O2. Indeed, the total ICS for parity preserving transitions
(ortho-ortho and para-para) is larger and more energy depen-
dent for the 17O + o-17O 17O process. On the opposite, the
spin-averaged ICSs for ortho-para and para-ortho conversions
show a similar behavior, decreasing in a monotonic way
with increasing energy. Lastly, we hope that this study will
encourage proper use of symmetry arguments when dealing
with scattering of indistinguishable entities, especially at low
energies.
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APPENDIX A: SPIN SYMMETRY OF TWO
IDENTICAL NUCLEI

As we will need correlations between asymptote entrance
channels 17O + o/p-17O 17O (7 + o/p77) and the whole
system 17O 17O 17O (777), that is, between irreducible repre-
sentations (IRs) of the permutation groups of two and three
particles, S2 and S3, we briefly recall some facts concerning
the diatomic species 17O 17O spin symmetry.

We reproduce for convenience the S2 very simple character
table, with both S2-Young patterns (shapes or partitions) and
Cs-Schönflies-Mulliken notations:

S2 � Cs (•)(•) � e (••) � σv

[2] � A′ 1 1
[12] � A′′ 1 −1

The only two IRs of S2 are one-dimensional (S2 is Abelian)

and noted [2], or A′ and [12], or A′′. Let s be

the spin of 17O (s = 5/2) nucleus and I be the total nuclear
spin of 17O 17O with projection MI . We can work in coupled
representation and define the total spin function of 77 as

φIMI =
∑
ms

C(ssI; MI − ms, ms)φsmsφsMI −ms , (A1)
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where φsms are the individual nuclei spin functions and C(• •
•; •, •) is a Clebsch-Gordan coefficient, with resulting spin
quantum numbers taking the integer values I ∈ [[0, 2s]] and
MI = −I, −I + 1 ... + I . It exhibits a definite parity under
the transposition (12) (binary exhange of the two nuclei):

(12)φIMI = (−)2s−IφIMI . (A2)

Neglecting spin-rotation and spin-spin couplings, the diatom
wave function can be written:

� = φelφv jφIMI , (A3)

where φel is the 3�−
g electronic state (of negative parity) of O2

and φv j is a rovibrational state, and thus has the parity

(12)� = (−) j (−)I� = −�. (A4)

This permits the classification of the (2s + 1)2 = 62 = 36
nuclear spin states of 77 between 21 orthostates o77 (φIMI ∈
A′, I odd and j even) and 15 parastates p77 (φIMI ∈ A′′, I even
and j odd). In the case where the atom in the entrance channel
is distinguishable, i.e., 16O, we would be in the presence of a
process of the form

6 + 77 −→
{

6 + 77 (α)

67 + 7 (β ),

with corresponding reactive cross sections given by

σα v j → β v′ j′

{ 7
12σ A′

α v j → β v′ j′ [ j even]
5

12σ A′′
α v j → β v′ j′ [ j odd].

APPENDIX B: SPIN SYMMETRY OF THREE
IDENTICAL NUCLEI

The starting point is the same as in our previous studies of
fully or partly symmetric ozone [30]. As a consequence of the
absence of terms involving nuclear or electronic spin in the
Hamiltonian describing the system, we write the total wave
function of the 777 system as a tensor product:

	 = ψelψnuc.spaceψnuc.spin. (B1)

The first factor gathers both the state of motion and spin
of electrons. The second part describes the motion of sole
nuclei and is of major interest for us. The third part is the
nuclear spin function. As required by the Pauli principle, this
total wave function 	 has to belong to the alternating repre-
sentation of S3, the symmetric (permutation) group of three
identical particles. In other words, it must be antisymmetric
with respect to binary exchange of any pair of nuclei. The
group of importance here, S3, has six elements distributed
in three classes, and is isomorphic to D3 (the group of the
equilateral triangle or prism) or the point group C3v of wide
use in chemistry. To clarify the upcoming discussion, it is
worth reproducing below its simple character table, with both
S3-Young patterns and C3v-Schönflies-Mulliken notations:

S3 � C3v (•)(•)(•) � e 3(•)(••) � 3σv 2(• • •) � 2C3

[3] � A1 1 1 1
[13] � A2 1 −1 1
[2, 1] � E 2 0 −1

The totally symmetric representation is the row representa-
tion or A1. The alternating representation mentioned

earlier, of capital importance to us, is the column or A2 rep-

resentation. We note right away that we will have to deal with
two-dimensional representations. These are the mixed shape,

or E representations of S3. They arise because the

associated irreducible space (the so-called Specht module) has
a basis of two standard polytabloids (column-antisymmetrized
row-equivalent classes of Young tableaux) built from two

standard tabloids: and themselves originat-

ing from the two possible corresponding standard Young
tableaux (see, for example, Ref. [31], Chap. 2).

Now, the collision process X + X2 −→ X + X2 under con-
sideration has only one possible final arrangement at moderate
collision energies. However, we have two possible entrance
channels for this reaction, according to which diatomic spin
isomer we consider: 7 + o77(v, j) or 7 + p77(v, j). We there-
fore have two possible exit channels as well, 7 + o77(v′, j′)
or 7 + p77(v′, j′). So we will distinguish the two processes:

7 + o77 −→
{

7 + o77 (α)
p77 + 7 (β ),

7 + p77 −→
{

7 + p77 (α)
o77 + 7 (β ).

In a general way, the nuclear motion wave function can be
decomposed over the inequivalent IRs of S3:

ψnuc.space ≡ ψ = cA1ψ
A1 + cA2ψ

A2 + cEψE . (B2)

Asymptotically, for a given entrance channel, φv j has a spec-
ified initial rotational quantum number j (as well as a vi-
brational number v). This completely determines the allowed
symmetry of ψnuc.space of 777 correlating to the entrance
channel 7 + o/p77. Specifically, in the 7 + o77 entrance
channel, φIMI ∈ A′ and φv j ∈ A′ as well ( j = 0 and I odd),
hence φv j correlates only to A1 and E , and thus cA2 = 0.
Therefore,

ψnuc.space ≡ ψo = cA1ψ
A1 + cEψE . (B3)
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By the same token, when starting from 7 + p77, φIMI ∈ A′′
and φv j ∈ A′′ ( j = 1 and I even), correlating to A2 and E :

ψnuc.space ≡ ψp = cA2ψ
A2 + cEψE . (B4)

Now what remains to be done is to compute the number
of functions of each spin symmetry to get the spin weights
associated with the various possible processes. There are
several ways to deal with it.

One can work in coupled representation for the three spin
angular momenta and use the symmetry properties of Racah
coupling coefficients or fractional parentage coefficients. Here
again we note s the spin of an individual nucleus. The resulting
spin S of the coupled three identical nuclei lies within one
of the two subsets: S ∈ [[0, 3s]] if s is an integer and S ∈
[[1/2, 3s]] if s is a half-odd integer. So, in our case, with
s = 5/2, we have S ∈ [[1/2, 15/2]]. This procedure has been
used in Ref. [32] and is somewhat cumbersome.

However, as the detailed form of spin functions is not
needed (only their numbers in each symmetry), we can use
a much simpler device of purely combinatoric nature. The
spin vector [or spinor, as it also transforms according to the
representations of the SU (2) group] of each particle lies in
the (2s + 1)-dimensional vector space V , with basis eλ. We
will note d = dimV = 2s + 1, that is, d = 6 for s = 5/2. For
a system of three identical particles, the total spin tensor
(total spinor) is an element of the tensor space T 3(V ) =
V ⊗ V ⊗ V . This tensor space splits, under the action of S3,
into the subspace of completely symmetric tensors, P3(V ),
the subspace of skew-symmetric ones, �3(V ), and the two
remaining subspaces M3(V ) and M̃3(V ) of mixed symmetry
(generated by the Young symmetrizer associated with each of
the two standard tableaux of E mentioned earlier—see, for
example, Ref. [33], Chap. 20):

T 3(V ) = P3(V ) ⊕ �3(V ) ⊕ M3(V ) ⊕ M̃3(V ). (B5)

The total number of spin states is d3 = (2s + 1)3 = 63 = 216.
Now the number of spin states of A1 symmetry is the number,
with λ,μ, ν ∈ [[1, d]], of completely symmetric monomials
eλ ⊗ eμ ⊗ eν ∈ P3(V ) or, equivalently, the number of com-
pletely symmetric components,

nA1 = τ (d, 3) =
(

d + 3 − 1

d − 1

)
= (d + 2)!

(d − 1)!3!
, (B6)

where τ (d, 3) is the combination (with multiple occurrences
allowed) coefficient of three objects among d . On the other

hand, the number of spin states of A2 symmetry is given by
the usual binomial coefficient:

nA2 =
(

d

3

)
= d!

(d − 3)!3!
. (B7)

Finally, the number of states with E symmetry is the re-
maining number 2nE = d3 − nA1 − nA2 , because E has two
dimensions.

So we have, with d = 6,

nA1 = (d )(d+1)(d+2)
6 = (2s+1)(2s+2)(2s+3)

6 = 56, (B8)

nA2 = (d−2)(d−1)(d )
6 = (2s−1)(2s)(2s+1)

6 = 20, (B9)

nE = (d−1)(d )(d+1)
3 = (2s)(2s+1)(2s+2)

3 = 70, (B10)
so d3 = nA1 + nA2 + 2nE . We are now in a position to calcu-
late the spin weights associated with the various symmetry
component cross sections, taking care of the compatibility
with the given initial channel.

For the entrance channel 7 + o77, wA1 = nA1
nA1 +nE

= 56
126 =

4
9 and wE = nE

nA1 +nE
= 70

126 = 5
9 .

On the other hand, for the entrance channel 7 + p77, wA2 =
nA2

nA2 +nE
= 20

90 = 2
9 and wE = nE

nA2 +nE
= 70

90 = 7
9 .

At this point, these spin weights determine the weight
of the cross sections (spatial part ψnuc.space of the nuclear
wave function) by inspection of product representation tables
for S3, in such a way that the total wave function 	 for
777, including the electronic part ψel, belongs to A2. But if,
following Ref. [34], we make the assumption that ψel is A2

for any nuclear configuration, as is the case in the asymptotes
7 + 77, then, for the one-dimensional IRs of S3, we see
that the symmetry of ψnuc.space must be the same as that
of ψnuc.spin. Consequently, the spin weight just computed is
directly applicable to the spatial part. We obtain the factors
for E components by a similar reasoning.

In the end, the weighted cross sections for the various
allowed collision processes are then, for the reaction 7 +
o/p77 −→ 7 + o/p77,

σα v j → α v′ j′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4
9σ

A1
α v j → α v′ j′ + 5

9σ E
α v j → α v′ j′ [ j, j′ even]

2
9σ

A2
α v j → β v′ j′ + 7

9σ E
α v j → α v′ j′ [ j, j′ odd]

5
9σ E

α v j even→ α v′ j′odd
7
9σ E

α v j odd→ α v′ j′even.
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