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The present paper determines the precise values of magic wavelengths corresponding to the clock transitions
52S–42D of the Y2+ ion at the levels of both fine and hyperfine structures due to the external light beams having
linear as well as circular polarization. To calculate the dynamic polarizabilities of the associated states of the
transitions, we employ the sum-over-states technique, where the dominating and correlation sensitive part of the
sum is evaluated using a highly correlated relativistic coupled-cluster theory. The estimated magic wavelengths
of the light beams have substantial importance to cool and trap the ion using a blue-detuned trapping scheme.
We also present the tune-out wavelengths, which are useful in state-insensitive trapping and cooling. The vector
component of a total polarizability, which is induced by a circularly polarized light only, can provide additional
magic wavelengths. Considerable effects of hyperfine interaction on the values of polarizabilities and number of
magic wavelengths divulge the importance of precise estimations of hyperfine-structure splitting.
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I. INTRODUCTION

Accurate information about the dynamic polarizabilities of
the atomic states at the hyperfine levels can be significant
for quantum experiments such as trapping and cooling [1–3],
atom interferometry [4,5], quantum registers [6], etc.. Also,
appropriate environments for cooling and trapping of ions
are absolutely necessary to perform error-free experiments
for frequency standard [7], fundamental constants [8–10],
quantum computers [11], and many other modern advanced
technologies [12–15]. For instance, the preciseness of trap-
ping and cooling parameters of ions mostly decides the frac-
tional uncertainties of frequency standards, which are sought
to be of the order of 10−18 or less than this [16–18]. It
has been shown over the past two decades that singly [19],
doubly [20,21], or multiply [8] charged ions can be competing
candidates for the frequency standard in terms of accuracy
and stability. Since the perturbation due to the external field
reduces with increasing ionization for an atomic system [22],
doubly ionized systems can be better choices than singly
ionized atoms for many of the above-mentioned experiments.
Besides the increasing ionicity, the other way to improve the
accuracy is to prepare the states and transitions among them
insensitive to external field [21,23–29].

The narrow linewidth quadrupole transitions between
ground states and long-lived metastable states of some mod-
erate to heavy ions are being targeted from a long past
for quantum experiments, such as atomic clocks [30–34],
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quantum computers [35], etc.. Rubidium-like Sr+, which has
the ground state 52S 1

2
, is a well-known ion for quantum

technology and 52S 1
2
–42D 3

2 , 5
2

quadrupole transitions of this
ion are particularly utilized in quantum computing [36,37].
Here we are proposing the same narrow linewidth transition
of Y2+, but now the ground state is 42D 3

2
instead of 52S 1

2
.

However, as indicated earlier, the advantage of using Y2+
instead of Sr+ is that the atomic states of Y2+ are affected
less by the perturbation of the electric field of the laser
beam due to one unit more positive charge. But, certainly,
the effect of this perturbation cannot be avoided for Y2+ in
general experimental circumstances. Nevertheless, with the
advent of cryogenic methods, highly charged ions are also
possible to keep cool for a longer period [38], and, therefore,
Y2+ can be extremely important for trap-assisted experimental
studies.

Further, a recent experiment on the isotope shift of the
52S 1

2
→ 52P1

2
transition of the Y2+ ion at 294.6 nm [39],

where optical pumping (42D 3
2

→ 52P3
2
) is achieved by a

232.7-nm laser source, motivates us to propose the 42D 3
2

→
52S 1

2
transition (clock transition) for the above-mentioned

quantum experiments. This is evident from the energy-level
diagram in Fig. 1 indicating possible cooling and clock tran-
sitions of Y2+ among the level positions of all the five states.
These prodigious technological and conceptual advancements
on quantum experiments cannot be worthwhile for precision
measurements without the proper choice of wavelengths of the
external field at which the differential ac Stark shift between
the associated energy levels of the atom or ion vanishes.
The corresponding wavelengths are called magic wavelengths
[40]. In addition, the precise measurements of the tune-out
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FIG. 1. The clock (indicated by red color) and cooling (indicated
by green color) transitions of Y2+.

wavelengths of light, where the polarizability of an atomic
state vanishes, are crucial for atom interferometry [41].

Whereas a linearly polarized beam can induce scalar and
tensor components of a valence polarizability, the circularly
polarized light can add a vector component to that. This
vector part of the polarizability arises from the induced dipole
moment perpendicular to the polarization of the field. As a
consequence, use of a circularly polarized light is advanta-
geous in many situations of the quantum experiments [7]. The
urge to find these magic and tune-out wavelengths inspires
theorists for highly accurate calculations on the dynamic po-
larizabilities of the electronic states of atoms or ions involved
in the experiments. Here we are interested in evaluating
dynamic polarizabilities of the ground (42D 3

2
), first-excited

(42D 5
2
), and second-excited (52S 1

2
) states of Y2+. Another

advantage of using Y2+ is the relatively long lifetime of the
first (244.08 s) and second (10.76 s) excited states [42] of this
ion. In addition to these three clock states, the 52P1

2 , 3
2

states of

Y2+ are also important for the cooling transitions 42D 3
2 , 5

2
→

52P1
2 , 3

2
achievable at 230–245 nm [39,43–48]. Therefore, the

precise knowledge of static and dynamic polarizabilities of
these five low-lying states of Y2+ is important in conducting
trap-assisted precision experiments on this ion. Moreover, it
is important to note that the scalar component of the static
polarizability provides the theoretical estimation of the black-
body radiation shift [40,49–51], one of the important inputs to
determine the clock accuracy.

Precise knowledge of hyperfine-structure constants or hy-
perfine constants of atoms and ions can be an important
requirement in many experiments associated with the dynamic
polarizabilities of hyperfine multiplets of the clock states.
Experiments on the hyperfine splittings are also known as one
of the first applications of trapped ions [52,53]. Moreover,
the hyperfine constants are also important in an investigation
of chemical composition of the Sun and stars. Being one
of the astrophysically important elements [54–56], hyperfine
constants of Y2+ thus need a highly accurate theoretical
treatment. So far, there has been one recent work [39] along
with a very old experiment [57] providing hyperfine constants
only for 52S 1

2
and 52P1

2
states of Y2+. However, such values

are also needed to be estimated for the other states as well
theoretically and/or experimentally.

We further calculate the dynamic polarizabilities of the
42D 3

2 , 5
2

and 52S 1
2

states at the hyperfine levels and estimate

the magic wavelengths for the 52S 1
2
–42D 3

2
and 52S 1

2
–42D 5

2

clock transitions in the presence of a linearly and a circu-
larly polarized light. For a particular hyperfine multiplet, the
tune-out wavelength due to a circularly polarized light shifts
with respect to the tune-out wavelength due to a linearly
polarized light and this shift is a measure of fictitious magnetic
field useful for trapping and cooling [58]. To calculate the
dynamic polarizabilities of the clock states at both the fine-
and hyperfine-structure levels and the static polarizabilities of
the 52P1

2 , 3
2

states, we have employed a highly accurate rel-
ativistic many-body formalism. The details of this formalism
are discussed at the end of Sec. II and the beginning of Sec. III.

II. THEORY

The Stark shift (�ξv ) for a single-valence atom or ion
with the valence electron in the vth orbital is obtained by the
second-order time-independent perturbation theory [40]

�ξv (ω) =
∑
i �=v

1

ωvi
|〈ψv| − D · E|ψi〉|2 = −1

2
αv (ω)E2 (1)

where E is the strength of the applied electric field at the
position of the atom, −D · E is the electric dipole interaction
Hamiltonian, and ωvi = εv − εi is the resonance frequency
associated with the electric dipole (E1) transition between
the states |ψv〉 and |ψi〉. Due to the frequency dependence of
E, i.e., E(ω), the electric dipole polarizability αv of the state
|ψv〉 also becomes frequency dependent, αv (ω), and can be
decomposed into three components [21,40]:

αv (ω) = αC
v (ω) + αVC

v (ω) + αV
v (ω). (2)

αC
v (ω) represents the contribution to the total polarizability

due to the ionic core [21,40], and its value is irrespective of
the presence of the valence electron at any orbital. It can be
expressed as [21,40,59]

αC
v (ω) = 2

3

∑
ap

|〈φa||dDF||φp〉〈φa||dRMBPT(2)||φp〉|ωpa

(ωpa)2 − ω2
. (3)

The subscripts a and p in Eq. (3) indicate the core (fully
occupied) and virtual (fully unoccupied) orbitals, respectively,
with respect to the electron distributions for the ionic core.
〈φa||dDF||φp〉 and 〈φa||dRMBPT(2)||φp〉 represent the reduced
electric dipole matrix elements obtained from the Dirac-Fock
(DF) method [60,61] and the second-order relativistic many-
body perturbation theory [RMBPT(2)] [59], respectively. In
one of the works regarding Eq. (3), Mitroy et al. [40] men-
tioned an all-order theory like the random-phase approxi-
mation (RPA) [59] method with respect to our RMBPT(2)
method. The conversion formula from a RPA matrix element
to a corresponding RMBPT(2) matrix element is discussed in
the work of Johnson et al. [59] using diagrammatic pertur-
bation theory. Nevertheless, for alkali-metal-like systems, the
RMBPT(2) can provide a good approximation to the RPA in
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the calculation of core polarizability and this is tested by us
for a number of such systems. αVC

v (ω) is the perturbation to
the core polarizability in the presence of the valence electron
[21,62]. This component of the polarizability is almost fre-
quency independent within the frequency range considered in
this paper.

The estimation of αV
v (ω) is the most crucial part for the

calculation of the total dynamic polarizability and can be
performed by using the following relationship [63]:

αV
v (ω) = α(0)

v (ω) + σ
MJv

2Jv

α(1)
v (ω)

+ 3M2
Jv

− Jv (Jv + 1)

Jv (2Jv − 1)
α(2)

v (ω). (4)

Here Jv and MJv
are the total angular momentum and its

projection component for the state |ψv〉, respectively. The
polarization factor σ is zero for a linearly polarized light and
±1 for a circularly polarized light. This implies that the vector
component of the valence polarizability is the only factor to
differentiate between the impact caused by a linearly polarized
light and the impact caused by a circularly polarized light.
α(0)

v (ω), α(1)
v (ω), and α(2)

v (ω) are the three components of
the total valence polarizability specifying scalar, vector, and
tensor parts, respectively. Here, by “scalar,” we only mean the
scalar part of the valence polarizability, unless otherwise in-
dicated. In the sum-over-states formalism, these components
are expressed as [21,29,63]

α(0)
v (ω) = 2

3(2Jv + 1)

∑
n

dnv, (5)

α(1)
v (ω) = −

√
6Jv

(Jv + 1)(2Jv + 1)

∑
n

(−1)Jn+Jv

×
{

Jv 1 Jv

1 Jn 1

}(
2ω

ωnv

)
dnv, (6)

and

α(2)
v (ω) = 4

√
5Jv (2Jv − 1)

6(Jv + 1)(2Jv + 1)(2Jv + 3)

∑
n

(−1)Jn+Jv

×
{

Jv 1 Jn

1 Jv 2

}
dnv, (7)

where the apparently angular momentum independent factor
dnv = {|〈ψv||d||ψn〉|2ωnv}/(ω2

nv − ω2) diverges at resonant
frequency ωnv = εn − εv .

At a hyperfine energy level Fv with nuclear spin I , the
valence polarizability [αV

vF (ω)] can be written in a similar
mathematical form as of Eq. (4), but with replacement of
total angular momentum and its projection quantum number
(Jv, MJv

) by the corresponding hyperfine and its projection
quantum number (Fv, MFv

) with Fv = Jv + I. Also, the ex-
pression for the hyperfine-induced scalar part of the valence
polarizability, α

(0)
vF (ω), is equal to α(0)

v (ω) as the second-order
scalar shift does not depend on any hyperfine quantum number
[64]. However, the hyperfine-induced vector and tensor parts,
α

(1)
vF (ω) and α

(2)
vF (ω), respectively, have extra factors following

angular momentum algebra. These polarizabilities are related
to the corresponding hyperfine-independent polarizabilities

α(1)
v (ω) and α(2)

v (ω), respectively, by the following expres-
sions [64–66]:

α
(1)
vF (ω) = (−1)Jv+Fv+I+1

{
Fv Jv I
Jv Fv 1

}

×
√

Fv (2Fv + 1)(2Jv + 1)(Jv + 1)

Jv (Fv + 1)
α(1)

v (ω) (8)

and

α
(2)
vF (ω) = (−1)Jv+Fv+I

{
Fv Jv I
Jv Fv 2

}

×
√(

Fv (2Fv − 1)(2Fv + 1)

(2Fv + 3)(Fv + 1)

)

×
√(

(2Jv + 3)(2Jv + 1)(Jv + 1)

Jv (2Jv − 1)

)
α(2)

v (ω). (9)

The hyperfine shift (HFS) and splitting in the energy
can be calculated accurately from the precise knowledge of
hyperfine-structure constants corresponding to the magnetic
dipole and electric quadrupole moments of the nucleus, which
are known as the hyperfine A and B constants, respectively
[67,68]. The definitions of the above constants in terms of
reduced matrix elements of the Hamiltonians corresponding
to these nuclear moment interactions to the electronic sector
are as follows [68,69]:

A = μN gI
〈Jv||T(1)||Jv〉√

Jv (Jv + 1)(2Jv + 1)
(10)

and

B = 2eQ

√
2Jv (2Jv − 1)

(2Jv + 1)(2Jv + 2)(2Jv + 3)
〈Jv||T(2)||Jv〉,

(11)

where μN is the nuclear magneton, gI is the nuclear g factor,
and Q is the quadrupole moment of the nucleus. The operators
T(1) and T(2) can be written in terms of the spherical harmonic
operators Ykq and the Dirac matrix α using the following
relations [68]:

T(1)
q =

∑
j

t(1)
q =

∑
j

−ie
√

8π/3r−2
j α j .Ykq(r̂ j ), (12)

T(2)
q =

∑
j

t(2)
q =

∑
j

−er−3
j

√
4π

2k + 1
Ykq(r̂ j ) (13)

with k = 1 and 2 for T(1) and T(2), respectively. The sum over
j implies the sum over all the electronic coordinates [68].
With the computed values of A and B constants, the HFS
of an atomic energy level can be calculated almost precisely
(the higher-order nuclear moments like the nuclear octupole
moment can contribute to HFS with very little impact) using
the formula [68]

EHFS = AK

2
+ 1

2

3K (K + 1) − 4Jv (Jv + 1)I (I + 1)

2I (2I − 1)2Jv (2Jv − 1)
B, (14)

where K = Fv (Fv + 1) − I (I + 1) − Jv (Jv + 1).
The parameters which require exhaustive many-body treat-

ment in the computations of the polarizabilities and hyperfine
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constants are the associated reduced matrix elements and
the energy eigenvalues. In this paper, we use three differ-
ent theoretical approaches: DF, RMBPT(2), and relativistic
coupled-cluster method with single, double, and partial triple
excitations [RCCSD(T)] [70,71], in a case-by-case basis with
a compromise between accuracy and computational effort.
This is elaborated in the next section. Nevertheless, very brief
but adequate descriptions of the DF and RMBPT(2) theories
are available in the work of Reiher and Hess [72] and Johnson
et al. [59]. The details of the DF theory with an algorithm of its
computational implementation are given in [60,61], whereas
the RMBPT(2) theory is discussed in [73,74]. The RCCSD(T)
is a well-known many-body method for the calculations of
electronic-structure properties accurately from a long time
[73–81]. The RCCSD(T) method is discussed in detail in a
review article of Bartlett and Musial [80]; brief discussions
on the different correlation mechanisms corresponding to
the different levels of cluster excitations and their numerical
contributions can be found in our earlier works [76,81–84].

III. RESULTS AND DISCUSSIONS

A. Dynamic polarizabilities and magic wavelengths
for fine-structure states

We use sum-over-states formalism, as explained in the last
section, to estimate the dynamic polarizabilities of 42D 3

2 , 5
2

and 52S 1
2

states along with the static polarizabilities of these

three states and 52P1
2 , 3

2
states. According to this formalism

[see Eqs. (5)–(7)], the accurate calculations of a large num-
ber of E1 matrix elements can be seen as essential for the
accurate calculations of the scalar, vector, and tensor parts of
the total valence polarizability. The summation index (n) in
Eqs. (5)–(7) refers to the different intermediate single-valence
open-shell states |ψn〉. These states correspond to different
principal and angular momentum quantum numbers of the
valence orbitals. The angular momentum quantum numbers
are selected such that 〈ψv||d||ψn〉 �= 0 according to the E1
selection rule. In the present calculations, the principal quan-
tum number is considered up to 25, beyond which the E1
matrix elements have very negligible contributions to the total
valence polarizabilities.

As mentioned in the last paragraph of the previous sec-
tion, depending on the comparative strengths of the E1
matrix elements in evaluating the valence polarizabilities,
we consider three different levels of many-body theories:
RCCSD(T), RMBPT(2), and DF. However, the former two
correlated many-body theories are also based on the gen-
erations of DF orbitals to construct the zeroth-order wave
functions. Nonetheless, these DF orbitals are constructed
using Gaussian-type-orbital (GTO) basis functions [61,76]
of the type rnκ e−αir2

with αi = α0β
i−1, where α0 and β are

considered as 0.00525 and 2.73, respectively. The values of
i are 1, 2, 3, . . . , N , where N is the size of the basis set [61]
for each symmetry. nκ is a constant the values of which are
1, 2, 3, 4, 5, and 6 for s, p, d , f , g, and h symmetries,
respectively. [61]. The sizes of the basis set considered for
the above-mentioned symmetries are 33, 30, 28, 25, 21, and
20, respectively [42]. The RCCSD(T) and RMBPT(2) calcu-
lations also require adequate inclusions of active-orbital basis

sets to satisfy the correlation energy convergence criteria [76],
which are considered as 11, 11, 13, 11, 10, and 6 in numbers
for the s, p, d , f , g, and h symmetries, respectively.

In the sum-over-states strategy, the most dominant con-
tribution to a valence polarizability appears from the sum
[Eqs. (5)–(7)] of the terms having E1 matrix elements as-
sociated with the first few low-lying states. Accordingly, the
excited states 5–82S 1

2
, 5–82P1

2 , 3
2
, 4–72D 3

2 , 5
2
, and 4–62F5

2 , 7
2

are
found to be the most important states in the present sum-
over-states formalism. The matrix elements are calculated
here using the correlation exhaustive RCCSD(T) method,
and the corresponding transition energies to calculate valence
polarizability are extracted from the website of the National
Institute of Standards and Technology [85]. Relatively less
important E1-matrix elements of the sum are calculated by
using RMBPT(2) [59], which includes core polarization cor-
rections on top of the DF contributions [73,86]. This part sums
up the contributions from the next five single valence states
for all the symmetries. The E1 matrix elements, the contri-
butions of which have little significance to the total valence
polarizabilities, are associated with the single valence states
14–252S 1

2
, 14–252P1

2 , 3
2
, 13–252D 3

2 , 5
2
, and 12–252F5

2 , 7
2
. The

wave functions and the corresponding E1 matrix elements of
these states are calculated using the DF method only.

In Table I, we represent total static polarizabilities [αv (0)]
of 42D 3

2 , 5
2
, 52S 1

2
, and 52P1

2 , 3
2

states for the case Jv = MJv
. The

contributions from αC
v (0) and αVC

v (0) to the total static po-
larizabilities are also presented along with the scalar [α(0)

v (0)]
and tensor [α(2)

v (0)] components of αV
v (0). The decomposition

of αV
v (0) in terms of the RCCSD(T), RMBPT(2), and DF

parts as discussed in the previous paragraph of this section is
shown quantitatively in Table II. Nevertheless, our calculated
values of the polarizabilities for the clock states in Table I
are compared with the corresponding theoretical values of
Safronova and Safronova [87]. They used an all-order rela-
tivistic many-body perturbation theory, which is very similar
to a linearized coupled-cluster theory, for their calculation for
the valence part of a polarizability. Our RCCSD(T) method,
which is employed to calculate the most dominating part of a
valence polarizability, is theoretically more accurate than their
all-order method as the former is augmented with important
nonlinear terms. However, their method corresponds to use
of the RPA matrix element with respect to our RMBPT(2)
matrix element to compute the core polarizability [40,87,88].
As mentioned in the previous section, our calculated value of
core polarizability 4.28 a.u. is an approximation to the all-
order RPA value of core polarizability 4.05 a.u. Here it should
be mentioned that indeed our strategy of calculating core
polarizability is not highly accurate towards computing a total
polarizability value. But this slight inaccuracy does not affect
a calculated value of magic wavelength as the contribution
of core polarizability to the total polarizabilities for the clock
states is canceled to determine this wavelength. However,
this inaccuracy can affect a tune-out wavelength, which is
not more than ±1 Å for the calculated tune-out wavelengths
discussed in the last paragraph of the present section. The
comparison in Table I indicates 4.7% deviation for the 42D 3

2

state, 4.9% deviation for the 42D 5
2

state, and 3.8% deviation

for the 52S 1
2

state in the total static polarizability values.
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TABLE I. Total static polarizabilities αv (0) are presented in a.u. along with contributions from scalar α(0)
v (0), core αC

v (0), core-valence
αVC

v (0), and tensor α(2)
v (0) parts. “Other” refers to the corresponding values obtained from the work of Safronova and Safronova [87]. “Our”

refers to our calculated values which are rounded up to two decimal places.

State α(0)
v (0) αC

v (0) αVC
v (0) α(2)

v (0) αv (0)
Our Other Our Other Our Other Our Other Our Other

42D 3
2

6.89 6.742(26) 4.28 4.048 −0.33 −0.313 −3.48 −3.45(2) 7.36 7.03(4)

42D 5
2

6.93 6.815(32) 4.28 4.048 −0.36 −0.341 −4.86 −4.81(3) 5.99 5.71(4)

52S 1
2

42.07 40.64(17) 4.28 4.048 −0.17 −0.17 0.00 0.00 46.18 44.5(2)

52P1
2

8.75 4.28 0.00 0.00 13.03
52P3

2
12.02 4.28 0.00 5.61 21.91

We also present the static polarizabilities for 52P1
2 , 3

2
states,

which can be helpful in future experimental explorations of
state-specific properties.

Figure 2 shows the wavelength dependency of the total
polarizabilities for the 52S 1

2
and 42D 3

2 , 5
2

states due to a linearly
and a circularly polarized light. We consider right circularly
polarized light [i.e., σ = +1 in Eq. (4)] in the present cal-
culations of polarizabilities at the various MJv

levels of the
clock states. Here we choose the most important region of the
electromagnetic spectrum from λ = 77 to 400 nm as there is
no significant magic wavelength which can be prescribed for
laser trapping purposes outside of this region. The entire spec-
trum of the wavelength as considered in all the four plots of
Fig. 2 spans from the vacuum ultraviolet to the starting zone of
the visible region. The peaks in the polarizability curves rep-
resent the resonances associated with the transitions 52S 1

2
→

(5–7)2P1
2 , 3

2
and 42D 3

2 , 5
2

→ (5–7)2P1
2 , 3

2
and (4–5)2F5

2 , 7
2
. It is

interesting to see that there is no resonance line in between
100 and 400 nm for 4D5(5/2) (the 42D(Jv ,MJv ) state with Jv =
5
2 and MJv

= 5
2 ) with a linearly polarized light [Fig. 2(b)].

This feature is a consequence of strong cancellation between
scalar and tensor parts of the polarizability in that wavelength
span. A similar characteristic for the resonance behavior of
the 3D5(5/2) state was seen in the recent work on dynamic
polarizability for the Sc2+ ion [21]. Indeed, the resonances
appear for this state when one considers circular polarization
of light. The circular polarization induces the nonvanishing
vector component, which is the sole reason for the occur-
rences of resonances in the polarizability profile of 4D5(5/2).

The crossing points between the curves representing the
dynamic polarizabilities of 52S 1

2
and 42D 3

2 , 5
2

states in Fig. 2
show a number of magic wavelengths for the transitions
between them. We find quite a few magic wavelengths

TABLE II. Contributions to αV
v (0) (in a.u.) of the clock

states from the intermediate states considered at the RCCSD(T),
RMBPT(2), and DF levels.

State RCCSD(T) RMBPT(2) DF

42D 3
2

3.40233 0.01070 0.00006

42D 5
2

2.05729 0.01265 0.00015

52S 1
2

42.07169 0.00089 0.00003

with high polarizability values at the mid-UV region (200–
300 nm), and, therefore, these wavelengths can be very sig-
nificant for the Y2+ clock experiment with the best possible
precision. All the magic wavelengths within the range of 77
to 400 nm are presented in Table III with the corresponding
polarizability values. This table also reveals the effect of
the vector part of polarizability by comparing the results for
the circularly polarized light with the results for a linearly
polarized light. Here it is to be mentioned that the orientation
of the polarization of light (σ ) and the sign of MJv

decide
the resultant sign of the vector part of polarizability [see
Eq. (4)]. This essentially means that the signs of these two
factors (σ and MJv

) are responsible apart from the sign of
α(1)

v (ω) to determine whether there should be an additive or
a subtractive effect to the total polarizability for a linearly
polarized light to achieve the total polarizability for the circu-
larly polarized light. Nevertheless, due to the presence of the
vector part in the polarizability, the circularly polarized light
provides a relatively greater number of magic wavelengths for
the clock transitions and many of them are associated with
large polarizability values. Moreover, both the values of the
magic wavelengths and the corresponding polarizabilities are
changed moderately in a few cases due to the change in light
polarization from linear and circular. This facilitates external
control on slight tuning of the magic wavelengths. Since the
wavelengths of the transitions 52S 1

2
–42D 3

2 , 5
2

are 1339.2 and
1483.0 nm, respectively, all the magic wavelengths presented
in the table support the blue-detuned trapping scheme.

B. Dynamic polarizabilities and magic wavelengths
for hyperfine-structure states

Instead of considering the electronic fine-structure transi-
tions, experimentalists prefer to consider hyperfine transitions
in most cases of trapping and cooling processes. Therefore,
it may be physically more meaningful to estimate the magic
wavelengths for the transitions between different hyperfine
levels of the clock states.

The hyperfine-structure constant A values for nine low-
lying states of Y2+ are calculated using the RCCSD(T)
method and presented in Table IV. In order to calculate these
constants, we choose the most abundant isotope of Y with
mass number 89, nuclear spin (I ) = 1/2, and nuclear mag-
netic moment (μ) = −0.137 415 4 μN . The nuclear charge
distribution of this isotope is assumed to have the Fermi-type
form [89]. We compare the present RCCSD(T) values with
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TABLE III. Magic wavelengths λmagic (in nm) with corresponding polarizabilities αmagic (in a.u.) for 52S 1
2

to 42D 3
2

and 52S 1
2

to 42D 5
2

transitions due to linearly and circularly polarized (σ = +1) light. Notation (Jv, MJv
)–(J ′

v, MJ ′
v
) in the second row indicates the transition

52S(Jv ,MJv )–42D(J ′
v ,MJ′

v
).

Linearly polarized Circularly polarized

( 1
2 , 1

2 )–(J ′
v, MJ ′

v
) ( 1

2 ,− 1
2 )–(J ′

v, −MJ ′
v
) ( 1

2 , − 1
2 )–(J ′

v, MJ ′
v
) ( 1

2 , 1
2 )–(J ′

v,−MJ ′
v
) ( 1

2 , 1
2 )–(J ′

v, MJ ′
v
)

(J ′
v, MJ ′

v
) λmagic αmagic λmagic αmagic λmagic αmagic λmagic αmagic λmagic αmagic

( 3
2 , 3

2 ) 293.77 9.57 294.83 22.16 294.77 −3.11 286.02 24.91 286.00 −5.11
244.18 −97.23 247.36 −107.53 244.12 −116.35 246.54 −126.90
226.14 −59.47 244.79 −98.92 232.54 −82.32 244.85 −119.02
101.08 0.59 101.09 0.68

98.96 1.10 98.96 1.06 98.96 1.06 98.96 1.15 98.96 1.15
85.39 4.52 85.31 3.35 85.35 5.79 85.50 3.36 85.61 5.22
80.63 6.59 80.52 6.45 80.63 6.36 80.50 6.93 80.08 7.32

( 3
2 , 1

2 ) 293.84 28.79 294.85 32.99 294.83 24.58 286.02 36.85 286.02 26.85
244.26 −107.13 244.32 −97.61 244.20 −97.30 244.29 −116.94 244.16 −116.45
233.83 −78.13 226.68 −60.24 230.62 −67.61 227.31 −70.05 231.99 −81.06
98.96 1.10 98.96 1.06 98.96 1.06 98.96 1.14 98.96 1.14
85.38 3.88 85.73 3.07 85.80 3.48 85.16 3.81 85.44 4.23
80.63 6.59 80.63 6.36 80.63 6.36 80.63 6.82 80.63 6.83

( 5
2 , 5

2 ) 293.75 6.26 294.83 19.71 294.77 −7.21 286.02 22.18 286.00 −9.64
238.33 −81.99 246.62 −105.03 238.26 −96.02 245.47 −121.85
229.28 −64.40 239.15 −83.97 230.70 −76.69 239.23 −99.04
113.16 −0.82 112.17 −0.95
100.53 0.72 100.40 0.75 100.53 0.81 100.40 0.83

99.54 0.98 99.30 0.99 99.30 1.07
85.40 5.04 98.63 1.13 86.15 5.57 98.63 1.22 86.22 5.42
81.02 6.28 88.78 3.67 80.99 6.08 88.86 3.69 80.99 6.53

( 5
2 , 3

2 ) 293.82 21.05 294.85 28.94 294.81 12.81 286.02 32.16 286.00 13.07
233.91 −78.33 234.17 −73.14 233.72 −72.19 234.14 −84.68 233.69 −83.47
229.71 −69.82 222.72 −54.69 232.28 −69.59 224.60 −64.94 232.91 −81.69
99.54 0.98 99.38 0.97 100.78 0.66 99.38 1.06 100.25 0.87
85.40 4.65 85.73 3.08 85.99 4.64 85.04 3.62 85.89 4.92
81.02 6.28 81.08 6.01 81.00 6.07 81.08 6.46 81.00 6.52

( 5
2 , 1

2 ) 293.87 28.44 294.85 30.87 294.83 25.50 286.02 33.97 286.02 27.61
233.99 −78.51 234.05 −72.89 233.95 −72.67 234.03 −84.39 233.93 −84.11
225.48 −62.52 222.50 −54.40 226.83 −60.48 224.26 −64.35 227.71 −70.62
99.54 0.98 99.47 0.95 99.66 0.91 99.47 1.03 99.66 1.00
85.39 4.46 85.79 3.43 85.88 3.94 85.37 4.13 85.62 4.52
81.02 6.28 81.03 6.05 81.02 6.06 81.03 6.50 81.02 6.51

TABLE IV. Hyperfine A constants and hyperfine splitting in MHz.

State Hyperfine A constant F1 → F2 Hyperfine splitting

DF RCCSD(T) Other [39] RCCSD(T) Other [57]

MCDF Exp.

42D 3
2

79.55 102.74 2 → 1 205.47
42D 5

2
33.20 14.25 3 → 2 42.74

42F5
2

0.48 0.86 3 → 2 2.59

42F7
2

−0.27 −0.88 4 → 3 3.52

52S 1
2

1441.92 1793.19 1780 1803(5) 1 → 0 1793.19 1920 ± 150

52P1
2

284.44 371.47 352 391(5) 1 → 0 371.47
52P3

2
49.57 73.86 2 → 1 147.72 128

52D 3
2

17.12 21.63 2 → 1 43.25

52D 5
2

7.19 8.10 3 →2 24.29
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(a) (b)

(c) (d)

FIG. 2. The variations of total polarizabilities (indicated by polarizability) with wavelengths for the states 52S 1
2

and 42D 3
2 , 5

2
to extract magic

wavelengths for the transitions between them. (a, b) Linearly polarized light. (c, d) Circularly polarized light. Here the different (Jv, MJv
) levels

of the state n2LJv
are indicated by nL2Jv (MJv

) with n the principal quantum number of the valence orbital and L the orbital angular momentum
quantum number of the ion.

the available hyperfine A values in the literature and find good
agreement between them [39]. As the nuclear quadrupole
moment is zero for a spin-half nucleus, the hyperfine shifts
[see Eq. (14)] and consequently the splittings are calculated
using hyperfine A constants only. The splitting values are
displayed in the same table with comparison to a few very
old experimental measurements [57]. This table also shows
high values of relative correlation corrections to the hyperfine
A constants of the 42D 5

2
and 42F5

2 , 7
2

states. This relative cor-

relation correction is defined by |RCCSD(T) value−DF value
DF value | × 100.

From our investigation, we find strong core polarization effect
[77] is the main reason for such high impact of correlation.

Figure 3 represents the variation profiles of dynamic po-
larizabilities for the hyperfine levels of the clock states within
the same spectral region which is considered in Fig. 2. For the
circularly polarized light with σ = +1, the polarizability pro-

files of 42D 3
2
(Fv = 2, MFv

= ±2), 42D 5
2
(Fv = 3, MFv

= ±3),

and 52S 1
2
(Fv = 1, MFv

= ±1) states are same as the profiles of

42D 3
2
(MJv

= ± 3
2 ), 42D 5

2
(MJv

= ± 5
2 ), and 52S 1

2
(MJv

= ± 1
2 )

states, respectively. This is because of the unit value of
the multiplication factors in Eqs. (8) and (9) which relate
α

(i)
vF (ω) with α(i)

v (ω) for these states with i = 1, 2. Also the
polarizability values are same for 42D 3

2
(Fv = 2, MFv

= 0)

and 42D 3
2
(Fv = 1, MFv

= 0) states. We have not shown the
dynamic profile of the states separately in the figure for which
the profiles are the same.

In Table V, we tabulate the magic wavelengths due to the
transitions between the hyperfine levels of the clock states for
linearly and circularly polarized light. Similar to Table III, we
get a few more magic wavelengths for the circularly polarized
light compared to the linearly polarized light due to the
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(a) (b)

(c) (d)

FIG. 3. Representation of Fig. 2, but now by including the effect of hyperfine splittings in the fine-structure states 52S 1
2

and 42D 3
2 , 5

2
. (a, b)

Linearly polarized light. (c, d) Circularly polarized light. Here the different (Fv, MFv
) levels of the state n2LJv

are indicated by nLJv (Fv, MFv
)

with n the principal quantum number of the valence orbital and L the orbital angular momentum quantum number of the ion.

presence of vector part of valence polarizability in the former.
From a comparison between Tables V and III, it is obvious
that the hyperfine splitting can induce small but noticeable
changes both in the magic wavelengths and the corresponding
polarizabilities with more degrees of freedom in the choices
of (Fv, MFv

) combinations for each (Jv, MJv
).

In order to calculate theoretical uncertainties in the
RCCSD(T) hyperfine A values in Table IV, we classify atomic
states of Y2+ in two different classes. One class (class I)
has the correlation correction by less than 50%: 42D 3

2
, 52S 1

2
,

52P1
2
, 52P3

2
, 52D 3

2
, and 52D 5

2
. The second class (class II) has

it by more than 50%: 42D 5
2
, 42F5

2
, and 42F7

2
. We believe

the uncertainties in the hyperfine values are dominated by
the uncertainties in the correlation corrections computed by
our present RCCSD(T) method. Therefore, the uncertainties
in the class II states are supposed to be higher than the
uncertainties in the class I states. There can be a small amount

of uncertainties in the DF values as well, which we can
approximately calculate by comparing the expectation values
of 1/r for these states as computed by using our optimized
GTO basis functions and as obtained by using the numeri-
cal DF wave functions of the GRASP92 code [90]. The 1/r
values can certainly be one of the parameters to judge the
accuracy of the DF wave functions near to the nuclear region
where the hyperfine values are peaked. Nevertheless, as far
as the correlation is concerned, the spread in the correlation
corrections and, therefore, in the total hyperfine values can
be roughly estimated by comparing the present RCCSD(T)
values with the corresponding values obtained from another
similar method such as SDpT (linearized coupled cluster with
single, double, and partial triple corrections) [91,92], which
can also provide very highly accurate results [10]. However,
for Y2+, no such SDpT hyperfine values are available to our
knowledge. Therefore, we calculate the hyperfine values for
Sr+, which is also an element of a Rb-isoelectronic sequence
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TABLE V. Magic wavelengths λmagic (in nm) with corresponding total polarizabilities αmagic (in a.u.) for the 52S 1
2
–42D 3

2 , 5
2

tran-
sitions for linearly and circularly polarized (σ = +1) lights. Notation (Fv, MFv

)–(F ′
v , MF ′

v
) in the second row indicates the transition

52S(Jv ,MJv )(Fv, MFv
)–42D(J ′

v ,MJ′
v

)(F ′
v , MF ′

v
).

Linearly polarized Circularly polarized

(1, 1)–(F ′
v , MF ′

v
) (1,−1)–(F ′

v ,−MF ′
v
) (1,−1)–(F ′

v , MF ′
v
) (1, 1)–(F ′

v ,−MF ′
v
) (1, 1)–(F ′

v , MF ′
v
)

[J ′
v](F ′

v , MF ′
v
) λmagic αmagic λmagic αmagic λmagic αmagic λmagic αmagic λmagic αmagic

[ 3
2 ] (2,2) 293.77 9.57 294.83 22.16 294.77 −3.11 286.02 24.91 286.00 −5.11

244.18 −97.23 247.36 −107.53 244.12 −116.35 246.54 −126.90
226.14 −59.47 244.79 −98.92 232.54 −82.32 244.85 −119.02
101.08 0.59 101.09 0.68

98.96 1.10 98.96 1.06 98.96 1.06 98.96 1.15 98.96 1.15
85.39 4.52 85.31 3.35 85.35 5.79 85.50 3.36 85.61 5.22
80.63 6.59 80.52 6.45 80.63 6.36 80.50 6.93 80.08 7.32

[ 3
2 ], (2,1) 293.85 24.2 294.88 30.28 294.85 17.66 286.03 32.76 286.00 18.86

244.19 −106.87 244.30 −97.55 243.93 −96.51 244.27 −116.84 243.82 −115
231.91 −74.45 226.53 −60.02 227.81 −62.45 226.97 −69.28 237.54 −93.76
98.96 1.10 98.97 1.06 98.96 1.06 99.41 1.05 98.96 1.14
85.38 4.06 85.30 3.53 85.34 4.71 85.51 3.44 85.56 4.28
80.63 6.59 80.63 6.36 80.63 6.36 81.06 6.48 80.63 6.83

[ 3
2 ], (2/1,0) 293.87 29.07

244.27 −107.13
230.62 −71.63
98.96 1.10
85.36 3.92
80.63 6.59

[ 3
2 ], (1,1) 293.81 14.45 294.86 24.87 294.82 3.82 286.03 27.89 286.02 2.88

243.55 −104.76 244.24 −97.36 244.20 −116.56
237.45 −86.66 226.26 −59.63 226.74 −68.71
98.96 1.10 98.97 1.06 98.96 1.06 98.97 1.14 98.96 1.15
85.39 4.36 85.34 3.40 85.37 5.38 85.50 3.36 85.60 4.91
80.63 6.59 84.20 3.78 84.66 3.61

82.05 5.34 81.71 6.00
80.66 6.34 80.63 6.36 80.66 6.80 80.63 6.82

[ 5
2 ], (3,3) 293.75 6.26 294.83 19.71 294.77 −7.21 286.02 22.18 286.00 −9.64

238.33 −81.99 246.62 −105.03 238.26 −96.02 245.47 −121.85
229.28 −64.40 239.15 −83.97 230.70 −76.69 239.23 −99.04
113.16 −0.82 112.17 −0.95
100.53 0.72 100.40 0.75 100.53 0.81 100.40 0.83

99.54 0.98 99.30 0.99 99.30 1.07
85.40 5.04 98.63 1.13 86.15 5.57 98.63 1.22 86.22 5.42
81.02 6.28 88.78 3.67 80.99 6.08 88.86 3.69 80.99 6.53

[ 5
2 ], (3,2) 293.81 18.59 294.83 26.81 294.81 10.07 286.02 29.79 286.00 9.99

233.86 −78.21 234.20 −73.18 243.21 −94.54 234.15 −84.70 242.84 −111.49
230.63 −71.59 224.20 −56.72 240.77 −87.79 226.17 −67.66 240.82 −103.99
98.89 0.98 99.37 0.97 99.62 0.92 98.72 1.06 99.62 0.86
84.92 4.71 85.35 3.37 85.37 5.06 85.02 3.28 85.15 5.55
80.59 6.28 81.09 6.00 80.57 6.41 80.67 6.45 80.57 6.52

[ 5
2 ], (3,1) 293.86 25.97 294.87 29.59 294.85 17.04 286.03 33.37 286.02 22.76

233.98 −78.47 234.13 −73.03 233.82 −72.39 234.07 −84.46 233.87 −83.94
227.00 −64.97 222.65 −54.59 230.73 −66.81 224.38 −64.53 230.15 −75.42
99.54 0.98 99.41 0.96 100.09 0.81 99.44 1.04 99.80 0.97
85.39 4.54 85.36 3.59 85.38 5.66 85.52 3.63 85.59 4.83
81.02 6.28 81.06 6.03 81.01 6.07 81.04 6.49 81.01 6.52

[ 5
2 ], (3/2,0) 293.87 27.06

230.46 −71.22
221.19 −56.04
98.90 1.12
85.38 3.62
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TABLE V. (Continued).

Linearly polarized Circularly polarized

(1, 1)–(F ′
v , MF ′

v
) (1,−1)–(F ′

v , −MF ′
v
) (1,−1)–(F ′

v , MF ′
v
) (1, 1)–(F ′

v ,−MF ′
v
) (1, 1)–(F ′

v , MF ′
v
)

[J ′
v](F ′

v , MF ′
v
) λmagic αmagic λmagic αmagic λmagic αmagic λmagic αmagic λmagic αmagic

80.59 6.62
[ 5

2 ], (2,2) 293.79 8.72 294.86 21.25 294.81 −3.87 286.02 23.85 286.01 −5.86
237.43 −79.84 245.50 −101.19 237.35 −93.14 244.83 −118.97
227.89 −62.16 239.63 −85.05 229.69 −74.52 239.69 −100.44
110.77 0.24 109.63 0.10
106.08 −0.89 106.28 −0.80

99.54 0.98 97.78 1.32 100.39 0.75 97.76 1.40 99.99 0.92
85.40 4.97 89.74 3.32 85.39 7.05 89.93 3.33 85.68 6.37
81.02 6.28 85.33 2.91 80.99 6.08 85.48 2.93 80.99 6.53

[ 5
2 ], (2,1) 293.85 22.44 294.87 29.59 294.85 17.04 286.03 32.76 286.02 17.92

230.42 −71.14 234.13 −73.03 233.82 −72.39 234.10 −84.55 233.79 −83.73
224.08 −60.28 222.65 −54.59 230.73 −66.81 224.49 −64.73 231.16 −77.72
98.90 1.12 98.76 0.96 99.61 0.81 98.76 1.05 99.61 0.90
85.38 3.83 84.85 3.62 84.87 5.73 85.03 3.44 85.13 5.13
80.59 6.62 80.63 6.03 80.58 6.07 80.63 6.48 80.58 6.52

like Y2+, by the present RCCSD(T) method and compare
these values with the corresponding hyperfine values as cal-
culated by the SDpT method of Safronova [91]. Such a com-
parison is available for few states in [10]. Nevertheless, we
find maximum discrepancy of 1.8% in the comparison for all
the states belong to class I. Our observations and experience
of calculating hyperfine values for the isoelectronic sequence
of alkali-metal-like atoms [10,82,93] indicate that for these
states the discrepancy should not be more than ±1.8% for
Y2+, which is more ionized than Sr+. This is mainly due
to the fact that with increasing ionization in a particular
isoelectronic sequence the correlation correction decreases
[82,83], and RCCSD(T) and SDpT or SD (SDpT without
partial triple) values approach towards more and more close
agreement usually [93]. Therefore, we can assume maximum
uncertainty of ±2% for the hyperfine values of class I states of
Y2+ due to discrepancy in correlation correction. However, for
class II states, for which the correlation correction discrepancy
between RCCSD(T) and SDpT or SD methods decreases
from singly to doubly ionized systems along an isoelectronic
sequence of an alkali-metal atom [93], a different strategy is
considered. Here we compare the correlation correction in
the hyperfine value of the 42D 5

2
state as calculated by the

present RCCSD(T) method and as calculated by the SDpT
method of Safronova for Sr+ [91]. We find discrepancy of
around 5% in this correlation value. Now for Y2+, which is
more ionized than Sr+, this discrepancy is expected to be
lower than 5%; even then, let us assume that this discrepancy
is still 5% for the purpose of calculating uncertainty. This
5% discrepancy in correlation can invoke an uncertainty of
around ±7% in the RCCSD(T) hyperfine value of the 42D 5

2

state of Y2+. Now as for 42F5
2

and 42F7
2

states no SDpT

values are available in the work of Safronova for Sr+, it
is very difficult to compute the uncertainty values for these
two states. Therefore, with a very rough assumption, if we
assume the same amount of 5% uncertainty in the correlation
corrections of 42F5

2
and 42F7

2
states hold as well for the Sr+

ion, then one should not expect uncertainties by more than
±7% in the RCCSD(T) hyperfine values for these two states
of Y2+ also. Therefore, accounting for the preciseness of DF
wave functions near to the nuclear region and approximate
contributions from the Breit interactions [83], and from a
comparative assessment between the RCCSD(T) and SDpT
results for Sr+, we estimate the theoretical uncertainties in the
RCCSD(T) hyperfine A values in Table IV of around ±3% for
the class I states and ±8% for the class II states.

To estimate uncertainty in the calculated magic wave-
lengths for Y2+, we reevaluate the magic wavelengths by
replacing only our calculated RCCSD(T) dipole matrix ele-
ments by the corresponding available dipole matrix elements
in the literature [87] which were calculated by using an all-
order RMBPT method. The transition matrix elements which
we find in their work [87] are 52S 1

2
–52P1

2 , 3
2
, 42D 3

2 , 5
2
–n2P1

2 , 3
2

with n = 5–7, and 42D 3
2 , 5

2
–m2F5

2 , 7
2

with m = 4–6. The max-
imum difference between these recalculated magic wave-
lengths and the corresponding magic wavelengths presented
in Tables III and V is considered as the uncertainty in the latter
values, which is estimated around ±1%.

C. Tune-out wavelengths for 42D 3
2 , 5

2
and 52S 1

2
states

for a linearly polarized light

We also report a few tune-out wavelengths in Table VI for
the hyperfine levels of the 52S 1

2
and 42D 3

2 , 5
2

states of Y2+. In
this table, we consider a linearly polarized light only. There
is an advantage of calculating tune-out wavelengths for a
linearly polarized light. Table VI displays the wavelength at
which the total polarizability of a particular hyperfine state
becomes zero for a linearly polarized light. However, due
to the nonzero vector polarizability contribution, the total
polarizability for a circularly polarized light does not become
zero at the same wavelength for the same hyperfine state. As
an example, the vector contributions to the total polarizability
of the ground state 42D 3

2
with Fv = 2 and MFv

= ±2 at the
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TABLE VI. Tune-out wavelengths (in nm) for Y2+ at the hyperfine levels (Fv, MFv
).

52S 1
2

42D 3
2

42D 5
2

(1,1) (2,2) (2,1) (2 or 1, 0) (1,1) (3,3) (3,2) (3,1) (3 or 2,0) (2,2) (2,1)

293.73 230.83 244.46 244.47 244.36 99.54 234.14 234.15 230.59 230.50 230.59
108.68 215.32 186.85 180.59 204.41 91.04 193.06 180.46 175.24 220.54 181.86

98.96 98.96 98.96 98.96 99.54 99.54 98.90 98.89 98.97
90.01 88.02 88.02 89.38 89.19 88.45 87.74 90.06 88.16
80.61 80.62 80.62 80.62 81.00 81.00 81.01 80.58 80.57 80.58

tune-out wavelengths 230.83 and 215.32 nm become
414.14 and 25.84 a.u., respectively, whereas, for the Fv =
1 and MFv

= ±1 hyperfine component of the same fine-
structure state, the vector polarizability values become 53.86
and 14.98 a.u. at the presented tune-out wavelengths 244.36
and 204.41 nm, respectively. These values can be used to
calculate fictitious magnetic field induced by the circular
polarization of light [94]. The prior knowledge of the zero
Stark-shift wavelengths for a particular atomic state can be
advantageous for an accurate trap-insensitive experimental
measurement [5,95,96].

IV. CONCLUSION

In the present paper, we have determined the magic wave-
lengths corresponding to the 52S 1

2
–42D 3

2 , 5
2

clock transitions

of 89Y2+ for two different types of polarization (linear and
circular) of the projected light beam. The magic wavelengths
span from the vacuum ultraviolet to the near ultraviolet region
of the electromagnetic spectrum. The data are presented both
at the fine-structure and the associated hyperfine levels of
the atomic states, and this gives an understanding of how
much the hyperfine interaction can affect the magic trap-
ping conditions viable for the fine-structure states. Indeed
we have found slight modifications in the magic wavelength

values after imposing hyperfine splitting on the fine-structure
clock states. But most importantly, the number of magic
wavelengths is increased. Many of these magic wavelengths
can have potential applications for trap-related experimental
explorations. Irrespective of the nature of the polarization
of light, our calculations show that the polarizabilities at
the magic wavelengths between 200 and 300 nm are higher
and, thus, these wavelengths are more important for the
experimental purposes. The calculated tune-out wavelengths
in the present paper have important applications to perform
trap-insensitive experiments. Also, we demonstrate quanti-
tatively the advantage of using a circularly polarized light
which yields extra trapping potential from the vector part
of the polarizability. The calculated static polarizabilities for
42D 3

2 , 5
2
, 52S 1

2
, and 52P1

2 , 3
2

states are useful to calculate the
blackbody radiation shifts of the transition frequencies among
these states at a definite temperature. The hyperfine constants
for most of the states of 89Y2+ are reported for the first time
in the literature to the best of our knowledge.
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I. L. Chuang, Quantum Inf. Process. 15, 5351 (2016).

[38] M. Schwarz, O. O. Versolato, A. Windberger, F. R. Brunner, T.
Ballance, S. N. Eberle, J. Ullrich, P. O. Schmidt, A. K. Hansen,
A. D. Gingell, M. Drewsen, and J. R. Crespo López-Urrutia,
Rev. Sci. Instrum. 83, 083115 (2012).

[39] L. J. Vormawah, M. Vilén, R. Beerwerth, P. Campbell, B. Cheal,
A. Dicker, T. Eronen, S. Fritzsche, S. Geldhof, A. Jokinen, S.
Kelly, I. D. Moore, M. Reponen, S. Rinta-Antila, S. O. Stock,
and A. Voss, Phys. Rev. A 97, 042504 (2018).

[40] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43,
202001 (2010).

[41] R. Trubko, J. Greenberg, M. T. St. Germaine, M. D. Gregoire,
W. F. Holmgren, I. Hromada, and A. D. Cronin, Phys. Rev. Lett.
114, 140404 (2015).

[42] A. Das, A. Bhowmik, N. N. Dutta, and S. Majumder, J. Phys. B
51, 025001 (2018).

[43] T. Meguro, T. Caughey, L. Wolf, and Y. Aoyagi, Opt. Lett. 19,
102 (1994).

[44] H. Kumagai, IEEE J. Sel. Top. Quantum Electron. 10, 1252
(2004).

[45] Excimer Laser Technology, edited by D. Basting and G.
Marowsky (Springer-Verlag, Berlin, 2005).

[46] J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, Appl.
Opt. 39, 5505 (2000).

[47] T. Uchimura, T. Onoda, C.-H. Lin, and T. Imasaka, Rev. Sci.
Instrum. 70, 3254 (1999).

[48] R. H. Lipson, S. S. Dimov, P. Wang, Y. J. Shi, D. M. Mao, and
X. K. Hu, Instrum. Sci. Technol. 28, 85 (2007).

[49] D. Jiang, B. Arora, M. S. Safronova, and C. W Clark, J. Phys.
B 42, 154020 (2009).

[50] E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Phys. Rev.
Lett. 97, 040802 (2006).

[51] K. Beloy, U. I. Safronova, and A. Derevianko, Phys. Rev. Lett.
97, 040801 (2006).

[52] G. Werth, Phys. Scr. 1995, 206 (1995).
[53] D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell,

Phys. Rev. Lett. 119, 100501 (2017).
[54] S. T. Maniak, L. J. Curtis, C. E. Theodosiou, R. Hellborg, S. G.

Johansson, I. Martinson, R. E. Irving, and D. J. Beideck, Astron.
Astrophys. 286, 978 (1994).

[55] É. Biémont, K. Blagoev, L. Engström, H. Hartman, H.
Lundberg, G. Malcheva, H. Nilsson, R. W. Blackwell, P.
Palmeri, and P. Quinet, Mon. Not. R. Astron. Soc. 414, 3350
(2011).

[56] T. Brage, G. M. Wahlgren, S. G. Johansson, D. S. Leckrone, and
C. R. Proffitt, Astrophys. J. 496, 1051 (1998).

[57] M. F. Crawford and N. Olson, Phys. Rev. 76, 1528 (1949).
[58] F. L. Kien, P. Schneeweiss, and A. Rauschenbeutel, Eur. Phys.

J. D 67, 92 (2013).
[59] W. R. Johnson, Z. W. Liu, and J. Sapirstein, At. Data Nucl. Data

Tables 64, 279 (1996).
[60] I. P. Grant, Relativistic Quantum Theory of Atoms and

Molecules: Theory and Computation (Springer, New York,
2007).

[61] Modern Techniques in Computational Chemistry: MOTECC-90,
edited by E. Clementi (Springer, New York, 1990).

[62] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 052508
(2011).

[63] N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys.
Rep. 141, 320 (1986).

[64] K. Beloy, Theory of the ac stark effect on the atomic hyperfine
structure and applications to microwave atomic clocks, Ph.D.
dissertation, University of Nevada, 2009.

[65] V. A. Dzuba, V. V. Flambaum, K. Beloy, and A. Derevianko,
Phys. Rev. A 82, 062513 (2010).

[66] J. Kaur, S. Singh, B. Arora, and B. K. Sahoo, Phys. Rev. A 95,
042501 (2017).

[67] B. H. Bransden and C. J. Joachain, Physics of Atoms and
Molecules (Pearson Education, Harlow, 2003).

[68] K. T. Cheng and W. J. Childs, Phys. Rev. A 31, 2775
(1985).

[69] N. N. Dutta, S. Roy, G. Dixit, and S. Majumder, Phys. Rev. A
87, 012501 (2013).

[70] R. K. Chaudhuri, B. K. Sahoo, B. P. Das, H. Merlitz, U. S.
Mahapatra, and D. Mukherjee, J. Chem. Phys. 119, 10633
(2003).

012801-12

https://doi.org/10.1103/PhysRevLett.112.173002
https://doi.org/10.1103/PhysRevLett.116.063001
https://doi.org/10.1103/PhysRevA.88.032509
https://doi.org/10.1103/PhysRevA.92.052510
https://doi.org/10.1103/PhysRevLett.109.180801
https://doi.org/10.1103/PhysRevA.93.043407
https://doi.org/10.1103/PhysRevLett.119.253001
https://doi.org/10.1103/PhysRevA.92.031402
https://doi.org/10.1088/1361-6455/aa8bae
https://doi.org/10.1103/PhysRevLett.114.223001
https://doi.org/10.1103/PhysRevLett.103.153004
https://doi.org/10.1103/PhysRevA.97.022511
https://doi.org/10.1103/PhysRevA.89.023820
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1126/science.1105497
https://doi.org/10.1103/PhysRevLett.97.020801
https://doi.org/10.1103/PhysRevA.89.050501
https://doi.org/10.1063/1.5088164
https://doi.org/10.1007/s11128-016-1298-8
https://doi.org/10.1063/1.4742770
https://doi.org/10.1103/PhysRevA.97.042504
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1103/PhysRevLett.114.140404
https://doi.org/10.1088/1361-6455/aa9955
https://doi.org/10.1364/OL.19.000102
https://doi.org/10.1109/JSTQE.2004.837716
https://doi.org/10.1364/AO.39.005505
https://doi.org/10.1063/1.1149901
https://doi.org/10.1081/CI-100100965
https://doi.org/10.1088/0953-4075/42/15/154020
https://doi.org/10.1103/PhysRevLett.97.040802
https://doi.org/10.1103/PhysRevLett.97.040801
https://doi.org/10.1088/0031-8949/1995/T59/027
https://doi.org/10.1103/PhysRevLett.119.100501
http://astro1.panet.utoledo.edu/~ljc/yiii.pdf
https://doi.org/10.1111/j.1365-2966.2011.18637.x
https://doi.org/10.1086/305401
https://doi.org/10.1103/PhysRev.76.1528
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1006/adnd.1996.0024
https://doi.org/10.1103/PhysRevA.83.052508
https://doi.org/10.1016/S0370-1573(86)80001-1
https://doi.org/10.1103/PhysRevA.82.062513
https://doi.org/10.1103/PhysRevA.95.042501
https://doi.org/10.1103/PhysRevA.31.2775
https://doi.org/10.1103/PhysRevA.87.012501
https://doi.org/10.1063/1.1621616


MANY-BODY CALCULATIONS AND … PHYSICAL REVIEW A 102, 012801 (2020)

[71] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-
Gordon, Chem. Phys. Lett. 157, 479 (1989).

[72] M. Reiher and B. Hess, Modern Methods and Algorithms of
Quantum Chemistry (NIC, Jülich, 2000), Vol. 3, p. 479.

[73] I. Lindgren and J. Morrison, Atomic Many-Body Theory
(Springer-Verlag, Berlin, 1986).

[74] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry
and Physics: MBPT and Coupled-Cluster Theory (Cambridge
University, Cambridge, England, 2009).

[75] I. Lindgren and D. Mukherjee, Phys. Rep. 151, 93 (1987).
[76] N. N. Dutta and S. Majumder, Indian J. Phys. 90, 373

(2016).
[77] I. Lindgren, Phys. Rev. A 31, 1273 (1985).
[78] G. Dixit, B. K. Sahoo, and R. K. Chaudhuri, and S.

Majumder, Phys. Rev. A 76, 042505 (2007); 76, 059901(E)
(2007).

[79] A. Bhowmik, N. N. Dutta, and S. Roy, Astrophys. J. 836, 125
(2017).

[80] R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).
[81] A. Bhowmik, S. Roy, N. N. Dutta, and S. Majumder, J. Phys. B

50, 125005 (2017).
[82] N. N. Dutta and S. Majumder, Phys. Rev. A 88, 062507

(2013).
[83] N. N. Dutta and S. Majumder, Phys. Rev. A 85, 032512

(2012).

[84] S. Biswas, A. Das, A. Bhowmik, and S. Majumder, Mon. Not.
R. Astron. Soc. 477, 5605 (2018).

[85] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team,
2016 NIST Atomic Spectra Database, version 5.4, http://
physics.nist.gov/asd.

[86] S. A. Blundell, J. Sapirstein, and W. R. Johnson, Phys. Rev. D
45, 1602 (1992).

[87] U. I. Safronova and M. S. Safronova, Phys. Rev. A 87, 032501
(2013).

[88] W. R. Johnson, D. Kolb, and K.-N. Huang, At. Data Nucl. Data
Tables 28, 333 (1983).

[89] L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables 67, 207
(1997).

[90] F. A. Parpia, C. F. Fischer, and I. P. Grant, Comput. Phys.
Commun. 175, 745 (2006).

[91] U. I. Safronova, Phys. Rev. A 82, 022504 (2010).
[92] U. I. Safronova, Phys. Rev. A 81, 052506 (2010).
[93] N. N. Dutta, Hyperfine and parity non-conserving interactions

in alkali-metal-like atoms and ions, Ph.D. dissertation, Indian
Institute of Technology Kharagpur, 2014.

[94] B. Albrecht, Y. Meng, C. Clausen, A. Dareau, P. Schneeweiss,
and A. Rauschenbeutel, Phys. Rev. A 94, 061401(R) (2016).

[95] F. Schmidt, D. Mayer, M. Hohmann, T. Lausch, F. Kindermann,
and A. Widera, Phys. Rev. A 93, 022507 (2016).

[96] A. Fallon and C. Sackett, Atoms 4, 12 (2016).

012801-13

https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/0370-1573(87)90073-1
https://doi.org/10.1007/s12648-015-0754-0
https://doi.org/10.1103/PhysRevA.31.1273
https://doi.org/10.1103/PhysRevA.76.042505
https://doi.org/10.1103/PhysRevA.76.059901
https://doi.org/10.3847/1538-4357/836/1/125
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1088/1361-6455/aa6ccf
https://doi.org/10.1103/PhysRevA.88.062507
https://doi.org/10.1103/PhysRevA.85.032512
https://doi.org/10.1093/mnras/sty1015
https://www.nist.gov/pml/atomic-spectra-database
https://doi.org/10.1103/PhysRevD.45.1602
https://doi.org/10.1103/PhysRevA.87.032501
https://doi.org/10.1016/0092-640X(83)90020-7
https://doi.org/10.1006/adnd.1997.0751
https://doi.org/10.1016/j.cpc.2006.07.021
https://doi.org/10.1103/PhysRevA.82.022504
https://doi.org/10.1103/PhysRevA.81.052506
https://doi.org/10.1103/PhysRevA.94.061401
https://doi.org/10.1103/PhysRevA.93.022507
https://doi.org/10.3390/atoms4020012

