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Quantifying nonlocality as a resource for device-independent quantum key distribution
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We introduce, for any bipartite Bell scenario, a measure that quantifies both the amount of nonlocality and
the efficiency in device-independent quantum key distribution of a set of measurement outcome probabilities.
It is a proper measure of nonlocality as it vanishes when this set is Bell local and does not increase under the
allowed transformations of the nonlocality resource theory. This device-independent key rate R is defined by
optimizing over a class of protocols, to generate the raw keys, in which each legitimate party does not use
just one preselected measurement but randomly chooses at each round one among all the measurements at its
disposal. A common and secret key can certainly be established when R is positive but not when it is zero. For
any continuous proper measure of nonlocality N , R is tightly lower bounded by a nondecreasing function of N
that vanishes when N does. There can thus be a threshold value for the amount of nonlocality as quantified by
N above which a secret key is surely achievable. A readily computable measure with such a threshold exists for
two two-outcome measurements per legitimate party.
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I. INTRODUCTION

Using a secret sequence of characters, termed a key, for
encryption and decryption, allows one to transmit a message
in an absolutely confidential way. The aim of quantum key
distribution (QKD) studies is to examine whether two distant
legitimate users, usually named Alice and Bob, can establish
such a key in the presence of an eavesdropper, Eve, within
the framework of quantum mechanics [1]. To do so, Alice
and Bob need at least to be able to generate, process, and
exchange random numbers and each to choose one out of
several measurements to perform on quantum systems. The
communication channel between them is public. Namely, any
message sent over it becomes known to all parties. Moreover,
Alice’s and Bob’s quantum systems in general share a global
state with systems that Eve can manipulate as she wishes.
On the other hand, Eve does not know which measurements
Alice and Bob actually perform, the outcomes they get, and
the results of their classical computations. The first security
analyses of QKD schemes apply only to specific quantum
systems Hilbert spaces and measurement operators on these
spaces [1–7]. Consequently, a concrete implementation must
follow the ideal model exactly.

Device-independent QKD (DIQKD) protocols, on the con-
trary, do not require that Alice and Bob know anything about
the sizes and states of the quantum systems and about the
measurement devices [8,9]. They can only estimate the proba-
bilities of the measurement outcomes. To establish a common
and secret key, they first generate raw keys using measurement
outcomes. These keys are not fully confidential and not com-
pletely identical to each other. Alice and Bob change them
into the final key using random number generators, classical
processors, and the public channel. In Refs. [8,9], only the
so-called collective attacks, during the generation of the raw
keys, are considered. Namely, it is assumed that Eve prepares
a tripartite quantum system in the same state several times and

that Alice’s and Bob’s possible measurements are the same
each time. But the measurements may actually be performed
on a global system which is not necessarily in a product state
and the measurement devices may work differently from one
round to another [10,11]. Furthermore, these apparatuses may
have internal memories [12–14]. The security of a DIQKD
protocol, for one execution, against these most general attacks
follows from that against collective attacks [14].

Device-dependent QKD is closely related to quantum
entanglement. Some proposed protocols rely on entangled
Alice’s and Bob’s quantum systems [3,5]. Moreover, the
security of those known as prepare-and-measure protocols,
for which such quantum correlations are absent, results from
that of corresponding entanglement-based protocols [4,6,7].
Entanglement is a useful resource for many tasks and different
measures of the entanglement of quantum states, appropriate
for different tasks, have been introduced [15]. In more specific
terms, entanglement theory is a resource theory. Entangle-
ment cannot increase under local operations and classical
communication and vanishes for separable states [15–20].
Consequently, a proper measure of entanglement, called an
entanglement monotone, is nonincreasing under these allowed
transformations and is zero for separable states. The distillable
key rate, defined for a given legitimate QKD users’ state,
satisfies these requirements and can be related to more fa-
miliar entanglement monotones [15,21,22]. In DIQKD, the
necessary resource is not entanglement but Bell nonlocality
[3,8–14,23,24] whose relation to entanglement is not straight-
forward [16,25–27]. A closely related issue which currently
attracts much attention and in which Bell nonlocality is also
essential is device-independent quantum random-number gen-
eration [14,28–33].

Bell nonlocality can also be formulated in terms of a
resource theory [34–36]. Proper measures of nonlocality must
not increase under the corresponding allowed transformations,
recalled in detail below, and vanish for Bell local sets of
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probabilities. We name these measures as nonlocality mono-
tones. In this paper, we are interested in Bell nonlocality as
a resource for DIQKD from this rigorous perspective. We
introduce, for any numbers of choosable measurements and
measurement outcomes, a measure R which is both a non-
locality monotone and a DIQKD efficiency quantifier. This
device-independent key rate is defined, under the assumption
of collective attacks, by optimizing over a class of protocols,
to generate the raw keys, which involve generating, process-
ing, and publicly exchanging random numbers and choosing
at each round, for each legitimate user, one among all the pos-
sible measurements. Such a raw key protocol is a part of a full
DIQKD protocol which also contains, for instance, an error
correction part. A confidential key can surely be established
when R is positive but not when it is zero. The specific raw
key protocols considered in the literature [8–14] belong to the
class used here. We will see that a device-independent key rate
defined for a single protocol can increase under the allowed
transformations of the nonlocality resource theory. Since the
rate R is a nonlocality monotone, it does not decrease in going
from a set of measurement outcome probabilities to a more
nonlocal one and vanishes for a Bell local set. Moreover, we
show that, for any continuous nonlocality monotone N , R is
tightly lower bounded by a nondecreasing function of N that
vanishes when N does. Thus either this bound is trivial and
nothing can be inferred from N alone about the achievability
of a secret key or there is a threshold value for the amount of
nonlocality as quantified by N above which Alice and Bob are
certain that such a key can be established, without needing to
evaluate any other quantity.

The outline of the paper is as follows. In Sec. II A, the
allowed transformations of the nonlocality resource theory
are recalled and the operations that the legitimate users can
perform are specified, in terms of classical random variables.
In Sec. III, we introduce the considered class of raw key
protocols, which involve only these operations, and give the
expression of the quantum state shared by the three parties
at the end of such a protocol. In Sec. IV, we define the
device-independent key rate R corresponding to this class of
protocols and show that it is a nonlocality monotone. The case
of a single protocol is also discussed in Sec. IV. In Sec. V,
we consider the continuous nonlocality monotones, derive the
above mentioned result, which follows from the fact that R is
a nonlocality monotone, and examine an example. Finally, in
Sec. VI, we summarize our results and mention some open
questions.

II. PRELIMINARIES

A. Alice and Bob’s possible operations

The following situation is considered throughout the paper.
Alice, Bob, and Eve initially share a quantum system in the
state ρ. Alice (Bob) can choose one of m (n) measurements to
perform on her (his) subsystem with Hilbert space HA (HB)
which can always be assumed to be infinite dimensional. The
legitimate users know nothing about the quantum system, its
state, and the measurement devices. In more precise terms,
Alice (Bob) can observe one of m (n) classical random
variables Ax (By). Alice and Bob can only get information
on the probability mass functions PAx,By , denoted Px,y in the

following. The indices x and y are usually termed as inputs and
the outcomes of the random variables Ax and By as outputs.
Without loss of generality, it can be assumed that all variables
Ax (By) have the same set A (B) of outputs by adding zero
probability outcomes. These sets are referred to as alphabets.
Obviously, m, n, A, and B are known to Alice and Bob.
The random variable Ax (By) corresponds to a set of positive
operators Mx,a (Ny,b) such that

∑
a∈A Mx,a (

∑
b∈B Ny,b) is the

identity operator on HA (HB) and

Px,y(a, b) = tr(ρMx,a ⊗ Ny,b ⊗ IE ), (1)

where IE is the identity operator on Eve’s Hilbert space HE . A
distribution tuple P = (Px,y(a, b))x,y,a,b is said to be quantum
if it can be written in this form with appropriate state and
measurement operators.

In addition to the Ax and By, the legitimate users can create
random variables uncorrelated to the Ax and By and available
at first only to one of them. Each can also compute new
random variables from preexisting ones and use a classical
public communication channel. Any message sent over this
channel becomes known to the three parties and it is the only
way to get a random variable from another party. It is not
necessary to introduce explicitly additional variables for Eve
since they can be taken into account by considering suitable
system, state ρ, and measurements on her subsystem. Let us
be more specific about how the Ax, that Alice cannot observe
simultaneously, are employed. At some stage, and only at
this stage, Alice uses one of the random variables at her
disposal, say X , with alphabet in {1, . . . , m}, to choose which
Ax to observe. More precisely, she generates U according to
U = Ax when X = x. Bob uses the By and Y with alphabet in
{1, . . . , n} in a similar way to produce the random variable
V ; see Fig. 1. We remark that the distribution tuple P is
necessarily Bell local for simultaneously observable random
variables Ax and By [26,37].

B. Nonlocality resource theory

We recall here the allowed transformations of the nonlo-
cality resource theory [34–36]. They can be performed us-
ing shared randomness and local probability transformations.
More precisely, consider two distribution tuples P and P′

made up of no-signaling probabilities with the same output
alphabets and numbers of inputs. The former is not less
nonlocal than the latter if and only if

P′ = p0L +
∑
k�1

pkTk (P), (2)

where the probabilities pk obey
∑

k�0 pk = 1, L is a Bell local
distribution tuple, and Tk are compositions of input and output
relabelings, output coarse grainings, and input substitutions
[36]. The nonlocality order is partial, i.e., some distribution
tuples are not related by Eq. (2). We remark that a similar
order can be defined for quantum states [38].

An input substitution acts on any distribution tuple P as
follows. For some given x and x′, every component Px′,y(a, b)
is replaced by Px,y(a, b) and the other ones remain unchanged,
and similarly for given inputs y and y′. An input relabel-
ing consists in a permutation of the inputs x or of the in-
puts y. It can be decomposed into input transpositions, i.e.,
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FIG. 1. Raw key protocol steps used in the proof of
Proposition 1. The value k is produced by a random generator. Eve
eavesdrops k sent by Alice over the public channel. The random
numbers x′ and y′ are produced during classical steps, shown as
dots, which can use the public channel and generate other random
numbers, not shown. Classical computations, shown as ellipses, re-
sult in x = z(x′, k), y = t (y′, k), u′ = Fx′,k (u), and v′ = Gy′,k (v) with
the functions given by the Lemma. The measurements performed
by Alice and Bob on their quantum systems, shown as boxes, give
the outputs u and v as functions of the inputs x and y, respectively,
according to the distributions (1).

transformations that swap every pair of components Px,y(a, b)
and Px′,y(a, b) for some given x and x′ and leave the other
ones unchanged, and similarly for given inputs y and y′. The
output transformations change only the probabilities Px,y(a, b)
for a given x or y. Under an output relabeling for x, every
component Px,y(a, b) is replaced by Px,y(π (a), b), where π is a
permutation on A. An output coarse graining is characterized
by an input, a subset of the corresponding output alphabet
and an element of this subset, say x, A′, and a′, respectively.
Such a transformation changes every component Px,y(a, b)
as follows. This probability becomes

∑
a′′∈A′ Px,y(a′′, b) for

a = a′, is set to zero for a ∈ A′ \ {a′}, and remains the same
for a /∈ A′.

A nonlocality monotone N vanishes for Bell local distribu-
tion tuples and preserves the nonlocality order, i.e., N (P′) �
N (P) for P and P′ related by Eq. (2). As a simple example,
we consider, in the case of numbers of inputs m = n = 2 and
alphabets A and B consisting of two outputs, that can always
be assumed to be −1 and 1, the Clauser-Horne-Shimony-Holt
inequality [39] violation

Ñ (P) = max

⎧⎨
⎩0, max

ν

∣∣∣∣∣∣
2∑

x,y=1

ν(x, y)〈AxBy〉
∣∣∣∣∣∣ − 2

⎫⎬
⎭. (3)

In this expression, the maximum is taken over all the maps
ν : {1, 2}2 → {−1, 1} assuming the value −1 only once and
〈C〉 denotes the expectation of the random variable C. The
measure (3) vanishes for Bell local distribution tuples and
only for them [26]. To see that it preserves the nonlocality

order, first note that it is a convex function of its argument.
Moreover, the right side of Eq. (3) is not modified by an input
relabeling. An output relabeling is equivalent to changing the
sign of one of the random variables in Eq. (3), and so also does
not alter the value of Ñ . An input substitution is the same as
setting A1 = A2 or B1 = B2 in Eq. (3), which gives Ñ = 0. An
output coarse graining is equivalent to replacing one of the
random variables in Eq. (3) by 1, which also leads to Ñ = 0.

III. RAW KEY PROTOCOLS

To generate their raw keys, using the Ax and By, Alice
and Bob proceed as follows. First, they create some random
variables and send some of them over the public channel.
Then, they calculate new ones and subsequently produce the
U and V as explained above. Finally, they generate A and B
from all the available random variables. Alice’s (Bob’s) raw
key is a sequence of independent realizations of A (B). All the
just mentioned classical random variables but U , V , A, and B
are quantum-mechanically described by the state

ρ̃ =
∑
x,y,e

PX ,Y ,E (x, y, e)�Alice
x,e ⊗ �Bob

y,e ⊗ �Eve
e , (4)

where E is a tuple made up of the public ones and X (Y ) is
made up of Alice’s (Bob’s) private ones. The choice random
variable X (Y ) is a component of X (Y ) or of E. From their
definitions, X and Y are conditionally independent given E,
i.e., PX ,Y ,E = PX |EPY |EPE . The �Alice

x,e (�Bob
y,e , �Eve

e ) are rank-
one projectors whose sum is the identity operator on a Hilbert
space H′

A (H′
B, H′

E ). At the end of the raw key protocol, the
three parties share the state

ρrk =
∑
a,b

�a ⊗ �b ⊗ trHAB (ρ ′Ma ⊗ Nb ⊗ I ′
E ), (5)

where ρ ′ = ρ̃ ⊗ ρ, I ′
E is the identity operator on H′

E ⊗ HE ,
�a (�b) denotes mutually orthogonal rank-one projectors,
and trHAB the partial trace over the Hilbert space HAB = H′

A ⊗
HA ⊗ H′

B ⊗ HB; see Appendix A. Observing A and B means
performing the measurement with operators �a ⊗ �b ⊗ I ′

E on
ρrk. The positive operator Ma reads

Ma =
∑
x,e,u

PA|U,X ,E (a|u, x, e)�Alice
x,e ⊗ Mx,u, (6)

where x corresponds to X and the conditional probability mass
function PA|U,X ,E is determined by the protocol. The operators
Nb are given by similar expressions.

Equation (5) shows that the correlations between Alice,
Bob, and Eve at the end of the raw key protocol are formally
identical to those obtained by performing the measurement
with operators Ma ⊗ Nb ⊗ I ′

E on ρ ′. The simple protocol in
which Alice and Bob each just perform a given measurement,
corresponding to the inputs, say ξ and ζ , is obviously one of
those considered here. In this case, there are no public random
variables, PX (x) = δx,ξ , PY (y) = δy,ζ , A = U , and B = V , and
so the last term of Eq. (5) simplifies to trHA⊗HB (ρMξ,a ⊗
Nζ ,b ⊗ IE ). Strictly speaking, the above is only valid when
Eve merely collects the public information in the course of the
raw key protocol. However, any of Eve’s measurement during
it can equivalently be taken into account as a measurement
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on ρrk; see Appendix A. Thus it can be considered as being
performed amid the protocol generating the private key.

IV. DEVICE-INDEPENDENT KEY RATE

Let ω be a state of the form of Eq. (5), l (ω⊗L ) the length
of the longest secret key that Alice and Bob can achieve
when they share ω⊗L with Eve, and R′(ω) the large L limit
of l (ω⊗L )/L [34,40]. We define, for any quantum distribution
tuple P, the device-independent key rate

R(P) = inf
ρ,(Mx,a )a,(Ny,b)b

sup
rkp

R′(ρrk ), (7)

where the supremum is taken over all the raw key protocols
described above, the infimum is taken over all the ρ, (Mx,a)a

and (Ny,b)b satisfying Eq. (1) with P, and ρrk is given by
Eqs. (4)–(6) with the probability mass functions of the proto-
col rkp. The rate R is nonnegative by construction. Whenever
Alice’s and Bob’s random variables are described by the
distributions Px,y, they can establish, in the limit of large L,
a secret key of length at least equal to LR(P) from raw keys of
L characters generated using an appropriate raw key protocol.
In particular, a private key can surely be generated as soon
as R(P) > 0. If R(P) = 0, there are states and measurement
operators fulfilling Eq. (1) with P for which a confidential key
cannot be achieved.

A. Rate for a single raw key protocol

Let us first discuss the usual approach that considers only
one specific protocol to generate the raw keys. The corre-
sponding device-independent key rate is

R0(P) = inf
ρ,(Mx,a )a,(Ny,b)b

R′(ρrk ), (8)

where the infimum is taken over all the ρ, (Mx,a)a and (Ny,b)b

satisfying Eq. (1) with P, and ρrk is given by Eqs. (4)–(6)
with the distributions of the particular protocol employed. As
an example, assume that m = 3, n = 2, A = B = {−1, 1},
A = EA3, and B = EB1, where E is an equally distributed
public random variable with alphabet A [8]. The rate R′(ρrk )
is not larger than the mutual information I between A and B
[40], which can be expressed in terms of P3,1 with PA,B(a, b) =
[P3,1(a, b) + P3,1(−a,−b)]/2. Provided that the Bell expres-
sion S = ∑2

x,y=1(−1)(x−1)(y−1)〈AxBy〉 is larger than its Bell
local maximum of 2, R′(ρrk ) is not lower than I − h(1/2 +√

S2/4 − 1/2), where h is the binary entropy function [8].
Since these two bounds depend only on P, they are also
bounds for R0(P) given by Eq. (8).

Let P and P′ be the distribution tuples defined by
P1,1(a, b) = P2,1(a, b) = (1 + ab cos θ )/4, P1,2(a, b) = (1 +
ab sin θ )/4, P2,2(a, b) = (1 − ab sin θ )/4, P3,1 = P3,2 = 1/4,
and P′

x,y = Pz(x),y, where θ is any real number, z(1) =
z(3) = 1, and z(2) = 2. They are quantum since P (P′)
can, for instance, be written as Px,y(a, b) = 〈ψ |�A

x,a ⊗
�B

y,b|ψ〉 with the two-qubit maximally entangled state

|ψ〉 = (|+〉 ⊗ |+〉 + |−〉 ⊗ |−〉)/
√

2, where |±〉 are or-
thonormal states of the Hilbert space H2 of dimen-
sion 2 and the projective measurement operators �A

x,1 =
|x〉AA〈x| [�A

x,1 = |z(x)〉AA〈z(x)|], �B
y,1 = |y〉BB〈y|, �B

x,−1 =

I2 − �x,1, and �y,−1 = I2 − �y,1, where I2 is the iden-
tity operator on H2, |1〉A = cos φ|+〉 + sin φ|−〉, |2〉A =
cos φ|+〉 − sin φ|−〉, |3〉A = (|+〉 + i|−〉)/

√
2, |1〉B = |+〉,

and |2〉B = (|+〉 + |−〉)/
√

2, with φ = θ/2. For P and P′,
S = 2

√
2 cos(θ − π/4) increases from its Bell local max-

imum of 2 to its quantum maximum of 2
√

2 as θ varies
from 0 to π/4. Using the bounds mentioned above, one
finds R0(P) = 0 for any value of θ , as A and B are uncor-
related for P, and R0(P′) � 1 − h(1/2 + cos θ/2) − h[1/2 +√

sin(2θ )/2] for θ ∈ [0, π/2], and hence R0(P′) > R0(P) for
θ ∈ (0, 1.032]. On the other hand, P is not less nonlocal than
P′ since it can be transformed into P′ by an input substitution.
Consequently, R0 is not a nonlocality monotone.

In device-independent quantum random-number genera-
tion, a raw string is first generated following a given pro-
cedure. The corresponding appropriate rate can be lower
bounded in terms of one or several Bell expressions [28–33],
which shows a clear influence of nonlocality already for a
single raw string protocol. In DIQKD, similar bounds on
Eve’s information on Alice’s or Bob’s raw key can be derived
for a given raw key protocol [8–11,13,14]. But, in order to
establish a common secret key, correlations between the two
raw keys are also essential. In the example discussed above,
for instance, the mutual information between the outcomes
of A (or B) and of any of Eve’s measurement is lower
than h(1/2 +

√
S2/4 − 1/2), which is zero at S = 2

√
2 [8].

However, this does not ensure a nonzero rate R0 since, for
any value of S in [2, 2

√
2], there are distribution tuples P for

which A and B are uncorrelated and hence R0(P) vanishes.

B. Main result

It can be proved that the rate (7) preserves the Bell nonlo-
cality order using the Lemma below.

Lemma. Let P and P′ be two distribution tuples with
output alphabets A and B and numbers m and n of inputs such
that P is not less nonlocal than P′ and Ax and By be random
variables such that PAx,By = Px,y.

There are a random integer K and tuples Ã = (Ãx )m
x=1

and B̃ = (B̃y)n
y=1 with a joint probability mass function of

the form PK PÃ,B̃, where Ãx and B̃y have alphabets A and B,
respectively, self-maps Fx,k and Gy,k , and inputs z(x, k) and
t (y, k) such that the distributions of

(A′
x, B′

y) = (Ãx, B̃y) if K = 0,

= (Fx,k (Az(x,k) ), Gy,k (Bt (y,k) )) if K = k � 1 (9)

are given by PA′
x,B

′
y
= P′

x,y.
If P is quantum then also is P′.
The proof of the Lemma is given in Appendix B. This

Lemma ensures that, from given Ax and By with distributions
Px,y, the legitimate users have effective access to random
variables characterized by any distribution tuple P′ not more
nonlocal than P, by proceeding as follows. Alice creates the
corresponding K , Ãx, and B̃y and sends K and the B̃y to
Bob. Then, Alice and Bob perform any classical operations
they want, possibly using the public channel, that produce
some random variables, including X ′ and Y ′ with alphabets in
{1, . . . , m} and {1, . . . , n}, respectively. After these classical
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steps, Alice generates, in sequence, the random variables X
which is X ′ if K = 0 and z(X ′, k) if K = k � 1, U according
to U = Ax when X = x. and, finally, U ′ which is Ãx′ if
(K, X ′) = (0, x′) and Fx′,k (U ) if (K, X ′) = (k, x′) with k � 1.
Bob does similar operations using Y ′, K , the By, and the B̃y;
see Fig. 1. In this figure, it is assumed, to simplify, that K � 1.
The above produces the same U ′ and V ′ as U ′ = A′

x′ when
X ′ = x′ and V ′ = B′

y′ when Y ′ = y′, where A′
x′ and B′

y′ are
given by Eq. (9). Note that Eve gets K and the B̃y which are
sent over the public channel.

Using the above Lemma, the following can be shown; see
Appendix C.

Proposition 1. The function R given by Eq. (7) has the
following properties.

(i) R preserves the nonlocality order.
(ii) R vanishes for Bell local distribution tuples.
A function fulfilling these two requirements is a nonlocal-

ity monotone, i.e., a proper measure of Bell nonlocality [36].
The above Proposition implies that the device-independent
key rate (7) is a nonlocality monotone. Property (ii) can be
seen as a consequence of the fact that a secret key cannot
always be established and of (i) as follows. Any distribution
tuple is not less nonlocal than any Bell local one. Thus,
due to property (i), R assumes its minimum value for Bell
local distribution tuples. If this minimum were nonzero then
a secret key could be produced in any case. Proposition 1
shows that a private key can surely be generated for any
distribution tuple not less nonlocal than a given one for which
this is possible. Besides, a confidential key can be estab-
lished with certainty only for nonlocal distribution tuples.
Proposition 1 does not ensure that the converse holds. There
may be nonlocal distribution tuples P such that a private
key cannot be achieved for some states and measurement
operators fulfilling Eq. (1) with P.

V. CONTINUOUS NONLOCALITY MONOTONES

According to the above Proposition and definition (7), the
device-independent key rate R quantifies both the efficiency
in secret key generation and the amount of Bell nonlocality
of a distribution tuple. However, it is not straightforward to
evaluate. Moreover, one may prefer a measure that provably
vanishes only for Bell local distribution tuples. It is then of
interest to consider other nonlocality monotones. For that
purpose, we use the following result, shown in Appendix D.
We remark that the set of quantum distribution tuples depends
on the dimensions of the considered Hilbert spaces [41].

Proposition 2. Let Q and L be, respectively, the sets of
quantum and Bell local distribution tuples with given output
alphabets and numbers of inputs, for given Hilbert space
dimensions.

For any nonlocality monotone M on Q and nonnegative
continuous function N on Q which vanishes on L, there is a
nondecreasing function f on J = [0, Nsup), where Nsup is the
supremum of N on Q, such that f (0) = 0, f ◦ N � M, and,
for any s ∈ J and ε > 0, there is P ∈ Q for which N (P) = s
and M(P) < f (s) + ε.

Whenever Alice’s and Bob’s random variables are de-
scribed by the distributions Px,y, they can generate a secret
key with a rate not lower than f ◦ N (P), where N is any

continuous nonlocality monotone and f is given by the above
Proposition with N and M = R. This remains valid if f is
replaced by other nondecreasing functions but f is the greatest
one. If f ◦ N (P) = 0, there exists, for any ε > 0, a quantum
distribution tuple P′ such that N (P′) = N (P) and R(P′) < ε.
So, in this case, nothing can be inferred from the value N (P)
regarding the possibility of establishing a confidential key.
On the contrary, f ◦ N (P) > 0 ensures that a private key can
be generated. This condition can be rewritten as N (P) > N∗,
where N∗ = sup{s ∈ J : f (s) = 0} is set only by the measure
N . By definition, N∗ is not larger than Nsup. If N∗ = Nsup, f ◦
N = 0 and it cannot be determined whether a secret key can be
established by evaluating only N . By contrast, for a measure
N such that N∗ < Nsup, N∗ is a threshold value above which a
private key can be achieved with certainty. Proposition 2 does
not require that N is a nonlocality monotone but only that it is
continuous and vanishes for Bell local tuples. For instance, N
can be defined from a Bell inequality. Proposition 2 applies to
such measures though they are not nonlocality monotones in
general [36].

As an example, assume that m = n = 2 and A = B =
{−1, 1}. In this case, the measure Ñ , given by Eq. (3), is
a nonlocality monotone. As is well known, the set of the
possible values of Ñ is the interval [0, 2(

√
2 − 1)] [42]. A

nondecreasing function g such that R � g ◦ Ñ can be found;
see Appendix E. It results from its expression that there is
a threshold value Ñ∗ � 0.652 < 2(

√
2 − 1) for the nonlo-

cality monotone (3) above which a private key can surely
be generated. The existence of Ñ∗ can be seen as follows.
For any P such that Ñ (P) > 0, there are inputs ξ and ζ for
which |〈Aξ Bζ 〉| > 0. Consider a raw key protocol generating
A = EAξ and B = EBζ , where E is an equally distributed
public random variable with alphabet A. The resulting rate
R′(ρrk ) in Eq. (7), and hence R(P), is not lower than I − r ◦
Ñ (P), where r is a continuous nonincreasing function with
r(2

√
2 − 2) = 0, given by r(s) = h[1/2 + (s + s2/4)1/2/2],

and I = 1 − h(1/2 + |〈AB〉|/2) is the mutual information be-
tween A and B that depends only on |〈AB〉| = |〈Aξ Bζ 〉| and
is hence strictly positive for Ñ (P) > 0 [8]. The function g
can be obtained by noting that there are ξ and ζ such that
|〈AB〉| � 1/2 + Ñ (P)/4. Other raw key protocols are used in
Appendix E.

VI. SUMMARY AND OPEN QUESTIONS

In summary, a device-independent key rate has been de-
fined by optimizing over a class of raw key protocols and
shown to be a nonlocality monotone. Moreover, it has been
proved that there are only two possibilities for any con-
tinuous nonlocality monotone. Either it can never be de-
cided whether a secret key can be established by evaluat-
ing only this measure, or there is a threshold value for it
above which this is surely achievable. A readily computable
nonlocality monotone with such a threshold exists for two
two-outcome measurements per legitimate user. The defined
device-independent key rate may vanish for some nonlocal
sets of probabilities. Were this not to be the case, Bell
nonlocality would be a necessary and sufficient condition
for DIQKD with raw key protocols. This may be correct
only for some numbers of choosable measurements and
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measurement outcomes. Related to this issue, it would be
interesting to improve the upper bound on the threshold value
of the aforementioned particular nonlocality monotone. Since
this measure vanishes only for Bell local sets of probabilities,
a threshold value of zero would prove the above-mentioned
equivalence in this case. The answers to these open questions
may depend on the considered class of raw key protocols.
It can be further enlarged, for instance, by dropping the
assumption made here that no information is exchanged after
the measurements.

APPENDIX A: DERIVATION OF EQ. (5)

To simplify, the random variables transmitted over the
public channel at the same stage of the raw key protocol are
here grouped into one. After receiving the value e1 of the
first one E1, Eve performs a measurement on her subsystem.
This generates a random variable E ′

1 and ρ is changed into
�e1,e′

1
(ρ)/pe1,e′

1
when E ′

1 = e′
1, where pe1,e′

1
= tr �e1,e′

1
(ρ).

The Kraus operators of the quantum operation �e1,e′
1

are of the
form IA ⊗ IB ⊗ Ke1,e′

1,i, where IA (IB) is the identity operator
on HA (HB). The probabilities pe1,e′

1
satisfy

∑
e′

1
pe1,e′

1
= 1.

A deterministic operation, e.g„ the identity operation, is a
measurement with a single outcome e′

1. Moreover, sequential
measurements can be considered as a single one with a
properly defined E ′

1. The set of the values e′
1 may depend on

e1. However, it can be assumed, without loss of generality, that
it does not, by adding zero probability outcomes, and hence
that there is a unique E ′

1 with PE ′
1|E1 (e′

1|e1) = pe1,e′
1
. Repeating

these arguments for all components of E leads to the random
tuple E ′, conditional distribution PE ′|E , and quantum opera-
tions �e,e′ with Kraus operators IA ⊗ IB ⊗ Ke,e′,i.

The probability mass function of X , Y , E, E ′, U , and V
is PX ,Y ,EPE ′|EPU,V |X ,Y ,E,E ′ , where the last conditional distri-
bution is given by

P(u, v|x, y, e, e′) = tr[�e,e′ (ρ)Mx,u ⊗ Ny,v ⊗ I ′′
E ]/P(e′|e),

with the appropriate identity operator I ′′
E , and omitting

the subscripts for the distributions. For given values of
these random variables, Eve’s state is proportional to
�′

e,e′ (trHA⊗HB (ρMx,u ⊗ Ny,v ⊗ IE )), where �′
e,e′ is the quan-

tum operation with Kraus operators Ke,e′,i. The marginal
distribution PA,B,E,E ′ directly follows with the conditional
distributions PA|U,X ,E and PB|V,Y ,E of the protocol. Using
PX ,Y ,U,V |A,B,E,E ′ , one finds that Eve’s state for A = a, B = b,
E = e, and E ′ = e′ is

ωa,b,e,e′ = �e′

(
�Eve

e ⊗
∑

x,y,u,v

P(a|u, x, e)P(b|v, y, e)

× P(x, y, e) trHA⊗HB (ρMx,u ⊗ Ny,v ⊗ IE )

)/
P(a, b, e, e′),

where �Eve
e = |e〉〈e| and �e′ is the quantum operation with

Kraus operators 〈e| ⊗ Ke,e′,i. Performing the measurement
with operators �a ⊗ �b ⊗ �Eve

e ⊗ IE and then that character-
ized by the �e′ on the state given by Eq. (5) leads to the same
distribution PA,B,E,E ′ and Eve’s states ωa,b,e,e′ .

APPENDIX B: PROOF OF THE LEMMA

The tuples P and P′ are related by Eq. (2). The Bell
local distribution tuple L can be written as L = ∑

a,b qa,bDa,b,
where the sum runs over all the a = (ax )x ∈ An and b =
(by)y ∈ Bm, the probabilities qa,b sum to unity, and the only
nonvanishing components of Da,b, for the inputs x and y,
are those corresponding to the outputs a = ax and b = by

[26]. Consider random tuples Ã = (Ãx )m
x=1 and B̃ = (B̃y)n

y=1,
where Ãx and B̃y have alphabets A and B, respectively, such
that PÃ,B̃(a, b) = qa,b. The components of L are equal to the
marginal probabilities PÃx,B̃y

(a, b).

We denote an input substitution for x and x′ as I (x,x′ )

and an input transposition for x and x′, described in the
main text, as I{x,x′}, and similarly for given inputs y and
y′. The input transformations satisfy I{y,y′} ◦ I{x,x′} = I{x,x′} ◦
I{y,y′} and similar commutation relations with one or both
transformations replaced by an input substitution. We de-
note the output transformations as Ox and Oy. They obey
Oy ◦ Ox = Ox ◦ Oy. We have also I (x,x′ ) ◦ Oz = Oz ◦ I (x,x′ )

for z �= x, x′, I (x,x′ ) ◦ Ox′ = I (x,x′ ), I (x,x′ ) ◦ Ox = Ox ◦ Ox′ ◦
I (x,x′ ), and I{x,x′} ◦ Oz = Oz ◦ I{x,x′} for z �= x, x′, and I{x,x′} ◦
Ox = Ox′ ◦ I{x,x′} and similar relations with the inputs x and
x′ replaced by inputs y and y′. Consequently, any transforma-
tion Tk appearing in Eq. (2) can be written as Tk = OA

k ◦ OB
k ◦

IA
k ◦ IB

k , where OA
k (OB

k ) consists of output transformations
for given inputs x (y) and IA

k (IB
k ) of transformations on

the inputs x (y). Moreover, the component of IA
k ◦ IB

k (P) for
the inputs x and y and outputs a and b can be expressed as
PAz(x,k),Bt (y,k) (a, b) with z(x, k) and t (y, k) determined by IA

k and
IB

k , respectively.
Let P̂ be any distribution tuple with alphabets A and B

and Cx and Dy random variables such that PCx,Dy = P̂x,y. An
output relabeling for x acts on P̂ as follows. Every compo-
nent P̂x,y(a, b) is replaced by P̂x,y(π (a), b) = Pπ−1(Cx ),Dy

(a, b),
where π is a permutation on A and π−1 is its inverse
and the other ones remain unchanged, and similarly for a
given input y. Under an output coarse graining characterized
by x, A′ ⊂ A, and a′ ∈ A′, every component P̂x,y(a, b) be-
comes

∑
a′′∈A′ P̂x,y(a′′, b) for a = a′, vanishes for a ∈ A′ \

{a′}, and does not change for a /∈ A′ and the other ones
remain the same, and similarly for given y, B′ ⊂ B, and
b′ ∈ B′. The components for x of the resulting distribution
tuple can be written as PF (Cx ),Dy (a, b), where the self-map
F on A is given by F (a) = a for a /∈ A′ and F (a) = a′
for a ∈ A′. Consequently, the component for the inputs x
and y and outputs a and b of Tk (P) in Eq. (2) can be
expressed as PFx,k (Az(x,k) ),Gy,k (Bt (y,k) )(a, b) with self-maps Fx,k and
Gy,k on A and B, respectively, determined by OA

k and OB
k ,

respectively.
The above shows that

P′
x,y = p0PÃx,B̃y

+
∑
k�1

pkPFx,k (Az(x,k) ),Gy,k (Bt (y,k) ).

It remains to introduce a random non-negative integer K with
distribution PK (k) = pk and the random variables A′

x and B′
y

given in the Lemma. The probability mass function of K , A′
x,
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and B′
y is PK PA′

x,B
′
y|K with

PA′
x,B

′
y|K (a, b|k) = PÃx,B̃y

(a, b) for k = 0,

= PFx,k (Az(x,k) ),Gx,k (Bt (y,k) )(a, b) for k � 1.

Summing over k gives the marginal distribution PA′
x,B

′
y
= P′

x,y.
For a quantum P, the distributions of the Ax and By can be

written as

PAx,By (a, b) = tr(ρluMx,a ⊗ Ny,b), (B1)

where ρlu is a density operator on HA ⊗ HB and Mx,a (Ny,b) are
positive operators such that

∑
a∈A Mx,a = IA (

∑
b∈B Ny,b =

IB). For any self-maps F on A and G on B, one has

PF (Ax ),G(By )(a, b) =
∑

a′ ∈ F−1({a})
b′ ∈ G−1({b})

PAx,By (a′, b′).

This expression can be recast into the form of Eq. (B1) with
Mx,a and Ny,b replaced, respectively, by the operators MF,x,a =∑

a′∈F−1({a}) Mx,a′ and NG,y,b defined similarly and so

PFx,k (Az(x,k) ),Gy,k (Bt (y,k) )(a, b)

= tr(ρluMFx,k ,z(x,k),a ⊗ NGy,k ,t (y,k),b).

The Bell local distribution tuple L is also given by Eq. (B1)
with ρlu, Mx,a, and Ny,b replaced by

ρ̃ ′
lu =

∑
k,a,b

PK (k)PÃ,B̃(a, b)�Alice
k,a,b ⊗ �Bob

k,a,b, (B2)

∑
k,a,b δax,a�

Alice
k,a,b, and

∑
k,a,b δby,b�

Bob
k,a,b, respectively, where

the �Alice
k,a,b (�Bob

k,a,b) are mutually orthogonal rank-one projec-
tors. Finally, Eq. (B1) with ρlu, Mx,a, and Ny,b replaced by
ρ̃ ′

lu ⊗ ρlu,

M ′
x,a =

∑
k,a,b

�Alice
k,a,b ⊗ [δk,0δax,aIA + (1 − δk,0)MFx,k ,z(x,k),a],

(B3)

and N ′
y,b defined similarly, leads to P′, which is hence

quantum.

APPENDIX C: PROOF OF PROPOSITION 1

(i) Let P and P′ be two quantum distribution tuples with
numbers m and n of inputs such that the former is not less
nonlocal than the latter. For these tuples, the Lemma gives
the random variables K , Ãx, and B̃y, the self-maps Fx,k and
Gy,k , and the input maps z and t . At some stage of any
raw key protocol rkp, a random variable U (V ) is produced
according to U = Ax (V = By) when X = x (Y = y), where
the Ax (By) are the random variables among which Alice (Bob)
can choose and X (Y ) is a random variable with alphabet in
{1, . . . , m} ({1, . . . , n}). We name rkp1 the part of rkp before
the generation of U and V and rkp2 that after it.

From any rkp, we define the protocol rkp′ as follows. First,
Alice creates K , the Ãx and B̃y, and sends all of them over the
public channel. Then, Alice and Bob execute rkp1 and, instead
of producing U and V as explained above, they proceed as
follows. Alice generates, in sequence, X ′ which is X if K = 0
and z(X, k) if K = k � 1, U ′ according to U ′ = Ax′ when
X ′ = x′. and U which is Ãx if (K, X ) = (0, x) and Fx,k (U ′)

if (K, X ) = (k, x) with k � 1. Similarly, Bob generates Y ′,
which is Y if K = 0 and t (Y, k) if K = k � 1, V ′ according to
V ′ = By′ when Y ′ = y′, and V which is B̃y if (K,Y ) = (0, y)
and Gy,k (V ′) if (K,Y ) = (k, y) with k � 1. Finally, Alice and
Bob discard X ′, U ′, Y ′, V ′, K , the Ãx, and the B̃y which do not
play any role in rkp2 and complete rkp2. One has S � R(P),
where S is defined similarly as R(P) but taking the supremum
only over the raw key protocols of the particular form just
described.

Consider any such protocol rkp′, initial tripartite state ρ,
and measurement operators Mx,a and Ny,b on HA and HB,
respectively, and assume that Alice and Bob perform rkp′.
After the creation and transmission of K , the Ãx and the B̃y,
and the execution of rkp1, Alice, Bob, and Eve share the state
ρ̃ ′ ⊗ ρ̃ ⊗ ρ, where ρ̃ is given by Eq. (4) with the distribution
PX ,Y ,E of rkp1 and

ρ̃ ′ =
∑
k,a,b

PK (k)PÃ,B̃(a, b)�Alice
k,a,b ⊗ �Bob

k,a,b ⊗ �Eve
k,a,b, (C1)

with the same notations as in Eq. (B2). The sum of the
projectors �Alice

k,a,b (�Bob
k,a,b, �Eve

k,a,b) is the identity operator on a
Hilbert space H′′

A (H′′
B, H′′

E ). Alice and Bob then generate U
and V according to rkp′ and discard X ′, U ′, Y ′, V ′, K , the Ãx,
and the B̃y, which leads to

ω =
∑

a,b,x,y

PÃ, B̃(a, b)Ox,y ⊗
[

p0�
U,V
ax,by

⊗ �Eve
0,a,b ⊗ trH ρ

+
∑

k�1,u′,v′
pk�

U,V
Fx,k (u′ ),Gy,k (v′ ) ⊗ �Eve

k,a,b

⊗ trH(ρMz(x,k),u′ ⊗ Nt (y,k),v′ ⊗ IE )

]
,

where x and y correspond to X and Y , respectively, �U,V
u,v

denotes mutually orthogonal rank-one projectors, and the no-
tations Ox,y = ∑

e PX ,Y ,E (x, y, e)�Alice
x,e ⊗ �Bob

y,e ⊗ �Eve
e , pk =

PK (k), and H = HA ⊗ HB are used. The state ω can be
rewritten as

ω =
∑

x,y,u,v

Ox,y ⊗ �U,V
u,v ⊗ trH′ [(ρ̃ ′ ⊗ ρ)(M ′

x,u ⊗ N ′
y,v ⊗ I ′′

E )],

(C2)

where M ′
x,u is given by Eq. (B3), N ′

y,v by a similar expression,
I ′′
E is the identity operator on HE ⊗ H′′

E , and H′ = HA ⊗
H′′

A ⊗ HB ⊗ H′′
B.

As soon as tr(ρMx,a ⊗ Ny,b ⊗ IE ) = Px,y(a, b), the state
ρ̃ ′ ⊗ ρ, the operators M ′

x,a and N ′
y,b given by Eq. (B3), and the

distributions P′
x,y are related in the same way; see the proof

of the Lemma. Thus one has R(P′) � S′, where S′ is defined
similarly as R(P′) but taking the infimum only over such
particular states and measurement operators. When the state
initially shared by the three parties is ρ̃ ′ ⊗ ρ and Alice’s and
Bob’s measurements are characterized by the operators M ′

x,a
and N ′

y,b, respectively, performing rkp1 and generating U and
V according to rkp gives the state (C2); see the derivation of
Eq. (5). So, in this case, the tripartite state obtained at the end
of rkp is identical to that resulting from the execution of the
protocol rkp′ with ρ, Mx,a, and Ny,b. Consequently, S and S′ are
equal to each other, which finishes the proof of property (i).
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(ii) Any Bell local distribution tuple can be written in
quantum form with the state given by Eq. (C1) without K and
measurement operators

∑
a,b δax,a�

Alice
a,b and

∑
a,b δby,b�

Bob
a,b ;

see the proof of the Lemma. Performing any raw key protocol
with this initial state and Alice’s and Bob’s measurements
described by these operators leads to the state

ρrk =
∑

a, b, x, y,
e, a, b

PA|U,X ,E (a|ax, x, e)PB|V,Y ,E (b|by, y, e)

×PX ,Y ,E (x, y, e)PÃ,B̃(a, b)�a ⊗ �b ⊗ �e,a,b,

where x (y) corresponds to X (Y ) and �e,a,b = �Eve
e ⊗ �Eve

a,b .
Assume that Eve simply makes the measurement of operators
�e,a,b on ρrk. The three parties are left with classical random
variables. Since PX ,Y ,E = PX |EPY |EPE , the probability mass
function of A, B and the random variables available to Eve,
i.e., Ã, B̃ and E, is PA|Ã,EPB|B̃,EPÃ,B̃PE and hence A and B
are conditionally independent given Eve’s variables. Conse-
quently, Alice and Bob cannot generate a secret key [40].

APPENDIX D: PROOF OF PROPOSITION 2

For any P ∈ Q, we define the family of distribution tuples
Pp = pP + (1 − p)L, where L is any Bell local distribution
tuple and p varies from 0 to 1. They belong to Q since L ⊂ Q
and Q is convex [26]. Clearly, Pp is continuous with respect to
p, P1 = P, and P0 = L. Moreover, P is not less nonlocal than
Pp for any p ∈ [0, 1] [36]. We denote by Qs the set of all P ∈
Q such that N (P) = s and define the function f , on the set J ′
of the values of N , by f (s) = infP∈Qs M(P). By construction,
f ◦ N � M on Q and there is, for any s ∈ J ′, P ∈ Qs, such
that M(P) and f (s) are as close to each other as we wish.
Since M and N vanish on L, there is a set Q0 containing L
and f (0) = 0.

As N � 0, the supremum Nsup = sup J ′ is nonnegative.
Define J = [0, Nsup) and consider any s ∈ J . There is P̂ ∈ Q
such that N (P̂) > s. Define P̂p as described above. Owing to
the continuity properties of N and P̂p, N (P̂p) is a continuous
function of p. It is equal to 0 for p = 0 and to N (P̂) for
p = 1. Thus, due to the intermediate value theorem, for any
s′ ∈ [0, N (P̂)], there is q such that N (P̂q) = s′, i.e., s′ ∈ J ′. In
particular, s belongs to J ′. As s is any element of J , J is a
subset of J ′.

For any P ∈ Qs, N (Pp) is a continuous function of p which
is equal to 0 for p = 0 and to s for p = 1. So, for any s′ ∈
[0, s], there is q such that Pq ∈ Qs′ . Moreover, since P is not
less nonlocal than Pq and M is a nonlocality monotone, one
has M(P) � M(Pq) � f (s′). Thus, for any s and s′ in J ′ such
that s′ � s, f (s′) is a lower bound of M on Qs, which implies
that f is nondecreasing.

APPENDIX E: UPPER BOUND ON THE THRESHOLD Ñ∗

The rate R′(ρrk ) in Eq. (7) is lower bounded by the
Devetak-Winter rate [22], i.e.,

R′(ρrk ) � I (A : B) +
∑

a
PA(a)S(ωa) − S(ω),

where I (A : B) is the mutual information between A and B,
S denotes the von Neumann entropy, ω = trHAB ρ ′, and ωa =

trHAB (ρ ′Ma ⊗ I ′
B ⊗ I ′

E )/PA(a) with I ′
B the identity operator on

HB ⊗ H′
B. We consider m = n = 2, random variables Ax and

By with values in {−1, 1}, and a raw key protocol in which
Alice creates three equally distributed random variables, X ,
Y , and E , and sends Y and E over the public channel, A =
ν(X,Y )EU , where ν is a map from {1, 2}2 to {−1, 1} such
that ν(x, y) = −1 for only one pair (x, y) and B = EV . The
values of E are −1 and 1; X and Y are the choice random
variables for Alice and Bob, respectively, with alphabet {1, 2}.
Consequently, PA = PB = 1/2 and the above Eve’s states are
given by ω = ∑

y,e �y,e ⊗ trHA⊗HB ρ/4 and

ωa =
∑
x,y,e

�y,e ⊗ trHA⊗HB (ρMx,eν(x,y)a ⊗ IB ⊗ IE )/4,

omitting the superscript for the projectors.
Since m = n = 2 and A = B = {−1, 1}, these states can

be rewritten as ω = ∑
y,e,λ pλ�y,e ⊗ trH2

2
ρλ/4 and

ωa =
∑

x,y,e,λ

pλ

8
�y,e ⊗ trH2

2

[
ρλ

(
I2 + eνa�A

x,λ

) ⊗ I2 ⊗ IE
]
,

omitting the arguments of ν, where pλ denotes probabilities
summing to unity, H2 the Hilbert space of dimension 2, ρλ

density operators on H2
2 ⊗ HE , and I2 the identity operator

on H2. In some basis of H2, depending on λ, the diagonal
elements of the operators �A

x,λ can be expressed as ± cos θx,λ

and the nondiagonal ones as sin θx,λ [9]. In terms of the states
ρλ, the distributions Px,y read as

Px,y(a, b) =
∑

λ

pλ

4
tr

[
ρλ

(
I2 + a�A

x,λ

) ⊗ (
I2 + b�B

y,λ

) ⊗ IE
]
,

where the operators �B
y,λ are similar to the �A

x,λ.
The above Eve’s states can be further simplified into ω =∑
λ pλ trH2

2
ρ ′

λ and

ωa =
∑
x,λ

pλ

2
trH2

2

[
ρ ′

λ

(
I2 + a�A

x,λ

) ⊗ I2 ⊗ I ′
E

]
.

The states ρ ′
λ are given by ρ ′

λ = ∑
y,e �y,e ⊗ ρλ,eν/4, where

ρλ,1 = ρλ and ρλ,−1 = σ A
λ ⊗ σ B

λ ⊗ IEρλσ
A
λ ⊗ σ B

λ ⊗ IE with

σ A
λ = (

0 − i
i 0 ) in the basis in which the �A

x,λ are real and

similarly for σ B
λ . The above expression for ωa results from

σ A
λ �A

x,λσ
A
λ = −�A

x,λ. The reduced density operator on H2
2 of

ρ ′
λ is trHE (ρλ,1 + ρλ,−1)/2, which can always be taken to be a

Bell diagonal state and hence

S(ωλ) −
∑

a

S(ωλ,x,a)/2 � h
{[

1 + (
Nλ + N2

λ /4
)1/2]

/2
}
,

where ωλ = trH2
2
ρ ′

λ, ωλ,x,a = trH2
2
[ρ ′

λ(I + a�A
x,λ) ⊗ I ⊗ I ′

E ], h
is the binary entropy function, and Nλ is the maximum vi-
olation of the Clauser-Horne-Shimony-Holt inequality [39]
for the state trHE (ρλ,1 + ρλ,−1)/2 [9]. As

∑
a,b abPx,y(a, b) =∑

a,b abPx,y(−a,−b), the value of 〈AxBy〉 remains the same
when ρλ is replaced by (ρλ,1 + ρλ,−1)/2 and so Ñ (P) �∑

λ pλNλ, where Ñ is defined by Eq. (3). Thus, due to the
properties of the Holevo quantity and of h, the above inequal-
ity is valid with ωλ, ωλ,x,a, and Nλ replaced, respectively, by
ω, ωa, and Ñ (P).
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Since PA = PB = 1/2, one has I (A : B) = 1 − h(1/2 + |〈AB〉|/2), where

〈AB〉 = 〈ν(X,Y )UV 〉 = 1

4

∑
x,y

ν(x, y)〈AxBy〉,

and thus maxν I (A : B) � 1 − h[3/4 + Ñ (P)/8]. The above results show that R � g′ ◦ Ñ , where g′ is given by

g′(s) = 1 − h

(
3

4
+ s

8

)
− h

(
1

2
+ 1

2

√
s + s2

4

)
.

As R is nonnegative, the right side of the above inequality can be replaced by zero when it is negative and hence R � g ◦ Ñ ,
with g(s) = max{0, g′(s)}. The value g′(s) is positive for s � 0.652. So, the nonlocality monotone Ñ has a threshold value
Ñ∗ � 0.652.
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