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Optimal characterization of Gaussian channels using photon-number-resolving detectors
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We present optimal schemes, based on photon-number measurements, for Gaussian state tomography and
for Gaussian process tomography. An n-mode Gaussian state is completely specified by 2n2 + 3n param-
eters. Our scheme requires exactly 2n2 + 3n distinct photon-number measurements to tomograph the state
and is therefore optimal. Furthermore, we describe an optimal scheme to characterize Gaussian processes
by using coherent-state probes and photon-number measurements. With much recent progress in photon-
number-measurement experimental techniques, we hope that our scheme will be useful in various quan-
tum information processing protocols including entanglement detection, quantum computation, quantum key
distribution, and quantum teleportation. This work builds upon the work of Parthasarathy and Sengupta
[Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18, 1550023 (2015)].
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I. INTRODUCTION

Continuous-variable (CV) systems are ubiquitous in quan-
tum information and communication protocols. Most of the
CV quantum information protocols are based on Gaussian
states as they are easy to prepare, manipulate, and mea-
sure [1,2]. One of the central tasks in quantum information
processing is the estimation of quantum states, which is
formally called quantum state tomography (QST) [3–5]. Gen-
erally, homodyne and heterodyne measurements are employed
in CV QST, which measure quadrature operators of a given
state [6–8]. However, with the recent development of experi-
mental techniques in photon-number-resolving detectors (PN-
RDs) [9,10], the possibility of carrying out QST via photon-
number measurements has opened up. Cerf et al. devised
a scheme using beam splitters and on-off detectors, where
one can obtain the trace and determinant of the covariance
matrix of a Gaussian state [11,12]. In a similar endeavor,
Parthasarathy et al. have developed a theoretical scheme to
determine the Gaussian state by estimating its mean and
covariance matrix [13].

Another important task in quantum information processing
is quantum process tomography (QPT), where we wish to
characterize quantum processes which in general are com-
pletely positive maps. For CV systems, theoretical as well as
experimental studies for QPT have been undertaken by several
authors [14–23]. Lobino et al. used coherent-state probes
along with homodyne measurements to characterize quantum
processes [14]. Similarly, Ghalaii et al. have developed a
coherent-state-based QPT scheme via the measurement of
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normally ordered moments that are measured using homo-
dyne detection [21]. In this direction, Parthasarathy et al. have
utilized QST schemes based on photon-number measurements
for Gaussian states, to characterize the Gaussian channel [13].

In this paper, we simplify the scheme given by
Parthasarathy et al. [13] and describe an optimal scheme
which involves a minimum number of measurements and
utilizes a smaller number of optical elements for the QST of
Gaussian states based on PNRDs. We employ this scheme to
devise an optimal scheme for Gaussian channel characteriza-
tion. An n-mode Gaussian state is completely specified by its
2n first moments and second-order moments arranged in the
form of a covariance matrix which has 2n2 + n parameters.
Therefore, we require a total of 2n2 + 3n parameters to com-
pletely determine an n-mode Gaussian state. The QST based
on photon-number measurements is optimal in the sense that
we require exactly 2n2 + 3n distinct measurements to deter-
mine all the 2n2 + 3n parameters of the state. Next we deploy
the QST scheme that we develop, to estimate the output,
with coherent-state probes as inputs for the Gaussian channel
characterization. An n-mode Gaussian channel is described
by a pair of 2n×2n real matrices A and B with B = BT � 0
which satisfy certain complete positivity and trace-preserving
conditions [24–26]. The matrices A and B together can be
described by a total of 6n2 + n parameters. We show that
we can characterize a Gaussian quantum channel optimally;
i.e., we require exactly 6n2 + n distinct measurements to
determine all the 6n2 + n parameters of the Gaussian channel.
We compare the variance of transformed number operators
arising in the aforementioned QST scheme which provides an
insight into the efficiency of the scheme. Finally, we relate the
variance of transformed number operators to the variance of
quadrature operators. In CV quantum key distribution (QKD)
protocols, one needs to send an intense local oscillator pulse
for the purpose of measurement, which in itself is an arduous
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task and can give rise to security loopholes [27,28]. Our
scheme based on PNRDs do not require such an intense local
oscillator signal, and thus may turn out to be useful in CV
QKD protocols.

The paper is organized as follows. In Sec. II we give
a detailed mathematical background about CV systems. In
Sec. III we provide our optimal QST scheme based on PNRDs
for Gaussian states. Thereafter, the tomography of the Gaus-
sian channel has been dealt with in Sec. IV while in Sec. V
we compare the variance of different transformed number
operators appearing in the state tomography scheme. Finally
in Sec. VI we draw conclusions from our results and look at
future aspects.

II. CV SYSTEM

An n-mode continuous-variable quantum system is rep-
resented by n pairs of Hermitian quadrature operators q̂i, p̂i

(i = 1 , . . . , n) which can be arranged in a column vector
as [1,2,29–31]

ξ̂ = (ξ̂i ) = (q̂1, p̂1, . . . , q̂n, p̂n)T , i = 1, 2, . . . , 2n. (1)

The bosonic commutation relation between them in a compact
form reads as (h̄ = 1)

[ξ̂i, ξ̂ j] = i�i j, i, j = 1, 2, . . . , 2n, (2)

where � is the 2n × 2n matrix given by

� =
n⊕

k=1

ω =

⎛
⎜⎜⎝

ω

. . .

ω

⎞
⎟⎟⎠, ω =

(
0 1

−1 0

)
. (3)

The field annihilation and creation operators âi and â†
i

(i = 1, 2, . . . , n) are related to the quadrature operators as

âi = 1√
2

(q̂i + i p̂i ), â†
i = 1√

2
(q̂i − i p̂i ). (4)

The number operator for the ith mode and total number
operator for the n-mode system can be expressed as

N̂i = âi
†âi = 1

2

(
q̂i

2 + p̂i
2 − 1

)
, (5a)

N̂ =
n∑

i=1

N̂i. (5b)

The state space known as the Hilbert space Hi for the ith
mode is spanned by the eigenvectors |ni〉 {ni = 0, 1, . . . ,∞}
of Ni = a†

i ai. The combined Hilbert space H⊗n = ⊗n
i=1Hi

of the n-mode state is spanned by the product basis vector
|n1 · · · ni · · · nn〉 with {n1, . . . , ni, . . . , nn = 0, 1, . . . ,∞}.
The numbers ni correspond to photon number in the ith mode.
The irreducible action of the field operators âi and â†

i on Hi

is dictated by the commutation relation in Eq. (2) and is given
by

âi|ni〉 =√
ni|ni − 1〉, ni � 1, âi|0〉 = 0,

âi
†|ni〉 =

√
ni + 1|ni + 1〉, ni � 0. (6)

We define the displacement operator acting on the ith mode
and the corresponding coherent states as

D̂i(qi, pi ) = ei(piq̂i−qi p̂i ),

|qi, pi〉i = D̂i(qi, pi )|0〉i. (7)

Here qi and pi correspond to displacement along q̂ and p̂
quadrature of the ith mode.

A. Symplectic transformations

The group Sp(2n, R) is defined as the group of linear
homogeneous transformations S specified by real 2n×2n ma-
trices S acting on the quadrature variables and preserving the
canonical commutation relation in Eq. (2):

ξ̂i → ξ̂ ′
i = Si j ξ̂ j, S�ST = �. (8)

The unitary representation of this group turns out to be infinite
dimensional, where we have U (S) for each S ∈ Sp(2n, R)
acting on a Hilbert space, and is known as the metaplectic
representation. These unitary transformations are generated
by Hamiltonians which are quadratic functions of quadrature
and field operators. Furthermore, any symplectic matrix S ∈
Sp(2n, R) can be decomposed as

S = P · T, (9)

where P ∈ �(n) is a subset of Sp(2n, R) defined as

�(n) = {S ∈ Sp(2n, R) | ST = S, S > 0}, (10)

and T is an element of K (X,Y ), the maximal compact
subgroup of Sp(2n, R) which is isomorphic to the unitary
group U (n) = X + iY in n dimensions. The action of U (n)
transformation on the annihilation and creation operators is
given as

â → U â, â† → U ∗â†, (11)

where â = (â1, â2, . . . , ân)T and â† = (â†
1, â†

2, . . . , â†
n)T .

The 2n×2n dimensional symplectic transformation matrix
K (X,Y ) acting on the Hermitian quadrature operators can be
easily obtained using Eqs. (4) and (11).

Now we write three basic symplectic operations which are
used later.

1. Phase-change operation

The symplectic transformation for a phase-change opera-
tion acting on the quadrature operators q̂i, p̂i is

Ri(φ) =
(

cos φ sin φ

− sin φ cos φ

)
. (12)

This operation corresponds to the U (1) subgroup of Sp(2,R),
its metaplectic representation is generated by the Hamiltonian
of the form H = â†

i âi, and its action on the annihilation
operator is âi → e−iφ âi.

2. Single-mode squeezing operation

The symplectic transformation for the single-mode squeez-
ing operator acting on quadrature operators q̂i and p̂i is written
as

Si(r) =
(

e−r 0
0 er

)
. (13)
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3. Beam-splitter operation

For two-mode systems with quadrature operators ξ̂ =
(q̂i, p̂i, q̂ j, p̂ j )T the beam-splitter transformation Bi j (θ ) acts
as follows:

Bi j (θ ) =
(

cos θ 12 sin θ 12

− sin θ 12 cos θ 12

)
, (14)

where 12 represents a 2×2 identity matrix and transmittivity is
specified through θ via the relation τ = cos2 θ . For a balanced
(50:50) beam splitter, θ = π/4. All three operations above are
generated by quadratic Hamiltonians. It turns out that while
phase-change and beam-splitter operations are compact and
are generated by a photon-number-conserving Hamiltonian,
squeezing operations are noncompact and are generated by a
photon-number-nonconserving Hamiltonian.

B. Phase-space description

For a density operator ρ̂ of a quantum system the corre-
sponding Wigner distribution is defined as

W (ξ) = 1

(2π )n

∫
dnq′

〈
q − 1

2
q′

∣∣∣∣ρ̂
∣∣∣∣q + 1

2
q′

〉
exp(iq′T · p),

(15)
where ξ = (q1, p1, . . . , qn, pn)T , q′ ∈ Rn and q =
(q1, q2, . . . , qn)T , p = (p1, p2, . . . , pn)T . Therefore, W (ξ)
depends upon 2n real phase-space variables.

For an n-mode system, the first-order moments are defined
as

d = 〈ξ̂〉 = Tr[ρ̂ξ̂], (16)

and the second-order moments are best represented by the real
symmetric 2n×2n covariance matrix defined as

V = (Vi j ) = 1
2 〈{�ξ̂i,�ξ̂ j}〉, (17)

where �ξ̂i = ξ̂i − 〈ξ̂i〉, and {, } denotes an anticommutator.
The number of independent real parameters required to spec-
ify the covariance matrix is n(2n + 1). The uncertainty prin-
ciple in terms of covariance matrix reads V + i

2� � 0, which
implies that the covariance matrix is positive definite, i.e.,
V > 0.

A state is called a Gaussian state if the corresponding
Wigner distribution is a Gaussian. Gaussian states are com-
pletely determined by their first- and second-order moments
and thus we require a total of 2n + n(2n + 1) = 2n2 + 3n pa-
rameters to completely determine an n-mode Gaussian state.
For the special case of Gaussian states, Eq. (15) can be written
as [1]

W (ξ) = exp[−(1/2)(ξ − d )T V −1(ξ − d )]

(2π )n
√

detV
, (18)

where V is the covariance matrix and d denotes the displace-
ment of the Gaussian state in phase space.

We now compute averages of a few quantities that are
required later, using the phase-space representation. Here

N̂ =
n∑

j=1

N̂i = 1

2

n∑
j=1

(
q̂i

2 + p̂i
2 − 1

)
(19)

is symmetrically ordered in q̂ and p̂ operators; therefore, the
average number of photons, 〈N̂〉, for an n-mode Gaussian
state can be readily computed using the Wigner distribution
as follows [13,32]:

〈N̂〉 = 1

2

n∑
j=1

∫
d2nξ

(
q2

i + p2
i − 1

)
W (ξ),

= 1

2

[
Tr

(
V − 1

2
12n

)
+ ||d||2

]
. (20)

Under a unitary transformation, while quantum states trans-
form in Schrödinger representation as ρ → Uρ U†, in
Heisenberg representation the number operator transforms
as N̂ → U†N̂ U . Specifically for a phase-space displacement
D(r), we have

〈D̂(r)†N̂D̂(r)〉 = 1
2

[
Tr

(
V − 1

212n
) + ||d + r||2], (21)

which simplifies by using Eq. (20) to

〈D̂(r)†N̂D̂(r)〉 − 〈N̂〉 = 1
2 (||d + r||2 − ||d||2). (22)

For a homogeneous symplectic transformation S, the density
operator follows the metaplectic representation U (S) as ρ →
U (S)ρ U (S)†. The corresponding transformation of the dis-
placement vector d and covariance matrix V is given by [29]

d → Sd and V → SV ST . (23)

Thus, we can easily evaluate the average of the number opera-
tor after the state has undergone a metaplectic transformation
using Eqs. (20) and (23) as

〈Û (S)†N̂Û (S)〉 = 1
2 Tr

(
V ST S − 1

212n
) + 1

2 dT ST Sd. (24)

Therefore,

〈Û (S)†N̂Û (S)〉 − 〈N̂〉 = 1
2 Tr[V (ST S − 12n)]

+ 1
2 dT (ST S − 12n)d. (25)

More mathematical details are available in [29].

III. ESTIMATION OF GAUSSIAN STATES USING
PHOTON-NUMBER MEASUREMENTS

In this section, we present a variant of the scheme devel-
oped in [13] where the authors have devised a scheme to
estimate the mean and covariance matrix of Gaussian state
using PNRDs. In our scheme, which is optimal and uses
minimum optical elements, photon-number measurement is
performed on the original Gaussian state as well as the trans-
formed Gaussian state. These transformations or gates con-
sist of displacement, phase rotation, single-mode squeezing,
and beam-splitter operation denoted by D̂i(q, p), U (Ri(θ )),
U (Si(r)), and U (Bi j (θ )), respectively.

A. Mean estimation

We first perform photon-number measurement on the
original n-mode Gaussian state giving us 〈N̂〉. Then we
consider two different photon-number measurements af-
ter displacing one of the quadratures q̂i or p̂i of the ith
mode by a unit amount giving us 〈D̂i(1, 0)†N̂D̂i(1, 0)〉 and
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FIG. 1. To estimate the mean of an n-mode Gaussian state, the
state is displaced along one of the 2n phase-space variables before
performing photon-number measurement on each of the modes. In
the figure, a displacement gate D̂i(1, 0) is applied on the state which
displaces the q̂ quadrature of the ith mode by a unit amount.

D̂i(0, 1)†N̂D̂i(0, 1)〉. (Figure 1 depicts a displacement gate
D̂i(1, 0) acting on the ith mode of the state.) We therefore
have, by using Eq. (22),

〈D̂i(1, 0)†N̂D̂i(1, 0)〉 − 〈N̂〉 = 1
2

(
1 + 2dqi

)
,

〈D̂i(0, 1)†N̂D̂i(0, 1)〉 − 〈N̂〉 = 1
2

(
1 + 2dpi

)
, (26)

which can be rewritten as

dqi = 〈D̂i(1, 0)†N̂D̂i(1, 0)〉 − 〈N̂〉 − 1
2 ,

dpi = 〈D̂i(0, 1)†N̂D̂i(0, 1)〉 − 〈N̂〉 − 1
2 . (27)

Thus, we can obtain the mean values of q̂i and p̂i quadratures
once the values of 〈D̂i(1, 0)†N̂D̂i(1, 0)〉, 〈D̂i(0, 1)†N̂D̂i(0, 1)〉,
and 〈N̂〉 have been obtained. These estimations involve mea-
suring averages and thus require us to repeat the measurement
many times.

Therefore, to obtain all the 2n elements of mean d of
the Gaussian state, we need to perform 2n photon-number
measurements after displacing the state by a unit amount
along 2n different phase-space variables along with photon-
number measurement on the original state. We also note that
Tr(V ) can be obtained using Eq. (20) once the mean d of the
Gaussian state has been obtained:

Tr(V ) = 2〈N̂〉 − ||d||2 + n. (28)

Thus, we are able to estimate 2n elements of the mean d of the
Gaussian state and the trace of the covariance matrix Tr(V )
using a total of 2n + 1 photon-number measurements.

B. Estimation of intramode covariance matrix

For convenience in representation, we express the covari-
ance matrix of the n-mode Gaussian state as follows:

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

V1,1 V1,2 · · · V1,n

V2,1
. . .

. . .
...

...
. . .

. . . Vn−1,n

Vn,1 · · · Vn,n−1 Vn,n

⎞
⎟⎟⎟⎟⎟⎟⎠

, (29)

where Vi, j is a 2×2 matrix. Furthermore, we represent the
mean and covariance matrix of the marginal state of mode i

FIG. 2. To estimate the intramode covariance matrix, that is, the
covariance matrix of the individual modes, single-mode symplectic
transformations are applied on the state before performing photon-
number measurement on each of the modes. In the figure, a phase
shifter U (Ri(φ)) followed by a squeezer U (Si(r)) is applied on the
ith mode of the state.

(or intramode covariance matrix for mode i) as

di =
(

dqi

dpi

)
, Vi,i =

(
σqq σqp

σqp σpp

)
. (30)

To estimate the intramode covariance matrix, consider the
single-mode symplectic gate Pi(r, φ) consisting of a squeezer
and phase shifter acting on the ith mode of the Gaussian state:

Pi(r, φ) = Si(r)Ri(φ) =
(

e−r 0
0 er

)(
cos φ sin φ

− sin φ cos φ

)
.

(31)
The schematic representation of Pi(r, φ) is shown in Fig. 2.
When Pi(r, φ) acts on the ith mode of the Gaussian state,
Eq. (25) reduces to

〈Û (Pi )
†N̂Û (Pi )〉 − 〈N̂〉 = 1

2 Tr
[
Vi,i

(
PT

i Pi − 12
)]

+ 1
2 dT

i

(
PT

i Pi − 12
)
di. (32)

Here

PT
i Pi =

(
e−2r cos2 φ + e2r sin2 φ − sinh 2r sin 2φ

− sinh 2r sin 2φ e−2r sin2 φ + e2r cos2 φ

)
.

(33)

For brevity, we assume

PT
i Pi − 12 =

(
k1 k3

k3 k2

)
, (34)

and thus Eq. (32) simplifies as

〈Û (Pi )
†N̂Û (Pi )〉 − 〈N̂〉 = 1

2

[
k1σqq + k2σpp + 2k3σqp

+ k1d2
qi

+ k2d2
pi

+ 2k3dqi dpi

]
.

(35)

Rearranging the above equation, we obtain

k1σqq + k2σpp + 2k3σqp = 2(〈Û (Pi )
†N̂Û (Pi )〉 − 〈N̂〉)

− (
k1d2

qi
+ k2d2

pi
+ 2k3dqi dpi

)
.

(36)
Since dqi and dpi have already been obtained in Sec. III A
[Eq. (27)], the above equation contains three unknown
parameters σqq, σpp, and σqp. We can determine these three
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unknowns by performing three distinct photon-number mea-
surements for appropriate combinations of squeezing param-
eter r and phase rotation angle φ, as follows:

(i) For er = √
2 and φ = 0, we obtain

− 1
2 (σqq − 2σpp) = c1. (37)

(ii) For er = √
3 and φ = 0, we obtain

− 2
3 (σqq − 3σpp) = c2. (38)

(iii) For er = √
2 and φ = π/4, we obtain

1
4 (σqq + σpp − 6σqp) = c3. (39)

Here c1, c2, and c3 correspond to the right-hand side (RHS)
of Eq. (36), which can be easily determined once the photon-
number measurements have been performed. Equations (37)
and (38) can be solved to yield values of σqq and σpp which can
be put in Eq. (39) to obtain the value of σqp. Thus, Vi,i can be
completely determined by performing three photon-number
measurements after applying the three distinct single-mode
symplectic gates [Eqs. (37)–(39)]. To determine all Vi,i (1 �
i � n − 1), we require 3(n − 1) measurements. For Vn,n, we
need to determine σqp and one of σqq or σpp, as Tr(V ) is
already known. Thus, a total of 3(n − 1) + 2 = 3n − 1 dis-
tinct photon-number measurements are required to determine
all the parameters of the intramode covariance matrix of a
Gaussian state.

C. Estimation of intermode correlations matrix

To estimate the intermode correlations matrix, we perform
two-mode symplectic operations on the Gaussian state before
measuring photon-number distribution. We write the covari-
ance matrix of the reduced state of the i, j mode in accord
with Eq. (29) as (

Vi,i Vi, j

V T
i, j Vj, j

)
. (40)

Here i < j need not be successive modes. Since Vi,i and
Vj, j have already been determined in Sec. III B, we need to
determine only Vi, j . We further take the matrix elements of
Vi, j to be

Vi, j =
(

γqq γqp

γpq γpp

)
. (41)

The two-mode symplectic gate is comprised of a phase shifter
acting on the ith mode followed by a balanced beam splitter
acting on modes i and j and finally a squeezer acting on mode
i. We represent this mathematically as

Qi j (r, φ) = (Si(r) ⊕ 12)Bi j

(
π

4

)
(Ri(φ) ⊕ 12),

=
(

Si(r) 0
0 12

)
1√
2

(
12 12

−12 12

)(
Ri(φ) 0

0 12

)
.

(42)

The schematic representation of Qi j (r, φ) is illustrated in
Fig. 3. When the aforementioned gate Qi j (r, φ) acts on the

FIG. 3. To estimate the intermode correlations matrix, we apply
a two-mode symplectic gate on the state before performing a photon-
number measurement on each of the modes. As shown in the figure,
first a phase shifter U (Ri(φ)) is applied on the ith mode of the state.
This is followed by a balanced beam splitter U (Bi j ( π

4 )) acting on i, j
modes and finally a squeezer U (Si(r)) is applied on the ith mode of
the state.

modes i and j of the Gaussian state, Eq. (25) reduces to

〈Û (Qi j )
†N̂Û (Qi j )〉 − 〈N̂〉

= 1

2
Tr

[(
Vi,i Vi, j

V T
i, j Vj, j

)(
K − 12 M

MT L − 12

)]

+ 1

2

⎛
⎜⎜⎜⎝

dqi

dpi

dqj

dpj

⎞
⎟⎟⎟⎠

T (
K − 12 M

MT L − 12

)
⎛
⎜⎜⎜⎝

dqi

dpi

dqj

dpj

⎞
⎟⎟⎟⎠, (43)

where we have used

QT
i jQi j =

(
K M

MT L

)
. (44)

Using the following simplification for trace,

Tr

[(
Vi,i Vi, j

V T
i, j Vj, j

)(
K − 12 M

MT L − 12

)]

= Tr[Vi,i(K − 12) + Vj, j (L − 12)] + 2Tr[Vi, jM
T ], (45)

Eq. (43) can be rearranged as

Tr[Vi, jM
T ] = 〈Û (Qi j )

†N̂Û (Qi j )〉 − 〈N̂〉

− 1

2
Tr[Vi,i(K − 12) + Vj, j (L − 12)]

− 1

2

⎛
⎜⎜⎜⎝

dqi

dpi

dqj

dpj

⎞
⎟⎟⎟⎠

T

(
K − 12 M

MT L − 12

)
⎛
⎜⎜⎜⎝

dqi

dpi

dqj

dpj

⎞
⎟⎟⎟⎠.

(46)

Various terms appearing in the RHS of the above equation,
for instance Vi,i, Vj, j , dqi , dpi , dqj , dpj have already been
determined. Thus the four unknowns γqq, γpp, γqp, γpq ap-
pearing on the left-hand side (LHS) of the above equation can
be determined by performing four different photon number
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TABLE I. Tomography of an n-mode Gaussian state by photon-number measurements.

Estimate type Parameter number Gaussian operations Measurement number

Mean (d) 2n Displacement 2n + 1
Intramode covariance (Vi,i) 3n Phase shifter, squeezer 3n − 1
Intermode correlations (Vi, j ) 2n(n − 1) Phase shifter, squeezer, beam splitter 2n(n − 1)

Total 2n2 + 3n 2n2 + 3n

measurements for appropriate combinations of squeezing pa-
rameter r and phase rotation angle φ. Further, LHS of Eq. (46)
can be expressed as the following:

Tr[Vi, jM
T ] = 1

2 [(e−2r − 1) cos φ γqq + (e2r − 1) cos φ γpp

+(1 − e2r ) sin φ γqp + (e−2r − 1) sin φ γpq].

(47)

We take these four different combinations of squeezing pa-
rameter r and phase rotation angle φ to determine the four
unknowns:

(i) For er = √
2 and φ = 0, we obtain

− 1
4 (γqq − 2γpp) = d1. (48)

(ii) For er = √
3 and φ = 0, we obtain

− 1
3 (γqq − 3γpp) = d2. (49)

(iii) For er = √
2 and φ = π/2, we obtain

− 1
4 (2γqp + γpq) = d3. (50)

(iv) For er = √
3 and φ = π/2, we obtain

− 1
3 (3γqp + γpq) = d4. (51)

Here d1, d2, d3, and d4 are the RHS of Eq. (46), which can
be easily determined once the photon-number measurements
have been performed. Equations (48) and (49) can be solved
to yield values of γqq and γpp, whereas Eqs. (50) and (51)
can be solved to yield values of γqp and γpq. Thus, we
have used four distinct measurements to determine the four
parameters of Vi, j . The intermode correlations of the Gaussian
states thus require 4×n(n − 1)/2 = 2n(n − 1) measurements.
So the total number of distinct measurements required to
determine all the 2n2 + 3n parameters of the n-mode Gaussian
state adds up to 2n2 + 3n. The results are summarized in
Table I. Thus, our tomography scheme for the Gaussian state
using photon-number measurement is optimal in the sense that
we require exactly the same number of distinct measurements
as the number of independent real parameters of the Gaussian
state.

IV. CHARACTERIZATION OF GAUSSIAN CHANNELS

In this section, we move on to the characterization of a
Gaussian channel using coherent-state probes [14,15,17] by
employing the tomography techniques developed in Sec. III.
Gaussian channels are defined as those channels which
transform Gaussian states into Gaussian states [25,26]. An
n-mode Gaussian channel is specified by a pair of 2n×2n real
matrices A and B with B = BT � 0 [24]. The matrices A and
B are described by a total of 4n2 + 2n(2n + 1)/2 = 6n2 + n

real parameters and satisfy complete positivity and a trace-
preserving condition

B + i� − iA�AT � 0. (52)

The action of the Gaussian channel on mean d and covariance
matrix V of a Gaussian state is given by

d → Ad, V → AVAT + 1
2 B. (53)

Here again we follow the scheme proposed in [13]. A
schematic diagram is shown in Fig. 4. We prepare 2n distinct
coherent-state probes by displacing the n-mode vacuum state
by a unit amount along any of the 2n different phase-space
variables. These coherent-state probes are sent through the
channel and full or partial state tomography using photon-
number measurement is carried out on the output states.
The information about the output-state parameters enables
us to characterize the Gaussian channel. Now we describe
the exact scheme in detail. For convenience, we define a
2n-dimensional column vector as

e j = (0, 0, . . . , 1, . . . , 0, 0)T , (54)

with 1 present at the jth position. The first set of n coherent-
state probes is prepared by displacing an n-mode vacuum
state (d = 0, V = 12n/2) by a unit amount along n different
q̂ quadratures. For instance, application of a displacement
operator D̂ j (1, 0) on the jth mode of the n-mode vacuum state
yields the coherent state

|e2 j−1〉 = D̂ j (1, 0)|0〉, (55)

FIG. 4. Scheme for a complete characterization of an n-mode
Gaussian channel. We send 2n distinct coherent-state probes through
the channel and full or partial state tomography is carried out on
the output states. In the figure, the displacement operator D̂i(1, 0)
displaces the q̂ quadrature of the ith mode by a unit amount of
an n-mode vacuum state to give one of the required probe states.
Single- and two-mode gate operations involved in state tomography
and described in Sec. III are indicated as “Gates.”

012616-6



OPTIMAL CHARACTERIZATION OF GAUSSIAN CHANNELS … PHYSICAL REVIEW A 102, 012616 (2020)

where |0〉 denotes an n-mode vacuum state. The mean and
covariance matrix of the coherent state |e2 j−1〉 are given by

d = e2 j−1, V = 1
212n. (56)

This coherent state is sent through the Gaussian channel and
the mean and covariance matrix of the probe state transform
according to Eq. (53):

dG = Ae2 j−1, VG = 1
2 (AAT + B). (57)

Now we perform full state tomography on the output state
ρG ( j = 1) which requires 2n2 + 3n measurements. This pro-
vides us the matrix AAT + B and the first column of matrix A.
For the remaining n − 1 probe states (2 � j � n), we measure
only the mean of the output state ρG which enables us to
determine all the odd columns of matrix A.

However, as we noticed in Sec. III A, we need to perform
2n + 1 measurements to obtain the 2n elements of the mean
vector dG. This leads to overshooting of the required number
of measurements compared to the number of channel parame-
ters for the complete characterization of the Gaussian channel,
which renders the scheme nonoptimal. However, as we can see
from Eq. (57), Tr(V ) = Tr(AAT + B)/2 is same for all probe
states as all the output states have the same covariance matrix
and has already been obtained in the process of tomography
of the first output state ( j = 1). Now we show how this fact
can be exploited to obtain the value of 〈N̂〉 for the other
coherent-state probes, resulting in an optimal characterization
of the Gaussian channel. We perform 2n measurements after
displacing the output state ρG corresponding to a second
coherent-state probe and obtain 2n equations as follows:

dqi = 〈D̂i(1, 0)†N̂D̂i(1, 0)〉 − 〈N̂〉 − 1
2 , 1 � i � n,

dpi = 〈D̂i(0, 1)†N̂D̂i(0, 1)〉 − 〈N̂〉 − 1
2 , 1 � i � n. (58)

We substitute dqi and dpi (1 � i � n) in Eq. (28) and obtain
a quadratic equation in 〈N̂〉. After solving for 〈N̂〉, we put its
value in Eq. (58) to obtain dqi and dpi (1 � i � n). Thus, for
other output states ρG (2 � j � n), only 2n measurements are
required to determine the mean vector dG and no additional
measurements are required.

The other set of n coherent-state probes is prepared by
displacing the n-mode vacuum state by a unit amount along n

different p̂ quadratures. For instance, application of displace-
ment operator D̂ j (0, 1) on the jth mode of the n-mode vacuum
state yields the coherent state

|e2 j〉 = D̂ j (0, 1)|0〉. (59)

The mean and covariance matrix of the coherent state |e2 j〉 are
given by

d = e2 j, V = 1
212n. (60)

This coherent state is sent through the Gaussian channel and
the mean and covariance matrix of the probe state transform
according to Eq. (53):

dG = Ae2 j, VG = 1
2 (AAT + B). (61)

For all these n output states ρG (1 � j � n ), we measure only
the mean, which enables us to determine all the even columns
of matrix A. This information completely specifies matrix A as
odd columns had already been determined using the first set
of q̂-displaced n coherent-state probes. This also enables us to
obtain matrix B as matrix AAT + B was already known from
the full state tomography on the first coherent-state probe.
Thus, the total number of distinct measurements required
sum up to 6n2 + n, as shown in Table II, which exactly
coincides with the parameters specifying a Gaussian channel.
In the scheme of Parthasarathy et al. [13], 2n − 1 additional
measurements were required which we do not need, leading
to the optimality of our scheme. We note that the scheme is
optimal even when the coherent-state probes have different
mean values, since Tr(V ) is the same for all the output states
even in this case.

V. VARIANCE IN PHOTON-NUMBER MEASUREMENTS

In this section, we analyze the variance of photon-number
distribution of the original state and gate-transformed states
which we used towards state and process estimation in
Secs. III and IV. This study provides us with an idea of the
quality of our estimates of the Gaussian states and channels.

To evaluate the variance of photon number we note that the
square of the number operator can be easily put in symmetri-
cally ordered form as follows:

N̂2 = 1

4

n∑
i, j=1

(
q̂i

2 + p̂i
2 − 1

)(
q̂ j

2 + p̂ j
2 − 1

)
,

{N̂2}sym = f (q̂, p̂) = 1

4

n∑
i, j = 1
i �= j

(
q̂i

2 + p̂i
2 − 1

)(
q̂ j

2 + p̂ j
2 − 1

)

+ 1

4

n∑
i=1

[
q̂i

4 + p̂i
4 − 2q̂i

2 − 2 p̂i
2+ 1

3

(
q̂2

i p̂2
i + q̂i p̂iq̂i p̂i + q̂i p̂

2
i q̂i

)]
. (62)

Thus, the average of N̂2 can be readily evaluated as

〈N̂2〉 =
∫

d2nξ f (q, p)W (ξ). (63)
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TABLE II. Tomography of an n-mode Gaussian channel.

Coherent-state probe Information obtained Measurement number

q̂ displaced Odd columns of A and (AAT + B) 2n2 + 3n + (n − 1)×2n
p̂ displaced Even columns of A n×2n

Total 6n2 + n

Using the above equation and Eq. (20), the variance of
the number operator can be written in an elegant form
as [13,32,33]

Var(N̂ ) = 〈N̂2〉 − 〈N̂〉2

= 1
2 Tr

[(
V − 1

212n
)(

V + 1
212n

)] + dT V d. (64)

We first explore the mean and variance of photon number
of a single-mode system to get some insights. We consider
a single-mode Gaussian state with mean d = (u, u)T and
covariance matrix

V (β ) = 1
2 (2N + 1)R(β )S(2s)R(β )T , (65)

where N is the thermal noise parameter, s is the squeezing,
and β is the phase shift angle. The mean and variance of the
number operator for the above state read

〈N̂〉 = N cosh 2s + sinh2 s + u2,

Var(N̂ ) = (
N + 1

2

)2
cosh 4s − 1

4

+ 2u2(N + 1
2

)
(cosh 2s + sin 2β sinh 2s). (66)

Here both mean and variance depend on displacement u and
squeezing s of the state. However, the mean photon number
is independent of the phase shift angle β while the variance
of the photon number depends on β. The variance of the
displaced number operator is given by

Var(D̂(r)†N̂D̂(r)) = (d + r)T V (d + r)

+ 1
2 Tr

[(
V − 1

212n
)(

V + 1
212n

)]
. (67)

In Fig. 5(a), we plot 〈N̂〉 and 〈D†(1, 0)N̂D(1, 0)〉 as a
function of displacement parameter u for a single-mode
squeezed coherent thermal state (65). We see that while
〈D†(1, 0)N̂D(1, 0)〉 is larger than 〈N̂〉, the mean values of
both the operators increase with the displacement parameter u.
Furthermore, 〈D†(1, 0)N̂D(1, 0)〉 equals 〈D†(0, 1)N̂D(0, 1)〉
as can be seen from Eq. (21). Similarly, Fig. 5(b) shows
that mean values 〈N̂〉 and 〈D†(1, 0)N̂D(1, 0)〉 increase with
squeezing s. We plot the variance of the operators N̂ and
D†(1, 0)N̂D(1, 0) as a function of displacement parameter
u in Fig. 5(c). We see that while the variance of operator
D†(1, 0)N̂D(1, 0) is larger than the variance of the operator
N̂ , the variance of both the operators increases with dis-
placement parameter u. Similarly, Fig. 5(d) shows that vari-
ance of the operators N̂ and D†(1, 0)N̂D(1, 0) increases with
squeezing s.

The variance of photon number after a symplectic transfor-
mation S of the state reads as

Var(U (S)†N̂U (S))

= dT V d + 1
2 Tr

[(
SV ST − 1

212n
)(

SV ST + 1
212n

)]
. (68)

Using this expression we first compare the variance of
the number operator under the action of the Pi(r, φ) gate
[Eq. (31)] for different values of the parameters r and φ.
In Fig. 6(a), we plot the variance of different Pi(r, φ) gate-
transformed number operators as a function of displacement u
for the single-mode squeezed coherent thermal state (65). We
can see that the variance of different Pi(r, φ) gate-transformed
number operators increases with displacement u. While the
variance of U†(P)N̂U (P) with er = √

2, φ = π/4 is always
lower than the variance of N̂ and the variance of U†(P)N̂U (P)
with er = √

3, φ = 0 is always higher than the variance of
N̂ , the variance of U†(P)N̂U (P) with er = √

2, φ = 0 crosses
over the variance of N̂ at a certain value of displacement u.
We show the variance of the photon number as a function of
squeezing parameter s in Fig. 6(b). As we can see, variance of
different Pi(r, φ) gate-transformed number operators shows a
similar dependence on squeezing s as that of displacement u.

Now to compare the variance of photon number under the
action of two mode gates Qi j (r, φ) [Eq. (42)], we consider
a two-mode Gaussian state with mean a = (u, u, u, u)T and
covariance matrix V ,

V = B12

(
π

4

)
[V (β1) ⊕ V (β2)]B12

(
π

4

)T

, (69)

where V (β ) is defined in Eq. (65). We use Eq. (68) to compute
the variance of the Qi j (r, φ) gate-transformed number opera-
tor corresponding to the above state.

(a) (b)

(d)(c)

FIG. 5. Single-mode squeezed coherent thermal state (65) has
been plotted with parameters β = π/3 and N = 1. For all four
panels, the solid black curve represents mean and variance of
N̂ , while the dashed red curve represents mean and variance of
D†(1, 0)N̂D(1, 0). (a) Mean photon number as a function of dis-
placement u. (b) Mean photon number as a function of squeezing
s. (c) Variance of photon number as a function of displacement u.
(d) Variance of photon number as a function of squeezing s.
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(a) (b)

(d)(c)

FIG. 6. (a) Variance of photon number as a function of displace-
ment u for single-mode squeezed thermal state (65). (b) Variance
of photon number as a function of squeezing s for single-mode
squeezed thermal state (65). For both panels (a) and (b), various
curves correspond to Var(U†(P)N̂U (P)) with er = √

2, φ = 0 (red
dashed), er = √

3, φ = 0 (orange dotted), and er = √
2, φ = π/4

(purple dot dashed), while the solid black curve represents Var(N̂ ),
and parameter β = π/3. (c) Variance of photon number as a func-
tion of displacement u for two-mode squeezed thermal state (69).
(d) Variance of photon number as a function of squeezing s for
two-mode squeezed thermal state (69). For both panels (c) and (d),
various curves correspond to Var(U†(Q)N̂U (Q)) with er = √

2, φ =
0 (red dashed), er = √

3, φ = 0 (orange dotted), er = √
2, φ = π/2

(purple dot dashed), and er = √
3, φ = π/2 (magenta large dashed),

while the solid black curve represents Var(N̂ ). For all four panels, the
thermal parameter has been taken as N = 1.

In Fig. 6(c), we plot the variance of different Qi j (r, φ) gate-
transformed number operators as a function of displacement
u for the two-mode squeezed coherent thermal state (69).
We can see that the variance of different Qi j (r, φ) gate-
transformed number operators increases with displacement.
While the variance of U†(Q)N̂U (Q) with er = √

2, φ = 0,
and er = √

3, φ = 0 always remains higher than the variance
of N̂ , the variance of U†(Q)N̂U (Q) with er = √

2, φ = π/2
and er = √

3, φ = π/2 crosses over the variance of N̂ at a
certain value of the displacement parameter u. The variance
of different Qi j (r, φ) gate-transformed number operators as
a function of squeezing s is shown in Fig. 6(d). As we can
see, the squeezing dependence of different variances exhibits
a similar trend as that of dependence on displacement.

Now we wish to relate the variances of transformed number
operators to the variance of estimated Gaussian parameters.
For an n-mode system, quadrature operators q̂i and p̂i can be
expressed as

q̂i = D̂i(1, 0)†N̂D̂i(1, 0) − N̂ − 1
2 ,

p̂i = D̂i(0, 1)†N̂D̂i(0, 1) − N̂ − 1
2 . (70)

Averaging the above equation yields Eq. (27). Since N̂ and
D̂i(1, 0)†N̂D̂i(1, 0) are measured on different states, these
operators are uncorrelated and the expressions for the variance
of the quadratures become

Var(q̂i ) = Var(D̂i(1, 0)†N̂D̂i(1, 0)) + Var(N̂ ),

Var( p̂i ) = Var(D̂i(0, 1)†N̂D̂i(0, 1)) + Var(N̂ ). (71)

Thus, the variance of the q̂i quadrature, which represents
the quality of estimation of quadrature q̂i, depends on both
displacement u and squeezing s as we can see from the above
analysis. The optimization of parameters qi and pi appearing
in the displacement gate Di(qi, pi ) is required in order to
minimize Var(q̂i ).

Similarly we can express q̂2
i as

q̂2
i = 6

[
Û (Pi )

†N̂Û (Pi )︸ ︷︷ ︸
er=√

3,φ=0

−2 Û (Pi )
†N̂Û (Pi )︸ ︷︷ ︸

er=√
2,φ=0

−N̂

]
. (72)

Thus, the variance of q̂2
i can be written as

Var(q̂2
i ) = 6

[
Var(Û (Pi )

†N̂Û (Pi ))︸ ︷︷ ︸
er=√

3,φ=0

+ 2 Var(Û (Pi )
†N̂Û (Pi ))︸ ︷︷ ︸

er=√
2,φ=0

+ Var(N̂ )

]
. (73)

We see from the above analysis that the variance of q̂2
i also

depends on both displacement u and squeezing s. In this
case too, a proper study of the optimization of Pi(r, φ) gate
parameters for the minimization of Var(q̂2

i ) is needed. Such an
analysis will be useful for the best estimation of Gaussian state
parameters. Similarly, various intramode correlation terms
such as Var( p̂2

i ) and Var(q̂i p̂i ), as well as various intermode
correlation terms such as Var(q̂iq̂ j ) and Var(q̂i p̂ j ), can be
expressed in terms of the variances of different transformed
number operators.

VI. CONCLUDING REMARKS

In this work we presented a Gaussian state tomogra-
phy and Gaussian process tomography scheme based on
photon-number measurements. While the work builds upon
the proposal given in [13], the current proposal offers an
optimal solution to the problem, with a smaller number of
optical elements which renders the scheme more accessible
to experimentalists. After describing our optimal scheme for
Gaussian state tomography, we use it for estimation of a
Gaussian channel in an optimal way, where a total number
of 6n2 + n distinct measurements are required to determine
6n2 + n parameters specifying a Gaussian channel. Here we
have exploited the fact that Tr(V ) is the same for all the
output states corresponding to coherent-state probes with the
same or different mean. Full state tomography of the first
coherent-state probe yields an estimation of Tr(V ) which can
be used to estimate 〈N̂〉 for each of the remaining coherent-
state probes, thus making the scheme optimal. This in some
sense completes the problem of finding an optimal solution of
the Gaussian channel characterization posed in [13].

It should be noted that our scheme is an improvement
over similar earlier schemes based on photon-number mea-
surements and not over homodyne and heterodyne techniques
which are currently more prevalent. Similarly, the optimality
is in terms of the number of distinct experiments needed in
the scheme while each experiment will have to be repeated
to obtain the required average values. Having said so, it is
worth mentioning that there have been attempts to develop
homodyne measurement schemes using weak local oscillators
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and PNRDs [34,35] for use in circumstances where strong
local oscillators are not desirable and are essential for the
traditional homodyne scheme. Our scheme based on PNRDs
is an advancement in this direction as it requires no local
oscillator. Homodyne and heterodyne schemes go beyond
Gaussian states, whereas our present scheme is aimed only at
the estimation of Gaussian states. In principle, PNRD-based
tomography schemes that go beyond Gaussian states can be
invented; however, this aspect requires more investigation.
Finally, since PNRD measurements have become possible in
recent times, it is expected that in the coming years they will
become more practical and easier.

The analysis of variance in photon-number measurements
of the original and transformed states shows that the variance
increases with the mean of the state and with the squeezing
parameter. Thus, this scheme is well suited for states with
small mean values or small displacements and small values
of squeezing. Extending the scheme for states with large mean
value but better estimation performance is under consideration

and will be reported elsewhere. While we have chosen certain
specific values of gate parameters [see Eq. (37)], to extract
information about the parameters of the state, the effect of
different values of gate parameters on the quality of estimates,
and determination of optimal parameters that maximize the
performance of the scheme needs further investigation. The
optimality of the procedure may have a relationship with
mutually unbiased basis for the CV systems. Further analysis
of this aspect will require us to go beyond Gaussian states and
will be taken up elsewhere.
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