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Designing proper time-dependent control fields for slowly varying the system to the ground state that
encodes the problem solution is crucial for adiabatic quantum computation. However, inevitable perturbations
in real applications demand us to accelerate the evolution so that the adiabatic errors can be prevented from
accumulation. Here, by treating this trade-off task as a multiobjective optimization problem, we propose a
gradient-free learning algorithm with pulse smoothing technique to search optimal adiabatic quantum pathways
and apply it to the Landau-Zener Hamiltonian and Grover search Hamiltonian. Numerical comparisons with
a linear schedule, local adiabatic theorem induced schedule, and gradient-based algorithm searched schedule
reveal that the proposed method can achieve significant performance improvements in terms of the adiabatic
time and the instantaneous ground-state population maintenance. The proposed method can be used to solve
more complex and real adiabatic quantum computation problems.
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I. INTRODUCTION

Adiabatic quantum computation (AQC) [1], which is
known to be polynomially equivalent [2] to the standard
circuit-based quantum computation, offers us an alternative
way to solve many challenging optimization problems, such
as the traveling salesman problem [3] and satisfiability prob-
lem [4]. It functions by designing a target Hamiltonian whose
ground state encodes the solution of the optimization problem
of interest, and slowly evolving the system to this target
Hamiltonian from some simple initial Hamiltonian whose
ground state can be easily prepared. According to the quan-
tum adiabatic theorem [4,5], as long as the system evolves
sufficiently slowly and the external uncertainties have only
negligible effects on the system, the final state of the system
will be the ground state of the target Hamiltonian, as expected.

In actual applications, although AQC has inherent robust-
ness to some sources of noise, such as dephasing and unitary
control errors [6,7], its effectiveness can still be severely
hampered by other inevitable perturbations. Consequently,
many error-suppression and error-correction methods [8–11]
have been developed to handle this problem. However, recent
study [10] shows that these methods are not sufficiently fault
tolerant, and they are rather resource consuming. A more prac-
tical and direct approach is to design a sufficient fast adiabatic
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evolution path, for the sake of reducing the accumulations of
the adiabatic errors.

Shortcuts to adiabaticity [12] are a representative approach
to accelerate the transition to the target state, but it always
needs complicated analytical derivations, detailed information
of instantaneous adiabatic state of the system, or unfeasi-
ble additional terms [13]. Furthermore, it inherently cannot
maintain the instantaneous ground state during the evolution
process, and thus is not proper for most of the AQC applica-
tions. Recent efforts have brought new opportunities to adi-
abatically accelerate the evolution by optimal control meth-
ods, including analytical quantum adiabatic brachistochrone
(QAB)[14], numerical Lyapunov control [15], and gradient-
based methods [16,17]. However, QAB is only suitable for
low-dimensional parametrizations and does not consider the
population loss during the evolution process. Gradient-based
methods greatly rely on initial trial controls, their derivatives
require an abundant amount of resources to obtain, and they
are more easily trapped into the local extremes for complex
optimization problems [18].

Here, we formulate this task, i.e., decreasing the adia-
batic time while minimizing the population loss from the
instantaneous ground state, as a multiobjective optimization
problem. We employ a simple but powerful differential evolu-
tion (DE) [19–21] algorithm to explore the tradeoffs between
these two objectives. Such gradient-free learning algorithms
have drawn much attention in recent studies for their ability
to produce high-quality controls and design better experi-
ments [22–29]. In this study, specifically, we consider cases
where all the controls in the time-dependent Hamiltonian can
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vary freely, but with amplitude constraints, and the objective
function to be maximized contains two weighted terms: the
target state fidelity and the averaged system energy during
the evolution. These multiobjective optimization problems
with constraints are very hard to solve analytically. Compared
to a recent work using a gradient-based algorithm (called
D-MORPH) and instantaneous ground-state tracking [16] to
solve this multiobjective problem, our approach promises
larger probability in finding global optimal solutions and is
more practical to iteratively implement in real experiments.
As illustrative applications, we perform numerical demonstra-
tions on a Landau-Zener Hamiltonian [30] and Grover search
Hamiltonian [31] using the proposed approach. Comparisons
are also made to show the advantages of our approach over the
above-mentioned gradient-based method. Further practical
and complex applications of our method for AQC computa-
tion are also briefly discussed.

The remainder of the paper is organized as follows. We
first introduce the AQC basics and formulate the pathway
optimization problem in a general setting in Sec. II. The
learning algorithm for AQC is then described in Sec. III. Af-
terwards, we choose two representative pathway optimization
problems and compare the numerical simulation results of
our proposed method and some previously reported methods
in the literature in Sec. IV. Finally, in Sec. V, some brief
conclusions and discussions are presented.

II. BACKGROUNDS AND PROBLEM SETUP

Consider an n-qubit quantum system which evolves under
the following Schrödinger equation (h̄ = 1):

d|ψ (t )〉
dt

= −iH(t )|ψ (t )〉, t ∈ [0, T ], (1)

where H(t ) represents the time-dependent system Hamil-
tonian and the Hilbert space dimension is N = 2n. Thus,
the quantum state |ψ (t )〉 can be transformed with |ψ (t )〉 =
U (t )|ψ (0)〉, where the evolution operator U (t ) satis-
fies dU (t )/dt = −iH(t )U (t ),U (0) = I. The instantaneous
eigenstates and eigenenergies of H(t ) can then be defined by

H(t )|φm(t )〉 = Em(t )|φm(t )〉, (2)

with m = 0, 1, . . . , N − 1 and E0(t ) � E1(t ) � · · · �
EN−1(t ). Here, we are mainly concerned with the energy
gap between the ground state and the first-excited state, i.e.,
g(t ) = E1(t ) − E0(t ).

To perform AQC, the routine is to first prepare the system
at the ground state |ψ (0)〉 = |φ0(0)〉 of the initial Hamiltonian
HI = H(0), which is assumed to be easily prepared. The sys-
tem then evolves slowly under the constructed Hamiltonian,

H(t ) = H[u(t )] = u1(t )HI + u2(t )HP, (3)

where HP = H(T ) represents the problem Hamiltonian, and
u1(t ), u2(t ) are control fields satisfying the boundary condi-
tions u1(0) = u2(T ) = 1, u1(T ) = u2(0) = 0 and amplitude
constraints 0 � ul (t ) � 1, l = 1, 2. As designed, the ground
state |φ0(T )〉 of HP encodes the solution to the computational
problem. The quantum adiabatic theorem [4,5] guarantees that
as long as the evolution is sufficiently slow and the external

perturbations can be ignored, the system’s final state |ψ (T )〉
will be the target ground state |φ0(T )〉. To quantify their
distance, we define the state fidelity F1 = |〈φ0(T )|ψ (T )〉|2.

The control schedules u(t ) = [u1(t ), u2(t )] that domi-
nate the above system evolution, which we called adiabatic
quantum pathways, are very crucial for the reliable real-
ization of AQC. Different methods have been developed to
design or search such controls, as mentioned before. For
the following comparisons with our proposed method, here
we briefly review two conventional methods. The first one
is to use linear interpolation control fields [32] (marked
as Linear), i.e., u2(s) = 1 − u1(s) = s, where we use the
rescaled time s = t/T . Another one is based on the local
adiabatic evolution theorem [1,32] (RC for short); for the
Grover search Hamiltonian, it is u2(s) = 1 − u1(s) = 1/2 +
tan[(2s − 1) tan−1

√
N − 1]/2

√
N − 1, with s = t/T .

III. DIFFERENTIAL EVOLUTION ALGORITHM FOR AQC

To numerically optimize the control schedules using the
differential evolution algorithm, we should first set a per-
formance function to evaluate these controls. As mentioned
previously, we use a multiobjective function as follows [16]:

F = |〈φ0(T )|ψ (T )〉|2 − α

T

∫ T

0
〈ψ (t )|H(t )|ψ (t )〉dt, (4)

where α > 0 is a positive weight factor that determines the
relative importance of the first term (F1), which represents
the main physical goal, and the second term (with minus,
denoted as F2), which is used to minimize the population
loss from the instantaneous ground state during the evolution.
Additionally, to quantify the instantaneous population loss,
we define the instantaneous ground-state population P0(t ) =
|〈φ0(t )|ψ (t )〉|2.

The optimal control schedules should not only maximize
the above multiobjective function, but also be smooth enough
so that the real applications can realize predicted performance.
To achieve this, we use the chopped random basis (CRAB)
technique [33] to express the controls to be optimized in a set
of truncated Fourier basis,

ul (s) = ug
l (s)

{
1 +

Nc∑
k=1

[ak
l sin(ωk

l s) + bk
l cos(ωk

l s)]

}
, (5)

where we use the scaled time s = t/T , l = 1, 2 indicate
the index of the two control fields, and ug

l (s) represents the
initial controls guess. Thus, the optimization of the control
schedules, u(s) = [u1(s), u2(s)], is to search 6Nc optimal pa-
rameters X = (ak

1, bk
1, ω

k
1, ak

2, bk
2, ω

k
2 ) (k = 1, 2, . . . , Nc) that

maximize the above performance function given by Eq. (4).
In addition, to perform amplitude constraints on the control
fields, we use the unity-based normalization, i.e., u′

l (s) =
[ul (s) − ul

max]/(ul
max − ul

min), where ul
max and ul

min repre-
sent the maximum amplitude and the minimum amplitude of
ul (s) : s ∈ [0, 1], respectively.

Differential evolution algorithm [19–21], as a simple but
competitive real-valued gradient-free optimization method, is
applied here to optimize these parameters. It functions by
simulating the natural evolution process through applying the
steps of operator mutation, crossover, and selection in the
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FIG. 1. Performance function values F1 and F2 vs different combinations of the adiabatic time T and the weight factor α for a Landau-Zener
Hamiltonian. (a),(b) The averaged results obtained by D-MORPH over five runs. The maximum iteration number was Gmax = 1000. The step
size λG was initialized as 0.02 and decreased by a factor 0.5 if the calculated F was worse than the previous one, but with the maximum trial
times 100. The control fields were all bounded in the range [0,1] during the optimization. (c),(d) The averaged results produced by DE over five
runs. The maximum iteration number was Gmax = 300, and the initial guess was chosen as ug

1(s) = 1 − s, ug
2(s) = s. The algorithm parameters

were S = 0.6,C = 0.95, P = 20, D = 12, Nc = 2. Moreover, the controls were also constrained in the range [0,1] during the searching process.

population space, which is made up of a set of individuals.
The detailed algorithm procedures are described as follows.

Step 1. Set the algorithm parameters: scaling factor S,
crossover rate C, chromosome length (the dimension of
each individual) D, and population size P. Generate an
initial population Pop = {X 0

1 , . . . , X 0
P } randomly, with X 0

i =
[X 0

i1, . . . , X 0
iD] being the ith individual in the current popula-

tion.
Step 2. Update the iteration number G = G + 1, and from

i = 1 to P, do the following steps:
(1) Mutation. Generate a donor vector V G

i = [V G
i1 , . . . ,V G

iD]
through the differential mutation scheme of DE:
V G

i = X G−1
ri

b
+ S(X G−1

ri
1

− X G−1
ri

2
) + S(X G−1

ri
3

− Xri
4

G−1), where

ri
1, ri

2, ri
3, ri

4 are randomly chosen, mutually exclusive integers
in the range [0, P], and ri

b is the index of the best individual
in the current population.

(2) Crossover. Generate a trial vector U G
i = [U G

i1 , . . . ,U G
iD]

by binomial crossover strategy: if randi, j[0, 1] � C or j =
jrand, let U G

i j = V G
i j , where jrand ∈ [1, 2, . . . , D] is a randomly

chosen index. Otherwise, let U G
i j = X G−1

i j .

(3) Selection. Evaluate the former individual X G−1
i and the

trail vector U G
i : if f (U G

i ) � f (X G−1
i ), let X G

i = U G
i . Other-

wise, keep X G
i = X G−1

i unchanged.
Step 3. Check the stopping criterion, and if not satisfied,

go to Step 2. We will also compare our method with the
recent presented gradient-based D-MORPH [16] method. In
D-MORPH, the new controls can be refreshed iteratively by

uG+1
l (t ) = uG

l (t ) + λG∂F/∂uG
l (t ), (6)

until the stopping criterion is met, where λG is some appropri-
ate step size, and ∂F/∂uG

l (t ) is the functional derivative of the
objective with respect to each control field.

IV. APPLICATIONS

To show the advantages of our proposed method, we
chose two representative examples, i.e., a Landau-Zener-type
Hamiltonian [30] and Grover-search-algorithm-type Hamilto-
nian [31], to demonstrate the numerical simulations.

A. Landau-Zener Hamiltonian

As a simple but nontrivial startup, we explored the adi-
abatic quantum pathways of a Landau-Zener Hamiltonian
HI = σz,HP = σx, where σx and σz are Pauli matrices. Adia-
batic time T is crucial for the realization of AQC, and it should
be set carefully so that the system can evolve sufficiently
slowly but without accumulating too many adiabatic errors.
Moreover, as we use a multiobjective function to adjust the
control schedules for optimal adiabatic quantum pathways,
the weight factor α is very important for the success of the
optimization.

Therefore, we first studied the performance function values
F1 and F2 with respect to different combinations of T and α

for the D-MORPH and DE methods, as shown in Fig. 1. Here,
a sufficiently large iteration number was set for both of the
methods so that the best performance function values could
be reached in each case with the settled T and α. From the
comparison between Figs. 1(a) and 1(c), a direct and general
conclusion is that DE performs better than D-MORPH for
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TABLE I. Optimization results searched by D-MORPH and DE
for a Landau-Zener Hamiltonian. The target state fidelity (F1) and
the averaged system energy during the evolution (F2) are shown with
different weight factors α. The adiabatic time was chosen as T = 3.

D-MORPH DE
α F1 F2 F F1 F2 F

0.05 0.9856 0.7352 1.0224 0.9999 0.9093 1.0451
0.1 0.9680 0.7433 1.0423 0.9997 0.9036 1.0901
0.2 0.9460 0.7519 1.0964 0.9992 0.9071 1.1806
0.4 0.9287 0.7534 1.2300 0.9980 0.9132 1.3633
0.6 0.9210 0.7541 1.3735 0.9963 0.9161 1.5460
0.8 0.9159 0.7555 1.5203 0.9958 0.9150 1.7278
1.0 0.9119 0.7568 1.6688 0.9938 0.9193 1.9131

realizing the main physical goal, i.e., DE results in a final state
closer to the ground state of the problem Hamiltonian. In more
detail, we find that when T is greater than 3, D-MORPH has
a comparable performance with DE for most of the weight
factor α. However, when T is smaller than 3, DE can still
achieve a very high state fidelity F1 for most of the cases, but
D-MORPH fails. Additionally, if we focus on the issue of how
the weight factor α affects F1, we can see that the performance
of D-MORPH is much more sensitive to the choice of α

than that for DE, and smaller α is more likely to achieve a
better performance for D-MORPH. Besides maximizing the
main goal F1, we also care about minimizing the population
loss during the optimization process. The comparisons in
Figs. 1(b) and 1(d) reveal that DE also performs better than
D-MORPH for optimizing F2, especially for large adiabatic

times and small weight factors. These results in Fig. 1 indicate
that when searching optimal adiabatic quantum pathways for
the Landau-Zener Hamiltonian, DE has great advantages over
D-MORPH for a wide range of parameters T and α. To
make this more concrete, we quantitatively compare these two
methods and show some typical results in Table I.

In the following, from the above simulations, we chose
two sets of the combinations of T and α to demonstrate the
controls fields, the instantaneous ground-state population and
the energy gap obtained by the Linear, D-MORPH, and DE
methods, as shown in Fig. 2. By comparing the instantaneous
ground-state population in Figs. 2(b) and 2(h) for D-MORPH
and that in Figs. 2(e) and 2(k) for DE, we find that during
the evolution, DE has a generally smaller population loss
when α = 0.1 and α = 0.5, and both of them beat the Linear
method. Moreover, from the comparison of Figs. 2(c) and 2(i)
and Figs. 2(f) and 2(l), we find that the energy gap induced
by DE is almost the inverse of that induced by Linear for
both cases α = 0.1 and 0.5, and it can be greater than 2
at all times during the evolution when α = 0.1. However,
the energy gap induced by D-MORPH is similar to that of
Linear when α = 0.1 and α = 0.5. These results indicate that
the improved performance is achieved by a gap increment at
intermediate times.

B. Grover Search Algorithm Hamiltonian

We also considered a more practical and complex example,
namely, the Grover search algorithm, which is used to identify
a marked element in an unsorted database of N elements.
Precisely speaking, its Hamiltonian can be denoted as HI =
I − |ϕ〉〈ϕ|,HP = I − |m〉〈m|, where I is the identity matrix,

FIG. 2. Optimization results for the Landau-Zener Hamiltonian obtained by the Linear, D-MORPH, and DE methods. The controls fields
u1(s) and u2(s), the instantaneous ground-state population P0(s), and the energy gap g(s) are shown vs the scaled time s optimized by
(a)–(c) D-MORPH (solid red line) and Linear (dashed blue line) when T = 3, α = 0.1; (d)–(f) DE (solid red line) and Linear (dashed blue
line) when T = 3, α = 0.1; (g)–(i) D-MORPH (solid red line) and Linear (dashed blue line) when T = 3, α = 0.5; and (j)–(l) DE (solid red
line) and Linear (dashed blue line) when T = 3, α = 0.5.
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FIG. 3. Optimization results for the Grover search algorithm Hamiltonian using n = 1 to 6 qubits obtained by the Linear, RC, D-MORPH,
and DE methods. (a) The searched minimum adiabatic time T vs the qubit number n when α = 0.1, where T was gradually increased and
stopped when the difference between two successive F was smaller than 10−3. (b),(c) The corresponding searched final performance function
values 1 − F and 1 − F1 vs n. The control fields u1(s) and u2(s), the instantaneous ground-state population P0(s), and the energy gap g(s) are
shown vs the scaled time s for (d)–(f) n = 1; (g)–(i) n = 2; (j)–(l) n = 4; and (m)–(o) n = 6. In all figures, the different methods are Linear
(dotted black line), RC (dash-dotted green line), D-MORPH (dashed blue line), and DE (solid red line), and all the algorithm parameters were
the same as the above Laudau-Zener Hamiltonian case.

|ϕ〉 is the uniform superposition state |ϕ〉 = ∑N−1
i=0 |i〉/√N ,

{|i〉} are the basis states of the Hilbert space, and |m〉 is the
marked state. Local adiabatic evolution theorem [32] based
RC promises an adiabatic time of the order of

√
N , which is a

quadratic speed-up compared to the classical Linear method.
The optimization algorithms D-MORPH and DE are expected
to surpass or at least be close to this scaling.

Thus, we first explored the minimum adiabatic time T
needed to reach a sufficiently high F versus the number of
qubits n for these methods; the results are shown in Fig. 3(a).
One can find that D-MORPH, DE, and RC all have a quadratic
speed-up compared to Linear, as expected. Moreover, the
adiabatic time needed for DE is always smaller than that
for D-MORPH, which indicates that DE can achieve a faster
adiabatic evolution than D-MORPH. To show the correspond-
ing performance function values F and F1 obtained by these
methods, we plot Figs. 3(b) and 3(c), from which we find
that DE achieves a comparable multiobjective function value
F with D-MORPH. For the state fidelity F1, DE also has
a comparable performance with D-MORPH for most of the
cases.

We then proceed by demonstrating the control fields,
the instantaneous ground-state population, and the energy
gap obtained by these methods for the number of qubits

n = 1, 2, 4, 6, as shown in the rest of Fig. 3. The in-
stantaneous ground-state population comparisons plotted in
Figs. 3(e), 3(h), 3(k), and 3(n) reveal that DE performs much
better for reducing the population loss during the evolution
compared to D-MORPH, especially for a large number of
qubits, i.e., n = 4, 6. The corresponding energy-gap compar-
isons shown in Figs. 3(f), 3(i), 3(l), and 3(o) report generally
similar behaviors of all the methods, suggesting that we may
need more careful research on adjusting the energy gaps by
the searched optimal control schedules to further improve the
adiabatic quantum pathways. By exploring the adiabatic path-
ways of the Grover search algorithm Hamiltonian by Linear,
RC, D-MORPH, and DE, we can conclude that DE achieves
almost the fastest adiabatic evolution, while achieving the
least instantaneous ground-state population loss.

In addition, we briefly analyze the computational costs of
D-MORPH and DE in searching optimal control schedules
here. They are partly determined by the algorithm parameters,
including S,C, P, D, Nc for DE and λG for D-MORPH, which
are very important for the performance of the algorithms.
However, a thorough tuning of the parameters will be a
resource-consuming and unrealistic task. For our simulations,
S,C, P are chosen from our experiences and D, Nc, λ

G, Gmax

are settled by sufficient trials. In this way, we expect that
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FIG. 4. Run time of D-MORPH and DE for the Grover search
algorithm Hamiltonian. (a) The run time per iteration with respect to
the number of qubits n. (b) The total run time regarding the number
of qubits n.

D-MORPH and DE perform possibly close to their best status,
respectively. We then show the run time per iteration and the
total run time for these two methods in Fig. 4, where we find
that DE needs significantly more run time per iteration than
that for D-MORPH. However, the total run time for DE is
a little longer than that for D-MORPH when the number of
qubits n = 1 ∼ 5, and shorter when n = 6. From this analysis,
we can roughly conclude that the computational costs of the
two methods are comparable and both are in an acceptable
range.

V. CONCLUSIONS AND DISCUSSIONS

In this study, we have proposed a differential evolution
algorithm with the CRAB technique to explore the opti-
mal adiabatic quantum pathways for AQC and apply it to
a Landau-Zener Hamiltonian and Grover search algorithm
Hamiltonian. This gradient-free learning algorithm performs
better than conventional methods, including Linear and RC,
that are based on adiabatic theorems. This is because most
of the adiabatic theorems are not exact so that their induced
adiabatic pathways are approximate. Even these conventional
approaches can give nearly optimal solutions, and an easier-
to-implement numerical method will be more friendly to ap-
plications. Moreover, compared to a recent gradient-based D-
MORPH method, our method also has advantages in terms of
realizing the high-fidelity target ground state with shorter adi-
abatic time and reducing the population loss from the instan-
taneous ground state. The merits of our gradient-free method
mainly come from two reasons [18]: (1) For multiobjective

optimization problems, the landscape of the performance
function usually contains many local extrema. Gradient-based
algorithms start from one trial point and move along the
derivative direction, and thus are very likely to get trapped in
these local extrema. However, evolutionary-based algorithms
start from a group of points distributed in the whole parameter
space and update according to some evolutionary rules, thus
having more chance to escape from these local extrema and
reach the global optima. (2) The to-be-optimized adiabatic
quantum pathways contain amplitude constraints (in the range
[0,1]), which greatly influences the performance of the op-
timization algorithms and also induces local extrema [34].
For the gradient-based type, the amplitudes of the control
fields vary depending on the continuous derivative functions,
and thus the amplitude constraints will very likely induce
the convergence to the false extreme. However, for gradient-
free algorithms, the amplitudes change with more degrees of
freedom, and they can be finely tuned to reach the true global
optima.

This numerical optimization method can handle multiob-
jective problems and constraints more easily; the complexity
of the searching procedures for the optimal pathways does not
increase much for more complex problems, and thus is more
practical and useful for applied AQC. The successful applica-
tions here encourage us to extend it to more complicated AQC
optimization tasks, such as satisfiability problems [4] and
random optimization problems [35]. Moreover, the proposed
method can become an important tool for developing current
quantum annealing hardware and future AQC processors,
such as D-wave systems [36].

Moreover, in real applications, analytically or numerically
designed adiabatic quantum pathways may not behave as ex-
pected due to inevitable perturbations. However, our method
can be easily adapted to the closed-loop type to handle
these perturbations. This is because the performance function
chosen here can be efficiently measured and the learning
algorithm is resource saving compared to those gradient-based
types.
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