
PHYSICAL REVIEW A 102, 012613 (2020)

Time-optimal bang-bang control for the driven spin-boson system
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In this paper we investigate the application of optimal control of a single qubit coupled to an ohmic heat
bath. For the weak bath coupling regime, we derive a Bloch-Redfield master equation describing the evolution
of the qubit state parametrized by vectors in the Bloch sphere. By use of the optimal control methodology we
determine the field that generates an arbitrary single qubit rotation in minimum time. In particular we develop
an efficient method for solving the time-optimal control problem, namely the implementation of X gate, which
consists of a rotation about the �ox axis through angle π . The time-optimal control problem requires a bounded
control. If upper and lower bounds are imposed for the external control, the optimal solution is of bang-bang
type and switches from the upper to the lower values of the control bounds. We compare our results using the
techniques of automatic differentiation to compute the gradient for the cost functional with some known results
using Pontryagin’s minimum principle. We use an alternative numerical approach for the optimization strategy.

DOI: 10.1103/PhysRevA.102.012613

I. INTRODUCTION

Given a physical quantum device, the study of how to
efficiently generate a target unitary gate is important for both
fundamental theory and quantum technology [1]. A powerful
approach to this task is to use a time-varying Hamiltonian
[2]. From the point of numerical optimization methods, find-
ing accurate time-optimal protocols is difficult because it is
a two-objective optimization problem: one must maximize
the gate fidelity and simultaneously minimize the transition
time between the identity and the target gate. To overcome
this difficulty, we employ the penalty approach involving a
Lagrangian multiplier [3].

Since real systems experience noise from their environ-
ment which induces decoherence (decay of the off-diagonal
elements of the reduced density matrix) and dissipation
(change of population of the reduced density matrix). In
the weak system-bath coupling limit, the two-level system
(TLS) Hamiltonian is not diagonal and one must solve the
time-dependent Schrödinger equation to compute the coher-
ent propagator. Then master equations derived in the weak
system-bath coupling will generally involve nontrivial prop-
agations of the coherent system. In this case, the application
of Pontryagin’s minimum principle (PMP) [4] to the optimal
control problem is less easy. However, the automatic differ-
entiation (AD) [5] allows us to compute the gradient for the
cost functional with high precision. AD is a powerful tool
that allows calculating derivatives of implemented algorithms
with respect to all of their parameters up to machine precision,
without the need to explicitly add any additional functions [6].

Thus AD has great potential in optimal control theory,
where gradients are omnipresent but also difficult to obtain.
The automatic differentiation method has been successfully
applied to coherent destruction of tunneling [7] and driving-
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induced tunneling oscillation [8]. We also applied AD to
optimal generation of a single-qubit rotation at fixed target
time [9].

A theory of optimal control is a well developed field and
finds numerous applications to the optimization of nonlinear
and highly complex dynamic systems [10]. This approach
has the great advantage that the decoherence control can
be achieved [11,12] without making radical approximations
such as rotating wave approximation or short time approx-
imation usually used for time-ordering manipulations [13].
Optimal control theory provides a systematic and flexible
formalism that can be used to find the time-optimal pulse
sequence for the manipulation of multiqubit dissipative sys-
tems and for the implementation of the quantum logical
gates (see Ref. [14] for a recent review, and references
therein)

In the present paper we consider the numerical solution of
the minimum time-optimal control problem. We try to imple-
ment the X gate by minimizing the cost functional involving
the resolvent of the master equation. An important property
of our cost functional is its independence of the initial state.
The dissipative effect was described by the so-called driven
spin-boson model [15,16] in which a quantum TLS is modeled
by a spin, the environmental heat bath by quantum oscillators,
and the spin subjected to an external control field is coupled
to each bath oscillator independently. The spin-boson model
is a widely used model system. It can be mapped to a number
of physical situations [17]. In the theory of open quantum
systems, the spin-boson model is actually one of the most
popular models and has gained recent practical importance
in the field of quantum computation [1]. A special variant of
it, in which the interlevel coupling is absent, is known as the
independent–boson model [18].

These models have been used to study the role of the
electron-phonon interaction in point defects and quantum
dots, interacting many-body systems, magnetic molecules,
bath assisted cooling of spins, and a two level Josephson
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junction [19–24]. It has also been applied to the dissipative
Landau-Zener problem [25].

The dynamics of a generic quantum XOR gate operation
involving two interacting qubits being coupled to a bath of
harmonic was explored [26]. The quantization of such a
system was done using the double path integrals methodology
[15,27].

In the case of bounded control and in the absence of dissi-
pation, the optimal solution is of bang-bang type. It switches
from the upper to the lower values of the control bounds.
In the presence of dissipation the numerical results show
that the optimal solution is of bang-bang type too. Then we
conjecture that the driven spin-boson model in weak-system
bath coupling is controllable.

The remainder of the paper is organized as follows. In
Sec. II we present a derivation of Born-Markov master equa-
tions for dissipative N-level quantum systems in the presence
of the time-dependent external control field. The master equa-
tion is written as a set of Bloch-Redfield equations. The latter
is the starting point for the derivation of the kinetic equation
for the driven spin-boson model as outlined in Sec. III. In
Sec. IV we introduce the concept of the resolvent. In Sec. V
we define a single qubit rotation. We define the time-optimal
control problem in Sec. VI. In Sec. VII we describe the
techniques of AD. In Sec. VIII we present our numerical
results. Summary and conclusion are given in Sec. IX.

II. BLOCH-REDFIELD FORMALISM

We begin by reviewing some basic facts about the Bloch-
Redfield formalism for general driven dissipative systems
in the weak system-coupling limit. We consider a physi-
cal system S embedded in a dissipative environment B and
interacting with a time-dependent classical external control
field. Note that we take h̄ = kB = 1 throughout this paper.
The Hilbert space of the total system Htot = HS ⊗ HB is
expressed as the tensor product of the system Hilbert space HS

and the environment Hilbert space HB. Here, we suppose that
HS is N dimensional with some time-independent orthonor-
mal basis {|i〉}, i = 1, 2 . . . N . The total Hamiltonian has the
general form

Htot = Hc(t ) + Hb + Hint, (2.1)

where Hc(t ) is the system part of the Hamiltonian, Hb de-
scribes the bath, and Hint is the system-bath interaction that is
responsible for decoherence. The operators Hc(t ) and Hb act
on HS and HB, respectively. The system Hamiltonian Hc(t ) is
explicitly time dependent through the external control field.

The system-environment interaction is assumed to be of
bilinear form Hint = A ⊗ B with A and B Hermitian operators
of the system and the environment, respectively.

In order to investigate decoherence in the limit of weak
system-bath coupling, the Bloch-Redfield formalism can be
used to derive a set of master equations for the reduced density
matrix ρs(t ) = trB{ρtot (t )} describing the system dynamics,
where ρtot is the total density matrix for both the system and
the bath. Starting from the Liouville–von Neumann equation
iρ̇tot (t ) = [Htot, ρtot (t )] for the total density operator and after
performing Born and Markov approximations, one obtains the
Bloch-Redfield master equation for ρs(t ) in the basis {|i〉}

[28,29]

ρ̇s,i j (t ) = −i
∑

kl

[Hs,ik (t )δl j − δikHs,l j (t )]ρs,kl (t )

−
∑

kl

Di jkl (t ) ρs,kl (t ), (2.2)

where the first term on the right-hand side represents the uni-
tary part of the dynamics generated by the system Hamiltonian
Hs(t ) and the second term accounts for dissipative effects
of the coupling to the environment. The Redfield relaxation
tensor Di jkl (t ) is given by

Di jkl (t ) = δl j

∑
r

�+
irrk (t ) + δik

∑
r

�−
lrr j (t )

−�+
l jik (t ) − �−

l jik (t ), (2.3)

where the time-dependent rates �±
i jkl (t ) are evaluated as

�+
l j,ik (t ) =

∫ t

0
dt ′〈B(t − t ′)B(0)〉B

× Al j

∑
m,n

U c
im(t, t ′)AmnU

c∗
kn (t, t ′),

�−
l j,ik (t ) =

∫ t

0
dt ′〈B(0)B(t − t ′)〉B

×
∑
m,n

U c
lm(t, t ′)AmnU

c∗
jn (t, t ′) Aik, (2.4)

with

U c(t, t ′) = T
{

exp

[
−i

∫ t

t ′
dτ Hc(τ )

]}
(2.5)

being the propagator of the coherent system dynamics satisfy-
ing the Schrödinger equation

i
∂

∂t
U c(t, t ′) = Hc(t )U c(t, t ′), U c(t ′, t ′) = I. (2.6)

In Eqs. (2.4), the environment correlation functions read

〈B(τ )B(0)〉B = trB{B(τ )B(0)ρB}, (2.7)

where ρB = exp(−βHB)/ZB is the thermal equilibrium den-
sity matrix of the bath with the inverse temperature β = 1/T
and the partition function ZB = trB{ρB}. Equation (2.2) was
obtained under the assumption that

〈B(τ )〉B = trB{B(τ )ρB} = 0, (2.8)

which states that the reservoir averages of B(τ ) vanish. Note
that the time-dependent control field which enters Hc(t ) is
treated nonperturbatively in the derivation of the master equa-
tion. Note also that the time-dependent control field enters
the dissipative part of the evolution as well through the field-
dependent relaxation rates �±

i jkl (t ) via U c(t, t ′), which is a
consequence of quantum interference between the system-
bath coupling and the external coupling to the control field.
This allows for an external control of dissipation [28,30].

In the next section, we will apply the foregoing formalism
to a TLS coupled to a boson bath via weak diagonal TLS-
bath coupling, and derive the corresponding Bloch equations
satisfied by the Bloch vector of the TLS.
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III. MODEL AND MASTER EQUATION

The driven spin-boson Hamiltonian in which the qubit
is described as a spin-1/2 coupled to a bosonic bath and
subjected to a time-dependent external force can be written
as Htot (t ) = Hs + Hc(t ) + Hb + Hsb, where

Hs = −ε0σz/2, Hc(t ) = −ε(t )σx/2, (3.1)

Hb =
∑

i

ωib
†
i bi, Hsb = σz

∑
i

ci(b
†
i + bi )/2. (3.2)

Here Hs is the bare qubit Hamiltonian, in which σz = |0〉〈0| −
|1〉〈1| and σx = |0〉〈1| + |1〉〈0|, where |0〉 and |1〉 denote the
computational basis states. Hc specifies the coupling between
the σx qubit operator and the control field ε(t ). Hb is the
free Hamiltonian of the heat bath and Hsb represents the
Hamiltonian interaction between the qubit and the heat bath.
This situation is relevant to many experimental systems, from
nuclear and electronic spin resonance to atomic systems and
superconducting qubits.

The correlation environment reads

〈B(τ )B(0)〉B =
∑

i j

cic j〈[b†
i (τ ) + bi(τ )][b†

j (0) + b j (0)]〉B

(3.3)

=
∫

dω

π
J (ω)

×[cos(ωτ ) coth(βω/2) − i sin(ωτ )], (3.4)

where the spectral density of the environment

J (ω) = π
∑

i

c2
i δ(ω − ωi ) = 2παω e−ω/ωc (3.5)

is assumed to be Ohmic with exponential cutoff ωc and
dimensionless system-bath coupling α chosen to be weak.

The quantum state of the qubit will be characterized by the
Bloch vector defined by

p(t ) = Tr(σ · ρs(t)), (3.6)

where σ = (σx, σy, σz ) is the vector composed of the three
Pauli matrices with the components

px(t ) = ρs12(t ) + ρs21(t ),

py(t ) = i[ρs12(t ) − ρs21(t )],

pz(t ) = ρs11(t ) − ρs22(t ). (3.7)

By combining Eq. (2.2) with Eq. (3.7) we obtain the
following set of Bloch equations:

ṗ(t ) = M(t )p(t ) + R(t ), (3.8)

with

M(t ) =
⎛
⎝−�xx(t ) ε0 −�xz(t )

−ε0 −�yy(t ) −[−ε(t ) + �yz(t )]
0 −ε(t ) 0

⎞
⎠,

R(t ) = [−Ax(t ),−Ay(t ), 0]T . (3.9)

Following the notation used in [29], the fluctuating terms
in the inhomogeneous part R(t ) are given by

Ax(t ) = 2
∫ t

0
dt ′M ′′(t − t ′)Im[U11(t, t ′)U12(t, t ′)],

Ay(t ) = 2
∫ t

0
dt M ′′(t − t ′)Re[U11(t, t ′)U12(t, t ′)],

(3.10)

and the temperature-dependent relaxation rates are deter-
mined by

�i j (t ) =
∫ t

0
dt ′M ′(t − t ′)bi j (t, t ′), (3.11)

with �xx(t ) = �yy(t ).
In Eqs. (3.11) and (3.12), the functions M ′ and M ′′ are the

real part and imaginary part, respectively, of the bath corre-
lation function (3.4), which can be written in the following
form:

M(t ) = 1

π

∫ ∞

0
dω J (ω)

cosh
(

βω

2 − iωt
)

sinh
(

βω

2

) . (3.12)

The functions bi j (t, t ′) read

bxx(t, t ′) = Im[U 2
11(t, t ′) − U 2

12(t, t ′)],

bxz(t, t ′) = 2 Re[U11(t, t ′)U12(t, t ′)],

byz(t, t ′) = −2 Im[U11(t, t ′)U12(t, t ′)], (3.13)

where U (t, t ′) is the nondissipative time evolution opera-
tor for the spin system with U11(t, t ′) = 〈0|U (t, t ′)|0〉 and
U12(t, t ′) = 〈0|U (t, t ′)|1〉, and satisfies the Schrödinger equa-
tion

U̇ (t ) = i

2
[ε0σz + ε(t )σx]U (t ). (3.14)

In the case of a driven spin-boson model, it has been shown
that the Bloch-Redfield master equation (3.8), which was
obtained without using the so-called secular or rotating wave
approximation, is equivalent to the double path-integral for-
mulation [29].

In the undriven case the analytical expression for the
coherent propagator is trivial and reads

U11(t ) = cos(ε0t/2) + i sin(ε0t/2), (3.15)

U12(t ) = 0, (3.16)

which leads to the following analytical expressions of the free
decay rates:

�xx = �yy = 1
2 S(ε0), (3.17)

�xz = 0, (3.18)

�yz = 0, (3.19)

Ax = 0, (3.20)

Ay = 0, (3.21)

S(ε0) = J (ε0) coth (ε0/2T ), (3.22)
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where

S(ε0) = J (ε0) coth(ε0/2T ). (3.23)

IV. RESOLVENT

The formal solution of the master equation (3.8) is given in
terms of the resolvent G(t ),

p(t ) = G(t )p(0) +
∫ t

0
dτ G(t, τ )R(τ ), (4.1)

with G(t, τ ) = G(t, 0)G(0, τ ) = G−1(t )G(τ ) and satisfies the
following equation of motion:

Ġ(t ) = M(t )G(t ), G(0) = 13×3, (4.2)

where M(t ) is given by Eq. (3.9).

V. SINGLE QUBIT ROTATION

A general single qubit gate corresponds to a unitary evo-
lution operator that acts on single qubit and is represented
in the basis {|0〉, |1〉} by the two-dimensional unitary matri-
ces Ô(�n, δ) = e−i δ

2 �n·�σ ∈ SU(2), which acts on the qubit as a
rotation about the unit real vector �n ∈ R3 through the angle δ

[1]. In the coherence vector representation, �p(t ) = trs(�σρs(t )),
the unitary transformation Ô(�n, δ) ∈ SU(2) is equivalent to
a real rotation matrix R̂ ∈ SO(3). Since any qubit unitary
transformation Ô is associated with a rotation R̂(�n, δ), we
have Ôρ(t )Ô† = [1 + R̂ �p(t ) · �σ]/2. An element R̂(�n, δ) of
the group SO(3) is given by the following expression [31]:

R̂ jk = cos δ δ jk + (1 − cos δ)n jnk − sin δ

3∑
l=1

ε jklnl , (5.1)

with

cos δ = 1

2
(TrR̂ − 1), (5.2)

and

nl = −1

2 sin δ

∑
j,k=1

ε jkl R̂ jk . (5.3)

The tensor ε jkl is defined by

ε jkl =
⎧⎨
⎩

+1 if ( j, k, l )is an even permutation of 1,2,3,
−1 if ( j, k, l ) is an odd permutation of 1,2,3,
0 otherwise.

(5.4)

VI. TIME-OPTIMAL CONTROL PROBLEM

Now we formulate the problem of implementing a single
qubit rotation at a free final time as an optimal control problem
[10–12].

Let G(t ) be the resolvent at time t . Its time evolution is
governed by Eq. (4.2) with the initial condition G(0) = 1.
The objective is to compute an appropriate time-dependent
control function ε(t ) steering the time evolution operator
G(t ) from the identity G(0) = 1 into a desired quantum log-
ical gate G(tF ) = GD = R̂(�n, δ) ∈ SO(3) at minimal time tF .
The following bounds are imposed for the control function

|ε(t )| � M for all t ∈ [0, tF ]. Here the final time is free but the
control energy is fixed. Indeed, this goal leads to the following
optimal control problem: determine a piecewise continuous
control function ε(t ), 0 � t � tF , that minimizes

J = tF , (6.1)

subject to constraint control

|ε(t )| � M, (6.2)

system dynamics

Ġ(t ) = M(t )G(t ), (6.3)

iU̇ (t ) = [Hs + Hc(t )]U (t ), (6.4)

initial conditions

G(0) = 13×3, (6.5)

U (0) = 12×2, (6.6)

and final condition

G(tF ) = GD. (6.7)

Since the final condition is given, we solve this problem using
a penalty approach [3]. At step k we consider the following
augmented cost function given by

J = tF + p

2
||G(tF ) − GD||2F + Tr{μk[G(tF ) − GD]}, (6.8)

with the 3 × 3 matrix Lagrange multiplier μ and a constant
penalty factor p. At step k + 1 μ is updated by

μk+1 = μk + p[G(tF ) − GD]. (6.9)

Note that μ0 is given. Here ||.||2F is the Frobenius norm defined
by ‖A‖2

F = ∑
i j a2

i j = ∑
i j ai jai j = Tr(AAT ).

By penalty approach, we solve the optimal control prob-
lem Eq. (6.1) by recursively calling the L-BFGS-B routine
[32], each iteration involved in updating the value of μ. The
program will stop when the value ||G(tF ) − GD||F is no longer
decreasing. The L-BFGS-B routine is based on a bound con-
straint quasi-Newton method with the BFGS update rule. This
routine is appropriate and efficient for solving constrained
problems, i.e., Eq. (6.2).

VII. TECHNIQUES OF AUTOMATIC DIFFERENTIATION

In order to implement a single qubit rotation using the
algorithm given in Sec. VI, we have to compute the gradient
for the cost function (6.8), namely

∇J =
(

∂J

∂ε(t )
,

∂J

∂tF

)T

. (7.1)

In principle one can use Pontryagin’s minimum principle to
treat our optimal control problem and derive the gradient
for the cost function J (ε, tF ) [10]. However, for a driven
spin-boson model studied here, the response of the system
to the variation of the control ε(t ) is determined by the
master equation (3.8) and the equation of motion for the
propagator of the coherent system dynamics Eq. (3.15). As
a result, the application of Pontryagin’s minimum principle is
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less straightforward since two operators’ Lagrange multipliers
have to be introduced to implement these two dynamical
constraints.

An alternative to this approach is the technique of au-
tomatic differentiation [5], which in principle amounts to
doing calculus on the fully discretized form of the optimal
control problem. For this purpose, we first discretize the
time interval I = [0, tF ] into N equal-sized subintervals �Ik

with I = ⋃N
k=1 �Ik and then approximate ε(t ) as ε(t ) →

ε(tk ) = εk, k = 1 . . . N . Thus the problem becomes that of
finding �ε = (ε1, . . . , εN )T ∈ RN and the minimum time tN
such that J (�ε, tN ) = inf{J (�ζ ) : �ζ ∈ RN+1}. Automatic differ-
entiation tools can be viewed as black boxes taking as input
a program computing the cost function J (�ε, tN ) : RN+1 −→ R
and giving as output another program computing the gradient

∇J = ( ∂J
∂ε1

, . . . , ∂J
∂εN

, ∂J
∂tN

)
T ∈ RN+1.

Two approaches to automatic differentiation are possible:
the forward (or tangent) mode and backward (or adjoint)
mode which is similar to the adjoint method [5]. In this work,
we employ the latter since it is theoretically more efficient
in computing the gradient of a scalar value function. With
the gradient obtained from the adjoint mode of automatic
differentiation, the optimization of the cost function J (�ε, tN )
is then performed by using the L-BFGS-B routine [32].

VIII. NUMERICAL RESULTS

A. Nondissipative qubit

In the absence of dissipation, the resolvent G of the system
(2.2) satisfies the following equation of motion:

Ġ(t ) = M(t )G(t ), G(0) = 13×3, (8.1)

where M(t ) is given by

M(t ) =
⎛
⎝ 0 ε0 0

−ε0 0 ε(t )
0 −ε(t ) 0

⎞
⎠. (8.2)

Our application is to generate in minimum time tF X -
gate GD = R̂(�n, δ) with �n = (1, 0, 0)T and δ = π . The time-
optimal control problem defined in Sec. VI leads to

min J = tF + p

2
||G(tF ) − GD||2F + Tr{μk[G(tF ) − GD]}

subject to

Ġ(t ) = M(t )G(t ), G(0) = 13×3,

|ε(t )| � M, G(tF ) = GD. (8.3)

In order to test our algorithm we compare our results with
some known results using Pontryagin’s minimum principle
[33]. In Fig. 1 we plot the minimum time tF versus the
amplitude M of the optimal control field. The comparison with
the analytic calculation Tmin = π2/2M [33] is also shown. The
agreement between the two different methods is remarkable.

For the amplitude M = 1.5 (arb. units) and the energy
splitting ε0 = 5 (arb. units) the optimal control is shown in
Fig. 2. It switches back and forth between the two extremal
values −M and M. This is the so-called bang-bang control.
The optimal control has six as the minimum number of

0 2 4 6 8 10
M (arb. units)

0

2

4

6

8

10

t F (a
rb

. u
ni

ts
)

Our method
π2/2Μ

FIG. 1. Implementation of the X gate in the absence of dissipa-
tion. Depicted is the minimum time vs the amplitude of the optimal
control field. The comparison with PMP is also shown. The energy
splitting is set as ε0 = 5 (arb. units). The number of mesh points, i.e.,
the dimension of the optimal control problem, is set as N = 1000.

switches. The optimal time tF versus the number of itera-
tions is displayed in Fig. 3 with minimum time convergence
tF = 3.4311372908111 (arb. units). Figure 4 shows the time
evolution of the Bloch vector for two initial conditions. In
Fig. 4(a) �pI = (0, 0, 1)T and Fig. 4(b) �pI = (0, 0,−1)T . So
the realization of the X gate is perfect. The gate fidelity
Tr{G(tF )GD} is equal to the unity.

Figure 5 displays the power spectrum of the selected op-
timal control field showing several pronounced peaks at near
equidistant frequencies. Here ν = ε0/2π � 0.8 (arb. units) is
the fundamental frequency corresponding to the first peak of
the power spectrum in Fig. 5. The remaining higher frequency
peaks are located at about (2n + 1)ν, where n is an integer.

0 1 2 3 4
Time (arb. units)

-2

-1

0

1

2

ε op
t(t)

 (a
rb

. u
ni

ts
)

FIG. 2. Implementation of the X gate in the absence of dissipa-
tion. Depicted is the optimal control vs time. The energy splitting is
set as ε0 = 5 (arb. units) and the amplitude of the optimal control
field is set as M = 1.5 (arb. units). The minimum time computed is
tF = 3.43113729 (arb. units). The number of mesh points, i.e., the
dimension of the optimal control problem, is set as N = 1000.
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0 5 10 15 20
iteration

3

4

5

6

7

8

9
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t F (a
rb

. u
ni

ts
)

FIG. 3. Implementation of the X gate in the absence of dissipa-
tion. Depicted is the minimum time vs number of iterations. The
energy splitting is set as ε0 = 5 (arb. units); the amplitude of the
optimal control field is set as M = 1.5 (arb. units). The number of
mesh points, i.e., the dimension of the optimal control problem, is
set as N = 1000.

The time-optimal trajectory is bang-bang and in particular
the corresponding optimal control is periodic with frequency
of the order of the resonance frequency ν = ε0/2π. For the
example of X gate we set the penalty parameter as p = 10
and the optimal Lagrangian parameter μ is found to be

μ(k=20) =
⎛
⎝ 8.04310837 5.02989022 5.32063140

−5.02992534 1.01920957 0.63211306
−4.60972806 1.31522137 0.94341099

⎞
⎠.

(8.4)
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FIG. 4. Implementation of the X gate in the absence of dissipa-
tion. Depicted are the components of the Bloch vector vs time with
an initial condition (a) �pI = (0, 0, 1)T and (b) �pI = (0, 0, −1)T . The
energy splitting is set as ε0 = 5 (arb. units) and the amplitude of the
optimal control field is given by M = 1.5 (arb. units). The minimum
time computed is tF = 3.43113729 (arb. units). The number of mesh
points, i.e., the dimension of the optimal control problem, is set as
N = 1000.
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FIG. 5. Implementation of the X gate in the absence of dissi-
pation. Depicted is the power spectrum of the optimal control field
shown in Fig. 2. The parameters are the same as in Fig. 2.

Table I show the optimized time tF versus the dimension
of the optimal control problem (8.3). As one can see, tF is
independent of the dimension of the optimal control N . In
order to integrate numerically the master equation I used a
standard fourth-order Runge-Kutta scheme. The numerical
error is of O(h4), where h is the time step given by tF /N . In our
numerical calculation N = 1000 and tF = 3.4311372908111
(arb. units), which leads to h = 0.0034311372908111 (arb.
units). As the time step h is small, the numerical fourth-order
Rung-Kutta integration is employed with height precision.
Note that AD does not work in the case of the variable time
step h.

B. Dissipative qubit

Now we try again to implement the X gate GD in the
presence of dissipation. The quantum optimal control problem
(6.1) becomes

min J = tF + p

2
||G(tF ) − GD||2F + Tr{μk[G(tF ) − GD]}

TABLE I. Computed optimized time versus the dimension of
time-optimal control problem. The bound control is set as M = 1.5
(arb. units) while the energy splitting is set as ε0 = 5 (arb. units).

N tF (arb. units)

500 3.4316131619985
650 3.4312685775930
800 3.4311405965685
950 3.4311776820778
1100 3.4311063985436
1250 3.4310693331264
1400 3.4310884021711
1550 3.4310639761848
1700 3.4310488679574
1850 3.4310560403977
2000 3.4310422720740
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FIG. 6. Implementation of the X gate in the case of dissipative
dynamics. Depicted is the optimal control vs time. The minimum
time computed is tF = 3.46498957 (arb. units). The parameters are
the same as in Fig. 7.

subject to

Ġ(t ) = M(t )G(t ), G(0) = 13×3,

|ε(t )| � M, G(tF ) = GD,

U̇ (t ) = i

2

[
ε0σz + ε(t )σx

]
U (t ),

U (0) = 12×2, (8.5)

where the relaxation matrix M(t ) is given by Eq. (3.9).
In numerical simulations we employ the following parame-

ters: the cutoff frequency ωc = 20 (arb. units); the temperature
1/β = 0.5 (arb. units); the system bath coupling α = 0.002;
the energy splitting ε0 = 5 (arb. units); the amplitude of the
optimal control field is set as M = 1.5 (arb. units). The penalty
factor is set as p = 10 and the Lagrange multiplier μ0 = 0. In
order to solve the problem (8.5) we use as a guess the optimal
solution for the nondissipative case.

Figure 6 displays the time dependence of the optimal
control. The optimal solution is again a bang-bang control.
Figure 7 shows the time evolution of the Bloch vector for the
initial condition, Fig. 7(a) �pI = (0, 0, 1)T and Fig. 7(b) �pI =
(0, 0,−1)T . The gate error ‖G(tF ) − GD‖2

F is small because
the temperature β−1 = 0.5 (arb. units) is lower than the energy
splitting ε0 = 5 (arb. units) and the system bath coupling
α = 0.002 is weak. It is a regime where the Bloch-Redfield
formalism is applicable.

Figure 8 and Fig. 9 display respectively the time de-
pendence of the decay rates and the inhomogeneous terms
appearing in the master equation (3.8). In contrast to the
undriven case where the rates are constants the dynamics of
these controlled rates reflects the temporal structure of the
optimized control field. For the example of X gate we set
the penalty parameter as p = 10 and the optimal Lagrangian
parameter μ is found to be

μ(k=5) =
⎛
⎝ 6.95793447 5.25331597 5.10706782

−5.23693644 2.08138742 0.75639663
−4.81875515 1.18759004 1.48704919

⎞
⎠.

(8.6)
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FIG. 7. Implementation of the X gate in the presence of dissi-
pation. Depicted are the components of the Bloch vector vs time
with an initial condition (a) �pI = (0, 0, 1)T and (b) �pI = (0, 0, −1)T .
The minimum time computed is tF = 3.46498957 (arb. units). The
spin-boson parameters are as follows: the cutoff frequency ωc = 20
(arb. units); the temperature 1/β = 0.5 (arb. units); the system bath
coupling α = 0.002. The energy splitting ε0 = 5 (arb. units) and the
amplitude of the optimal control field is set as M = 1.5 (arb. units).
The penalty factor is set as p = 10 and the Lagrange multiplier μ0 =
0. The number of mesh points, i.e., the dimension of the optimal
control problem, is set as N = 1000.

C. Sensitivity analysis

Because of the external perturbations, practical devices are
not capable of operating precisely either at the prescribed
system parameters or at the computed control field. Then, it is
of great importance to have information on the sensitivity of
the optimal solution with respect to perturbations of any of the
system parameters. For demonstration purposes, we consider
the fluctuations of the initial conditions of the system. More
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FIG. 8. Implementation of the X gate in the presence of dissi-
pation. Depicted is the time evolution of the decay’s rate under the
influence of the optimal control field. The minimum time computed
is tF = 3.46498957 (arb. units). The parameters are the same as in
Fig. 7.
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FIG. 9. Implementation of the X gate in the presence of dis-
sipation. The time dependence of the inhomogeneous terms. The
parameters are the same as in Fig. 7.

precisely we consider the average fidelity defined by

F = 1

N

N∑
j=1

�p j (tF ) · GD�p j (0), (8.7)

where

�p j (tF ) = G(tF )�p j (0) + G−1(tF )
∫ tF

0
dτ G(τ )R(τ ) (8.8)

and �p j (0) = (cos θ j sin φ j, sin θ j sin φ j, cos θ j )T is an input
state. θ j ∈ [0, π ] and φ j ∈ [0, 2π ] are randomly chosen. We
can calculate the average fidelity when the optimized control
sequence is repeated N times assuming the initial condition
�p j (0) to be a random variable. In our numerical calculations,
we get small statistical errors when N is about several thou-
sand. For the quantum X gate, we find the following average
fidelity F = 0.97945779 and the standard deviation σF =
0.01035038. The overall high values of the average fidelity
indicate that the optimal bang-bang control we obtained is
indeed robust with random initial conditions.

IX. SUMMARY

In this work we investigated the realization of X gate in
a driven spin-boson system. We use a bounded control. In
the nondissipative case our numerical results agree with the
results using the techniques of automatic differentiation with
some known results using Pontryagin’s minimum principle.
The optimal control is bang-bang type for both the absence
and presence of dissipation. Following our numerical results,
we conjecture that the dissipative qubit is controllable. Our
method works for an arbitrary single qubit rotation in mini-
mum time. We also implemented the Hadamard gate which
consists of a rotation about the �ox or �oy axis through angle
π/2. It is not shown here for brevity. Our main objective is to
extend this work to two qubits.
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