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Robust and high-fidelity nondestructive Rydberg parity meter
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In this paper, we propose a robust and high-fidelity scheme to construct a nondestructive Rydberg parity
meter by optimized inverse engineering, after which we can know the parity information of the bipartite state
without destroying it, implying that the output bipartite state can be further used in the rest quantum information
processing tasks. Specifically speaking, we build a model with two systematic Rydberg atoms and one auxiliary
Rydberg atom and control them by utilizing optimized inverse engineering against systematic error. Also,
since the accumulated time for the Rydberg atoms simultaneously being in Rydberg states is minimized, the
mechanical effect and the further possible ionization are almost avoided. Moreover, numerical simulation shows
that the present scheme is robust against the systematic error, the dephasing, and the thermal noise, demonstrating
feasibility in the experiment.
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I. INTRODUCTION

Parity meters, which are used to distinguish whether a
quantum state has even or odd parity, have been widely
applied in various parts of quantum information processing
(QIP), such as purifying entangled states [1], realizing quan-
tum computation [2,3], generating entangled states analysis
[4], and further applying it to quantum teleportation [5–7].
Implementing a conventional parity meter destroys the parity
state, causing a waste of quantum entanglement resource.
To solve this problem and boost efficiency of the QIP, the
nondestructive parity meter was developed on several kinds
of platforms, such as optical systems [3,8,9] and spin systems
[10], giving researchers a prospect for increasing the diversity
of platforms for nondestructive parity meters.

Among various systems for implementing the QIP, the Ry-
dberg atom system is a promising one and offers a relatively
long coherence time [11–14], which is of value for achieving
the nondestructive parity meter. The long-range Rydberg-
Rydberg interaction (RRI) [13–15] among neutral atoms
induces interesting peculiar phenomena, such as Rydberg
blockade [11,12,16,17] and Rydberg antiblockade [18–23].
Rydberg blockade stipulates that, once an atom is excited to
Rydberg state, the other atoms will all be blocked in ground
states when resonant Rabi frequencies are much smaller than
the energy shift of the RRI. Such a phenomenon has been
widely used in QIP, such as quantum computation [24–27]
and preparation of quantum entanglement [28–32]. On the
contrary, if the Rabi frequencies are not resonant, with huge
two-photon detunings closed to the energy shift of the RRI, an
opposite phenomenon occurs, called Rydberg antiblockade,
yielding more than one atom pumping to Rydberg states. The
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Rydberg antiblockade is also used to generate entanglement
[33–37]. In a word, the Rydberg atom is a promising platform
in quantum information science.

Recently, a parity meter based on many-body Rydberg
atoms was demonstrated experimentally [38] to measure the
bound of a GHZ entangled state generated by optimal control
pulses, demonstrating a promising approach for the determin-
istic creation and manipulation of large-scale entangled states.
Moreover, the four-body Rydberg parity were employed for
building a Hamiltonian with the Lechner-Hauke-Zoller archi-
tecture in a quantum annealer [39] in the experiment. On
that basis, Ref. [40] proposed a scheme for construction of
a nondestructive parity meter on the platform of the Rydberg
atom, which explored a new path to Rydberg-atom-based QIP.
Nevertheless, the scheme of Ref. [40] may suffer from tech-
nical limitations and parameter deviation. More specifically,
since more than one Rydberg atom is populated at the same
time, the mechanical effect [41] would be induced and cause
further ionization of Rydberg atoms [41–43]. Therefore, it
makes sense to build a nondestructive Rydberg parity meter
(NRPM) with a more robust way, i.e., overcoming possible
drawbacks of simultaneous excitation of Rydberg atoms and
parameter deviation.

To surmount the drawbacks mentioned above, in this pa-
per, we propose an experimentally feasible scheme to con-
struct a two-qubit NRPM with high fidelity, which is robust
against the mechanical effect and parameter deviation. For a
two-qubit system, a nondestructive parity meter can evolve
a general initial state |ψ0〉 = N (α1|00〉 + α2|01〉 + α3|10〉 +
α4|11〉) [here N = 1/(

∑4
q=1 |αq|2)1/2] into either an even-

parity final state |ψeven〉 = N1(α1|00〉 + α4|11〉) or an odd-
parity final state |ψodd〉 = N2(α2|01〉 + α3|10〉) with N1 =
1/(|α1|2 + |α4|2)1/2 and N2 = 1/(|α2|2 + |α3|2)1/2. The con-
figuration of the present scheme consists of three Rydberg
atoms: two systematic atoms and one auxiliary atom trapped
in fixed position, as a triangle, with the RRI between each
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FIG. 1. (a) Schematic of model of the robust and high-fidelity NRPM. (b) Energy levels for atoms 1, 2, and a.

pair of them. To avoid the simultaneous excitation of Ryd-
berg atoms, an unconventional Rydberg pumping (URP) [44],
different from both the Rydberg blockade and the Rydberg
antiblockade, is considered here. That is, two atoms in dif-
ferent ground states will be excited to a single Rydberg state,
but be stable when in the same ground states. We modified
the original URP model with two extra Rabi frequencies,
which makes the control of evolution more feasible, and
apply the modified URP model to the systematic atoms.
Additionally, the auxiliary atom is pumped by a classical pulse
with small detuning, i.e., utilizing the Rydberg blockade, to
ensure there is no simultaneous excitation of Rydberg atoms
during the evolution. Thus, the present scheme may have
negligible mechanical effect in contrast with the scheme of
Ref. [40].

In addition, another factor that affects the fidelity of the
scheme in Ref. [40] in the experiment is parameter deviation,
which is mainly caused by the systematic error and can be
regarded as an effect driven by a perturbative Hamiltonian.
The way to solve this problem is to properly minimize the
sensitivity factor of the systematic error, depending on the
coupling terms in time-dependent perturbation theory. More-
over, the minimization of the sensitivity factor will result in
time-dependent properties of Rabi frequencies, which should
also satisfy boundary conditions of specific population trans-
formation. Therefore, we apply SU(2)-dynamic-based inverse
engineering theory [27,45–57] and afterwards optimize it
against systematic error to deal with possible parameters de-
viation in the experiment, consequently establishing an error-
tolerant way to realize the NRPM. The numerical simulation
indicates that the scheme is robust against both systematic
error and decoherence caused by the thermal noise and the
dephasing.

The paper is organized as follows: In Sec. II, we construct
an effective two-level Hamiltonian for the two systematic
atoms. In Sec. III, based on specific boundary conditions,
we inversely design fields for the effective Hamiltonian, with
optimization against systematic error. In Sec. IV, we describe
detailed procedures for realizing the robust and high-fidelity
NRPM. Next, we discuss the experimental feasibility and the
conclusion in Secs. V and VI, respectively.

II. PHYSICAL MODEL FOR THE ROBUST
AND HIGH-FIDELITY

NONDESTRUCTIVE RYDBERG PARITY METER

In this section, we introduce the physical model for im-
plementing a robust and high-fidelity NRPM. As shown in
Fig. 1, three Rydberg atoms are equidistantly trapped as a
triangle, each pair of which partake in the RRI with interaction
energy V . Atom k (k = 1, 2) has two ground states |0〉k and
|1〉k , and one Rydberg state |r〉k . The transition |1〉k ↔ |r〉k is
driven by four different classical fields with Rabi frequencies
�1, �2(t ), �3(t ), and �4(t ), whose blue detunings are �1, 0,
�3, and −�4, respectively. In addition, the auxiliary atom a
has one ground state |0〉a and one Rydberg state |r〉a, which
are coupled with Rabi frequency �a(t ) and time-dependent
red detuning δa(t ). The Hamiltonian of atoms 1 and 2 in the
interaction picture is (assuming h̄ = 1 henceforward)

Hi(t ) =
2∑

k=1

[�1e−i�1t + �2(t ) + �3(t )e−i�3t

+�4(t )ei�4t ]|r〉k〈1| + H.c. + V |rr〉12〈rr|. (1)

Under the conditions, V = �1 � �1 � �2(t ), �3 = �4,
and {�3,�1 ± �3,�1 − 2�3} � {�3(t ),�4(t )}, the origi-
nal Hamiltonian in Eq. (1) can be reduced to [see Appendix]

H ′
eff (t ) = �2(t )(|r0〉12〈10| + |0r〉12〈01|) + H.c.

+
(

�3(t )2

�3
− �4(t )2

�3

)
(2|11〉12〈11| + |01〉12〈01|

+ |10〉12〈10| − |0r〉12〈0r| − |r0〉12〈r0|), (2)

with canceling Stark-shift terms in �1. If we ignore the term
2( �3(t )2

�3
− �4(t )2

�3
)|11〉12〈11|, which only induces the phase ac-

cumulation on state |11〉12, Eq. (2) is simplified to

H ′
eff (t ) = �2(t )(|r0〉12〈10| + |0r〉12〈01|) + H.c.

+
(

�3(t )2

�3
− �4(t )2

�3

)
(|01〉12〈01|

+ |10〉12〈10| − |0r〉12〈0r| − |r0〉12〈r0|). (3)
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The effective Hamiltonian shown in Eq. (3) can be divided
into two subspaces, {|r0〉12, |10〉12} and {|0r〉12, |01〉12}, with
no crossover. Therefore, we can describe H ′

eff (t ) by a Hamil-
tonian with a SU(2) dynamic structure as

H ′(2)
eff (t ) = �(t )|ζ1〉〈ζ2| + H.c. + δ(t )(|ζ1〉〈ζ1| − |ζ2〉〈ζ2|),

(4)

with �(t ) = �2(t ), δ(t ) = �3(t )2

�3
− �4(t )2

�3
, and basis

{|ζ1〉, |ζ2〉} being {|10〉12, |r0〉12} or {|01〉12, |0r〉12}.

III. OPTIMIZATION OF INVERSE ENGINEERING
AGAINST SYSTEMATIC ERROR

In Sec. II, we simplified the Hamiltonian of atoms 1 and
2 into a two-level Hamiltonian, with the SU(2) dynamic
structure. In this section, on the basis of the derived two-level
Hamiltonian, we give a method for optimizing the inverse
engineering, making it more robust against the systematic
error and therefore increasing error-tolerant property for the
NRPM in the experiment.

It is appropriate to primarily apply inverse engineering
[58,59] to deal with the two-level effective Hamiltonian,
described as

H ′(2)
eff (t ) =

(
δ(t ) �(t )
�(t ) −δ(t )

)
= �(t )σx + δ(t )σz. (5)

The Schrödinger equation is written as

i∂t |ψ (t )〉 = H ′(2)
eff (t )|ψ (t )〉. (6)

For inversely designing suitable �(t ) and δ(t ) to give de-
sired dynamics, we perform a picture transformation as
R(t )†|ψ (t )〉 = |ψR(t )〉 by using R(t ), a general unitary trans-
formation of a two-level system that is given by [47]

R(θ, η, ξ ) =
(

eiξ cos θ −e−iη sin θ

eiη sin θ e−iξ cos θ

)
, (7)

with θ , η, and ξ being time-dependent parameters. After
transforming and setting η = −ξ , the Hamiltonian in the new
picture can be written as

HR(t ) = R†(t )H ′(2)
eff (t )R(t ) + i∂t R

†(t )R(t )

= {�(t ) cos (2ξ ) sin (2θ ) + cos (2θ )[δ(t ) + ξ̇ ]}σz

+{�(t ) cos (2ξ ) cos (2θ ) − sin (2θ )[δ(t ) + ξ̇ ]}σx

+ [�(t ) sin (2ξ ) − θ̇ ]σy. (8)

For briefly deriving the evolution operator U R(t ) in the
present picture, we set HR(t ) = f (t )σz, leading to

�(t ) = θ̇

sin (2ξ )
, δ(t ) = θ̇ cot (2ξ ) cot (2θ ) − ξ̇ , (9)

and

f (t ) = θ̇ cot (2ξ )

sin 2θ
. (10)

When condition in Eq. (9) is satisfied, it is clear to have
[HR(t ), HR(t − dt )] = 0, i.e., [e−iHR (t )dt , e−iHR (t−dt )dt] = 0,
yielding

U R(t ) = e−i
∫ t

0 HR(t ′)dt ′ = e−iγ (t )σz , (11)

with γ (t ) = ∫ t
0

θ̇ cot(2ξ )
sin 2θ

dt ′. Now we go back to the original
picture in Eq. (6) and calculate the evolution operator

U ′(t ) = R(t )U R(t )R†(0). (12)

Because R(t ) is a unitary operator, obviously satisfying

R†(0)R(0) =
(

1 0
0 1

)
,

we set

R†(0) =
(

e−iπ/4 0
0 eiπ/4

)
, R(0) =

(
eiπ/4 0

0 e−iπ/4

)
, (13)

generating

U ′(t ) =
(

e−iγ+iξ−iπ/4 cos θ −eiγ+iξ+iπ/4 sin θ

e−iγ−iξ−iπ/4 sin θ eiγ−iξ+iπ/4 cos θ

)
, (14)

θ (0) = 0, and ξ (0) = π/4. Here, if someone wants to transfer
all the population from |ζ1〉 to |ζ2〉, i.e., |ψ (0)〉 = |ζ1〉 and
|ψ (t f )〉 = eim|ζ2〉 (0 and t f being the initial time and the
final time, respectively, and eim being an arbitrary phase), the
evolution operator U ′(t ) can be used to derive time-dependent
state of the two-level system, |ψ1(t )〉, such that

|ψ1(t )〉 = U ′(t )|ζ1〉 =
(

e−iγ+iξ−iπ/4 cos θ

e−iγ−iξ−iπ/4 sin θ

)

= e−iγ+iξ−iπ/4

(
cos θ

e−2iξ sin θ

)
. (15)

Note that e−iγ+iξ−iπ/4 here is the global phase of |ζ1〉 and |ζ2〉,
namely, being inessential. By choosing boundary conditions,

θ (0) = 0, θ
(
t f

) = π/2, ξ (0) = ξ
(
t f

) = π/4, (16)

to construct suitable parameters θ (t ) and ξ (t ), i.e., �(t ) and
δ(t ), one can convert all the population in |ζ1〉 to |ζ2〉. Observe
that condition ξ (t f ) = π/4 is not necessary, which just control
the relative phase between |ζ2〉 and |ζ1〉, while it can build
ξ (0) = ξ (t f ) = π/4, properly avoiding singularity caused by
cot(2ξ ) in the expressions of �(t ) and δ(t ) in Eq. (9).

Up to now, we have derived the inverse engineering for a
two-level system with the SU(2) dynamic structure. However,
the normal case in the experiment is that the value of �(t ) may
not be adjusted exactly along the derived expression, which
would decrease the fidelity inevitably. To solve this problem,
Refs. [60–64] have provided a method to optimize the inverse
engineering with respect to the systematic error. On that basis,
we assume the systematic error rate being β, i.e.,

�real(t ) = (1 + β )�(t ), (17)

where �real(t ) is the experimental value of �(t ). Therefore,
the perturbation Hamiltonian resulting from the systematic
error can be depicted solely as

Hβ = β

(
0 �(t )

�(t ) 0

)
. (18)
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Recall the time-dependent theory up to O(β2), such that

|ψ (t f )〉 = |ψ1(t f )〉 − i
∫ t f

0
dtU ′(t f , t )Hβ (t )|ψ1(t )〉

−
∫ t f

0
dt

∫ t

0
dt ′U ′(t f , t )Hβ (t )

×U ′(t, t ′)Hβ (t ′)|ψ1(t ′)〉 + · · · , (19)

where |ψ1(t )〉 is the unperturbed solution of the Schrödinger
equation and U ′(t f , t ) is the unperturbed evolution operator,
given by U ′(t f , t ) = ∑2

k=1 |ψk (t f )〉〈ψk (t )|. When the initial
state is |ζ1〉, the unperturbed solution, |ψ1(t )〉, can be written
as

|ψ1(t )〉 =
(

e−iγ+iξ−iπ/4 cos θ

e−iγ−iξ−iπ/4 sin θ

)
. (20)

In this case, another solution |ψ2(t )〉, is orthogonal to |ψ1(t )〉
and can be derived as

|ψ2(t )〉 = U ′(t, 0)|ζ2〉 =
(−eiγ+iξ+iπ/4 sin θ

eiγ−iξ+iπ/4 cos θ

)
. (21)

The fidelity for being in the unperturbed state |ψ1(t )〉 can be
approximately calculated by

F ≈ 1 −
∣∣∣∣
∫ t f

0
dt〈ψ1(t )|Hβ (t )|ψ2(t )〉

∣∣∣∣
2

. (22)

According to Ref. [60], we define the systematic-error sensi-
tivity as

q = −1

2

∂2F

∂β2

∣∣∣∣
β=0

. (23)

Substituting Eqs. (18) and (20)–(22) into Eq. (23), we have

q =
∣∣∣∣
∫ t f

0
dt[e−2iγ−2iξ θ̇ csc 2ξ (e4iξ cos2 θ − sin2 θ )]

∣∣∣∣
2

. (24)

Consequently, by choosing suitable expressions of ξ (t ) and
θ (t ), we can make the value of q as small as possible or, better
yet, zero. Although the analytical solution q = 0 is a little
difficult to obtain, the numerical method can be used to get
a relatively small value of q. Here, we assume

θ (t ) = π

2
sin2(πt/2t f ),

ξ (t ) = π

4
+ a1

2
sin (2θ ) + a2

2
sin (4θ ), (25)

where a1 and a2 are two time-independent parameters control-
ling the value of q. Note also that the expressions of θ (t ) and
ξ (t ) satisfy boundary conditions shown in Eq. (16) and that
ξ (t ) is a Fourier sequence of θ (t ). Additionally, the values of
a1 and a2 should be chosen to make ξ (t ) shift in the range
[0, π

2 ], which can avoid the singularity caused by cot(2ξ )
in the expressions of �(t ) and δ(t ) in Eq. (9). The value of
q(t ) versus a1 and a2 is plotted in Fig. 2(a). Combining the
singularity versus a1 and a2 shown in Fig. 2(b), we pick out
the point a1 = 1.34 and a2 = 0, leading to q(t ) = 2.0344 ×
10−4 ≈ 0. To know the quantitative effect of the optimization
against the systematic error, the fidelities for converting |ζ1〉
into eim|ζ2〉 versus the systematic error rate β are plotted
in Fig. 3. We can see from Fig. 3 that, compared with the

FIG. 2. (a) Value of q(t ) vs a1 and a2. Observe that here we
display all the points which satisfy q > 0.01, by blue color, namely,
the yellow points owning a range of [0, 0.01]. Such a disposition
is innocuous because here we only want to find small-value points.
(b) Singularity vs a1 and a2. The blue area is the forbidden zone and
(a1, a2) located here will induce the singularity of �(t ) and δ(t ).
On the other hand, points located in the yellow area will avoid the
singularity of �(t ) and δ(t ).

time-dependent-field driving and flat-pulse driving (π
2 pulse),

the optimized inverse engineering is more robust against
systematic error. Therefore, the optimization is effective and
will produce higher fidelity. For instance, at point β = 0.12,
we have F1 = 99.43%, F2 = 98.21%, and F3 = 95.25%.

In a word, one can add fields

�(t ) = θ̇

sin (2ξ )
,

δ(t ) = θ̇ cot (2ξ ) cot (2θ ) − ξ̇ , (26)

with

θ (t ) = π

2
sin2

(
πt/2t f

)
,

ξ (t ) = π

4
+ a1

2
sin (2θ ) + a2

2
sin (4θ ),

a1 = 1.34, a2 = 0, (27)

-0.3 0.1 0 0.1 0.3
0.8

0.9

1

F
id

el
ity

FIG. 3. Fidelities for transition |ζ1〉 → eim|ζ2〉 vs the system-
atic error rate β, with F1, F2, and F3 representing the fidelities
of optimized inverse engineering, time-dependent-field driving, and
flat-field driving, respectively. Note that the time-dependent-field
driving corresponds to arbitrary choice of θ (t ) and ξ (t ) [also sat-
isfying the boundary conditions in Eq. (16)], for example, θ (t ) =
π sin2(πt/2t f )/2 and ξ (t ) = π/4 + sin2(πt/t f )/2. Also, the flat-
field driving means using a π

2 pulse, i.e., �(t ) = π/2 and δ(t ) = 0.
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FIG. 4. (a) Fields for transition |ζ1〉 → eim|ζ2〉. (b) Fields for
transition eim|ζ2〉 → |ζ1〉.

to achieve transition |ζ1〉 → eim|ζ2〉 in the two-level system.
For the inverse transition, eim|ζ2〉 → |ζ1〉, driven by Hamilto-

nian H ′(2)
eff (t ), the corresponding evolution operator U ′′(t, 0)

will make the opposite contribution to U ′(t ) (the evolu-
tion operator of forward transition), i.e., U ′′(t, 0) = U ′†(t f −
t, t f ), leading to H ′(2)

eff (t ) = iU̇ ′′(t, 0)U ′′†(t, 0) = iU̇ ′†(t f −
t, t f )U ′(t f − t, t f ) = −H ′(2)

eff (t f − t ). Therefore, the inverse
transition, eim|ζ2〉 → |ζ1〉, can be realized by adding fields,
�(t ) = −�(t f − t ) and δ(t ) = −δ(t f − t ). The fields for
transitions |ζ1〉 → eim|ζ2〉 and eim|ζ2〉 → |ζ1〉 in the two-level
system are plotted in Figs. 4(a) and 4(b), respectively.

IV. PROCEDURES OF THE ROBUST AND HIGH-FIDELITY
NONDESTRUCTIVE RYDBERG PARITY METER

We here depict the detailed procedures for implementing
the robust and high-fidelity NRPM, including three steps:

Step 1. [for the time interval t ∈ (0, t f )] Turn on pulses
�1, �2(t ), �3(t ), and �4(t ) of atoms 1 and 2. By using
Eq. (4), the Rabi frequencies can be derived as [expressions
of θ (t ) and ξ (t ) shown in Eqs. (26) and (27)]

�2(t ) = �(t ) = θ̇ (t )

sin [2ξ (t )]
,

�3(t ) =
{√

�3δ(t ), δ(t ) � 0
0, δ(t ) < 0,

�4(t ) =
{

0, δ(t ) � 0√−�3δ(t ), δ(t ) < 0,
(28)

and plot them [t ∈ (0, t f )] in Fig. 5(a). Observe that �1 =
150/t f , V = �1 = 2000/t f , and �3 = 72/t f are also chosen
here and in Step 3 to guarantee the validity of the effective
Hamiltonian in Eq. (4). In this case, we can make transition X
(atoms 1 and 2 initially in ground states, and atom a initially
in state |0〉a):

N (α1|00〉12 + α2|01〉12 + α3|10〉12 + α4|11〉12) ⊗ |0〉a

→ N [α1|00〉12 + e−iγ (t f )−iξ (t f )−iπ/4(α2|0r〉12

+α3|r0〉12) + α4|11〉12] ⊗ |0〉a, (29)

with α1, α2, α3, and α4 being arbitrary parameters
and N being the normalization coefficient given by
N = 1/(|α1|2 + |α2|2 + |α3|2 + |α4|2)1/2. In addition,

0 0.5 1
0

5

10

15

2 2.5 3
-10

0

10

20
(a) (b)

FIG. 5. (a) Rabi frequencies for transition X . (b) Rabi frequen-
cies for transition X . From Eq. (27) we can find that θ (t ) + θ (t f −
t ) = π/2 and then ξ (t f − t ) = ξ (t ), giving rise to δ(t ) = −δ(t f −
t ) = δ(t ) [δ(t ) = θ̇ cot(2ξ ) cot(2θ ) − ξ̇ ], which can be combined
with Eq. (32) and leads to �3(t − 2t f ) = �3(t ) and �4(t − 2t f ) =
�4(t ). This is why �3(t ) and �4(t ) in time interval [0, t f ] look the
same as �3(t ) and �4(t ) in time interval [2t f , 3t f ], respectively.

e−iγ (t f )−iξ (t f )−iπ/4 is the relative phase between |0r(r0)〉12

and |00〉12 or |11〉12 [see Eq. (15)].
Step 2. [for the time interval t ∈ (t f , 2t f )] Turn off the

pulses �1, �2(t ), �3(t ), and �4(t ) of atoms 1 and 2.
Meanwhile, turn on the fields �a(t ) and δa(t ) of atom a.
Due to the Rydberg blockade (V = 2000/t f here), terms
like |0r0〉12a and |r00〉12a cannot be pumped to |0rr〉12a and
|r0r〉12a, respectively, while transitions |010〉12a → |01r〉12a

and |100〉12a → |10r〉12a can be realized by choosing

�a(t − t f ) = �(t ), δa(t − t f ) = −2δ(t ), (30)

and therefore generate the transition

N [α1|00〉12 + e−iγ (t f )−iξ (t f )−iπ/4(α2|0r〉12

+α3|r0〉12) + α4|11〉12] ⊗ |0〉a

→ 1√
2
N1(α1|00〉12 + α4|11〉12) ⊗ e−iγ (t f )−iξ (t f )−iπ/4|r〉a

+ 1√
2
N2e−iγ (t f )−iξ (t f )−iπ/4(α2|0r〉12+α3|r0〉12) ⊗ |0〉a,

(31)

with N1 = 1/(|α1|2 + |α4|2)1/2 and N2 =
1/(|α2|2 + |α3|2)1/2.

Step 3. [for the time interval t ∈ (2t f , 3t f )] Turn on pulses
�1, �2(t ), �3(t ), and �4(t ) of atoms 1 and 2 again, with
expressions

�2(t − 2t f ) = �(t ) = − θ̇ (t f − t )

sin[2ξ (t f − t )]
,

�3(t − 2t f ) =
{√

�3δ(t ), δ(t ) � 0
0, δ(t ) < 0,

�4(t − 2t f ) =
{

0, δ(t ) � 0√
−�3δ(t ), δ(t ) < 0.

(32)

We also plot the Rabi frequencies in t ∈ (2t f , 3t f ) in
Fig. 5(b). Step 3 will result in inverse transition of X , called
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FIG. 6. Fidelities for the NRPM with red solid and blue dotted
lines corresponding to original Hamiltonian driving and effective
Hamiltonian driving, respectively. The initial and final states are
shown in Eqs. (34), and (35), respectively.

X , yielding

1√
2
N1(α1|00〉12 + α4|11〉12) ⊗ e−iγ (t f )−iξ (t f )−iπ/4|r〉a

+ 1√
2
N2e−iγ (t f )−iξ (t f )−iπ/4(α2|0r〉12

+α3|r0〉12) ⊗ |0〉a

→ 1√
2
N1(α1|00〉12 + α4|11〉12) ⊗ e−iγ (t f )−iξ (t f )−iπ/4|r〉a

+ 1√
2
N2(α2|01〉12 + α3|10〉12) ⊗ |0〉a. (33)

Recall the term 2( �3(t )2

�3
− �4(t )2

�3
)|11〉12〈11| ignored in Sec. II,

which just results in the change of phase of |11〉12, and we can
see from Eq. (33) that whatever phase the term causes in X ,
the inverse operation X cancels it out.

It is clear that there is no simultaneous excitation of Ry-
dberg atoms during Steps 1–3. Hence the mechanical effect
and the further possible ionization are slight. After doing these
three steps, we can measure atom a. Result |0〉a corresponds
to atoms 1 and 2 now being in N2(α2|01〉12 + α3|10〉12). On
the other hand, result |r〉a corresponds to atoms 1 and 2 now
being in N1(α1|00〉12 + α4|11〉12). So far, we have constructed
the robust and high-fidelity NRPM on atoms 1 and 2.

V. DISCUSSION

We primarily define the initial state

|ψ (0)〉 = 1
2 (|00〉12 + |01〉12 + |10〉12 + |11〉12) ⊗ |0〉a.

(34)

If the NRPM is successful, we will get a final state as

|ψ(
3t f

)〉 = 1
2 (|00〉12 + |11〉12) ⊗ e−iγ (t f )−iξ (t f )−iπ/4|r〉a

+ 1
2 (|01〉12 + |10〉12) ⊗ |0〉a. (35)

First of all, it is appropriate to check veracity of the
effective Hamiltonian shown in Eq. (4). So we plot differences
between the original Hamiltonian and the effective Hamilto-
nian versus time in Fig. 6, where we can see that, because
of the use of perturbation theory in deriving the effective
Hamiltonian, the red solid line, corresponding to the original

-0.2 -0.1 0 0.1 0.2
0.5

0.6

0.7

0.8

0.9

1

present protocol
protocol [40]

X -0.1
Y 0.9772

X 0.1
Y 0.9841

X -0.1
Y 0.8132

X 0.1
Y 0.8176

FIG. 7. Fidelity F vs rate β of systematic errors in �2 and �a,
with red solid line and blue dotted line denoting present protocol and
the protocol of Ref. [40], respectively. The relevant parameters used
to plot the blue dotted line are shown in Fig. 6 of Ref. [40].

Hamiltonian, vibrates and approaches the blue dotted line (the
original Hamiltonian). The finial point of the red solid line
reaches 0.9952, implying the veracity of Eq. (4).

Subsequently, consider the systematic errors in Rabi fre-
quencies �2(t ) and �a(t ), we set

�real
2 (t ) = (1 + β )�2(t ), �real

a (t ) = (1 + β )�a(t ), (36)

where �real
2 (t ) and �real

a (t ) are the experimental values of
�2(t ) and �a(t ), respectively. The evolution of system can
be described by time-dependent matrix operator ρ(t ), given
by

ρ̇(t ) = −i[H real(t ), ρ(t )], (37)

with H real(t ) being the real Hamiltonian of atoms 1,
2, and a [substituting �real

2 (t ) and �real
a (t ) into the to-

tal Hamiltonian Htot = �a(t )|0〉a〈r| + H.c. + δa(t )|r〉a〈r| +
Hi(t )], where Hi(t ) is shown in Eq. (1), i.e., the original
Hamiltonian. We define the fidelity F for the NRPM as

F = Tr[ρ(3t f )|ψ (3t f )〉〈ψ (3t f )|]. (38)

Referring to experimental scheme [65,66], a group of param-
eters,

V = �1 = 2π × 50 MHz, t f = 6.37 μs,

�1 = 23.56 MHz, (39)

is chosen here. Note that the values of �2(t ), �3(t ), �4(t ),
�a(t ), and δa(t ) can be derived with t f = 6.37 μs, yielding

max[|�2(t )|] = max[|�a(t )|] = 1.69 MHz,

max[|�3(t )|] = max[|�4(t )|] = 2.98 MHz,

max[|δa(t )|] = 0.785 MHz. (40)

In such a situation, the relations between fidelity F and
systematic error rate β [in �2(t ) and �a(t )] in the present
protocol and in the protocol of Ref. [40] are plotted in Fig. 7.
From Fig. 7 we can see that, because of the optimization of the
inverse engineering shown in Sec. II, the fidelity F in our pro-
tocol is still as high as 97.72% (98.41%) when β reaches −0.1
(0.1), but F in the protocol of Ref. [40] is 81.32% (81.76%) at
points β = −0.1 (0.1) without optimization. Observe that this
result is not the same as that shown in Fig. 3 because here we
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FIG. 8. Fidelity F vs rate λ of systematic error in V , with blue
dotted line and red solid line denoting the protocol of Ref. [40] and
the present protocol, respectively. The relevant parameters used to
plot the blue dotted line are shown in Fig. 6 of Ref. [40]. Note
that the fluctuation of the fidelity in the present protocol is rough
because some excitation is arisen to |D〉12 and |rr〉12 states due to the
systematic error in V .

use the fields �(t ) and δ(t ) three times in these three steps.
Hence F is different from the fidelity corresponding to the
two-level system. Additionally, the tiny difference between
the total Hamiltonian and the effective Hamiltonian will also
decrease F .

Similarly, when there is a systematic error with rate λ

in interaction strength V , the real value of V in the exper-
iment can be assumed as V real = (1 + λ)V . Recalling back
to the effective Hamiltonian in the protocol of Ref. [40],
Heff = �2

2�
[|00〉〈RR| + |11〉〈rr|] + H.c. with V � �, one will

find that the deviation of V , λV , can be reserved to the
effective Hamiltonian as form λV (|RR〉〈RR| + |rr〉〈rr|) be-
cause, generally, V � λV . Furthermore, λV may have the
same magnitude as the effective pulse �2

2�
(V = 2� in the

protocol of Ref. [40]), resulting in inefficiencies of the effec-
tive Hamiltonian in the protocol of Ref. [40]. Therefore the
systematic error in V hugely affects the fidelity of the protocol
of Ref. [40]. For example, the fidelity goes down to about 0.5
[see Fig. 6(a) in Ref. [40] ] when λ = 5%. In contrast, the
present protocol will be robust to λV because we avoid simul-
taneous excitation of Rydberg atoms. A rough explanation is,
when similar λV |rr〉〈rr| is added to our effective Hamiltonian
H ′

eff (t ) in Eq. (3), H ′
eff (t ) will still be valid due to not including

|rr〉. We plot the fidelity F versus λ in Fig. 8, from which
we can see that fidelity in the present protocol is much
more robust against that in the protocol of Ref. [40]. When
considering λ = 10%, the fidelities are 97.06% and 49.65%
in the present protocol and in the protocol of Ref. [40],
respectively.

On the other side, the thermal noise and the dephasing
will induce the decoherence of the system, bringing down the
fidelity F . Thereupon, it is appropriate to consider them by
utilizing the master equation [67]

ρ̇(t ) = i[ρ(t ), Htot (t )] + Dde[ρ(t )] + Dth[ρ(t )], (41)

where Dde[ρ(t )] and Dth[ρ(t )] depend on the dephasing and

FIG. 9. (a) Fidelity for the NRPM vs the spontaneous emission
rate � and the dephasing rate γ . (b) Fidelity for the NRPM vs the
spontaneous emission rate � and the average number n̄ of thermal
phonons.

the thermal noise, respectively, written as

Dde[ρ(t )] =
10∑

l=6

[
LlρL†

l − 1

2
(L†

l Llρ + ρL†
l Ll )

]
,

Dth[ρ(t )] =
5∑

l=1

{
(n̄ + 1)

[
LlρL†

l − 1

2
(L†

l Llρ + ρL†
l Ll )

]

+ n̄

[
L†

l ρLl − 1

2
(LlL

†
l ρ + ρLl L

†
l )

]}
, (42)

with n̄ being the average number of thermal phonons, given by

the Bose-Einstein distribution n̄ = 1/(e
h̄ω

kBT − 1) (ω represent-
ing the frequency of the thermal noise). It is worth mentioning
that, when n̄ equals zero, the thermal noise influences the evo-
lution like spontaneous emission does. The Lindblad operator
Ll (l = 1, 2, …, 10) in Eq. (42) can be written as

L1 =
√

�01/2|0〉1〈r|, L2 =
√

�02/2|0〉2〈r|,
L3 =

√
�11/2|1〉1〈r|, L4 =

√
�12/2|1〉2〈r|,

L5 =
√

�a|0〉a〈r|, L6 =
√

γ1/2(|r〉1〈r| − |1〉1〈1|),
L7 =

√
γ2/2(|r〉2〈r| − |1〉2〈1|),

L8 =
√

γ1/2(|r〉1〈r| − |0〉1〈0|),
L9 =

√
γ2/2(|r〉2〈r| − |0〉2〈0|),

L10 = √
γa(|r〉a〈r| − |0〉a〈0|), (43)

where � jk/2 and �a ( j = 0, 1 and k = 1, 2) are the sponta-
neous emission rates of paths |r〉k → | j〉k and |r〉a → |0〉k ,
respectively. In addition, γp (p = 1, 2, a) is the dephasing
rate of atom p. For simplicity, we assume �01 = �02 = �11 =
�12 = �a = � and γ1 = γ2 = γa = γ . Under the same condi-
tions of parameters indicated in Eqs. (39) and (40), we discuss
the influence on F of the thermal noise and the dephasing,
in Fig. 9, from which we can find that F is robust against
both thermal noise and dephasing. The range of � is closed
to experimental observation [68,69], and the range of n̄ =
0–1 can be regarded as the temperature scope, 0–68.31 μK
(assuming the frequency of the thermal noise is 2π × 1 MHz).
For example, set � = γ = 1 kHz and n̄ = 0.2 (namely, the
experimental temperature being 26.81 μK [70]), leading to
F = 95.02%, which is experimentally acceptable.
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For a concrete experimental process, we may consider
the two-photon excitation process [29,65,71–77] in the Rb
atom platform with the corresponding ground-state encod-
ing |0〉 ≡ |5S1/2, F = 2, mF = 0〉, |1〉 ≡ |5S1/2, F = 1, mF =
0〉, and |r〉 ≡ |60S1/2, mj = 1/2〉. The C6 parameter, van
der Waals coefficient of specific Rydberg states, is given
by C6 = n11(11.97 − 0.8486n + 3.385 × 10−3n2) in atomic
units [78,79] with n representing the principal quantum num-
ber. We have C6 = 140 GHz μm6 h here, and the RRI strength
V equals 2π × 50 MHz (h̄ = 1) when the atomic distance is
set as 3.75 μm (V = C6/d6).

VI. CONCLUSION

In summary, we proposed a robust scheme for a NRPM
with high fidelity. Specifically, we built a model by us-
ing the modified unconventional Rydberg pumping to guar-
antee that there is no simultaneous excitation of Rydberg
atoms during the whole evolution. Furthermore, we uti-
lized optimized inverse engineering against systematic er-
ror to design suitable fields for a robust and high-fidelity
NRPM. Compared with representative work about NRPMs
in Ref. [40], the present scheme has several advantages as
follows:

(i) Insensitivity to the mechanical effect. The mechan-
ical effect, which results from simultaneous excitation
of Rydberg atoms, which is always an obstacle to the
Rydberg-atom based QIP, is almost avoided in the present
scheme.

(ii) Tolerance to parameter deviation. By carrying out
a numerical simulation, we find that the present scheme
is relatively insensitive to systematic error. For exam-
ple, the fidelities are as high as 97.72% and 98.41%
when serious systematic error rates in driving pulses
reach −0.1 and 0.1, respectively. In addition, the scheme
is robust against the decoherence induced by thermal
noise and dephasing, further proving the experimental
feasibility.

Ergo, the work has a certain experimental practicability and
may increase scalability of the nondestructive parity meter,
building a bridge to the Rydberg-atom-based QIP. We hope
the scheme can be considered for application in upcoming
experiments.
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APPENDIX: DETAILED PROOF FROM EQ. (1) TO EQ. (2)

The Hamiltonian in Eq. (1) can be described by a rotating
frame with respect to Urot (t ) = eiV |rr〉12〈rr|t . That is, the Hamil-
tonian in the new picture is given by

H ′
i (t ) = Urot (t )Hi(t )U †

rot (t ) + iU̇rot (t )U †
rot (t ). (A1)

By utilizing the condition V = �1, Eq. (A1) can be decom-
posed into two parts, one with high frequency, and the other

being resonant, yielding

H ′
i1(t ) = [�2(t ) + �3(t )ei�3t + �4(t )e−i�4t ]e−i�1t

×
√

2|D〉12〈rr| + [�1e−i�1t + �3(t )e−i�3t

+�4(t )ei�4t ](|r0〉12〈10| + |0r〉12〈01|
+

√
2|D〉12〈11|) + H.c.,

H ′
i2(t ) = �2(t )(|r0〉12〈10| + |0r〉12〈01| +

√
2|D〉12〈11|)

+
√

2�1|rr〉12〈D| + H.c., (A2)

with |D〉12 = (|1r〉12 + |r1〉12)/
√

2. Rewrite H ′
i1(t ) as H (t ) =∑

u(hue−iωut + h†
ueiωut ) and assume �3 = �4, yielding

h1 =
√

2�2(t )|D〉12〈rr| + �1(t )(|r0〉12〈10|
+ |0r〉12〈01| +

√
2|D〉12〈11|),

h2 =
√

2�3(t )|D〉12〈rr|, h3 =
√

2�4(t )|D〉12〈rr|,
h4 = �3(t )(|r0〉12〈10| + |0r〉12〈01| +

√
2|D〉12〈11|)

+�4(t )(|10〉12〈r0| + |01〉12〈0r| +
√

2|11〉12〈D|), (A3)

with corresponding frequencies ω1 = �1, ω2 = �1 − �3,
ω3 = �1 + �3, and ω4 = �3, respectively. Subsequently we
have [80]

H ′
eff1(t ) ≈

∑
u

[h†
u, hu]/ωu, (A4)

with {u, v} = {1, 2, 3, 4}. The high-frequency terms, i.e.,
terms with e−i(ωu−ωv )t (ωu = ωv), e−i(ωu+ωv )t , or e−iωut possess
frequencies, such as |�3|, |�1 − �3|, 2|�3|, |�1 − 2�3|, and
|�1|. Considering the conditions �1 � �1 � �2(t ), �3 =
�4, and {�3, �1 ± �3, �1 − 2�3} � {�3(t ), �4(t )}, the
high-frequency terms can be further neglected because their
averaged performance over a period of time is close to zero
compared with the resonant terms. Equation (A4) gives rise to

H ′
eff1(t ) =

(
�2

1

�1
+ �3(t )2

�3
− �4(t )2

�3

)

× (2|11〉12〈11| + |01〉12〈01| + |10〉12〈10|
− |0r〉12〈0r| − |r0〉12〈r0| − 2|D〉12〈D|)
+ 2�1�2(t )

�1
(|11〉12〈rr| + H.c.)

+
(

2�2(t )2

�1
+ 2�3(t )2

�1 − �3
+ 2�4(t )2

�1 + �3

)

× (|rr〉12〈rr| − |D〉12〈D|). (A5)

Observe that term 2�1�2(t )
�1

(|11〉12〈rr| + H.c.) can be ignored
because of the condition �1 � �2(t ), and afterward makes
states |rr〉12 and |D〉12 be decoupled from the evolution of
system. Therefore, H ′

eff1(t ) can be further derived as

H ′
eff1(t ) ≈

(
�3(t )2

�3
− �4(t )2

�3

)

× (2|11〉12〈11| + |01〉12〈01| + |10〉12〈10|
− |0r〉12〈0r| − |r0〉12〈r0|), (A6)

via introducing the other ancillary pulse �′
1 with opposite

red detuning �1, i.e., canceling the Stark-shift terms in �1.
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Additionally, by rotating into another picture with trans-
formation U ′

rot (t ) = exp[i
√

2�1t (|rr〉12〈D| + H.c.)], we can
simplify the resonant part of the original Hamiltonian as

H ′′
i2(t ) = �2(t )(|r0〉12〈10| + |0r〉12〈01|)

+
√

2�2(t )[i sin(
√

2�1t )|rr〉12〈11|
+ cos(

√
2�1t )|D〉12〈11|] + H.c. (A7)

Note that high-frequency terms in Eq. (A5) can be further
refined as ( �2(t )2√

2�1
|rr〉12〈D| + H.c.) by second-order perturba-

tion theory, apparently being decoupled with the evolution of

system. Therefore, the effective value of H ′′
i2(t ) is

H ′′
eff2(t ) = �2(t )(|r0〉12〈10| + |0r〉12〈01|) + H.c. (A8)

It is worth mentioning that H ′′
eff2(t ) is in a different picture than

H ′
eff1(t ). However, the picture transformation operator U ′

rot (t )
cannot change basis {|r0〉12, |10〉12, |0r〉12, |01〉12}, and hence
leads to H ′

eff2(t ) = H ′′
eff2(t ).

Thereupon, the total effective Hamiltonian is given by

H ′
eff (t ) = �2(t )(|r0〉12〈10| + |0r〉12〈01|) + H.c.

+
(

�3(t )2

�3
− �4(t )2

�3

)

× (2|11〉12〈11| + |01〉12〈01| + |10〉12〈10| − |0r〉12

×〈0r| − |r0〉12〈r0|). (A9)
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