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Generation of a time-frequency grid state with integrated biphoton frequency combs
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Encoding quantum information in continuous variables is intrinsically faulty. Nevertheless, redundant qubits
can be used for error correction, as proposed by Gottesman et al. [Phys. Rev. A 64 012310 (2001)]. We show how
to experimentally implement this encoding using time-frequency continuous degrees of freedom of photon pairs
produced by spontaneous parametric down conversion. We illustrate our results using an integrated AlGaAs
photon-pair source. We show how single-qubit gates can be implemented and finally propose a theoretical
scheme for correcting errors in circuit-like and measurement-based architectures.
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I. INTRODUCTION

Quantum information can be encoded in qubits corre-
sponding to discrete quantum states of physical systems,
such as atomic electronic states or the polarization of single
photons. The essence of quantum computation (QC) is to
manipulate qubits with a universal set of unitary quantum
gates [1,2]. A fundamental ingredient for QC, inherited from
classical computation, is error correction. In the realm of
quantum computing, quantum error correction (QEC) [3,4]
fights against a fundamental aspect of quantum systems: their
fragility to keep quantum properties at large scale and for a
long time that, usually, depends on the size of the system.
Ingenious solutions to this problem consist in encoding a qubit
of information in particular states composed of more than
one physical qubit. The resulting logical qubits enabling QEC
depend on the type of errors that are more likely to affect
the system. For instance, a code that corrects for qubit flips,
dephasing, and all the errors created by the combination of
these involves the creation of a complex five-qubit entangled
state whose symmetries enable the detection and correction of
the mentioned errors [5].

If one considers harmonic oscillators or analogous sys-
tems, as, for instance, two quadratures of the electromagnetic
field, encoding quantum information in continuous variable
(CV) is in principle possible using any two orthogonal states
of a given quadrature [6]. However, such states are non-
physical, and the closest one can get to them is by consid-
ering squeezed states [7], which are sub-shot-noise states.
As a matter of fact, squeezed states can be considered as
noisy quadrature eigenstates, where the noise is modeled by
products of displacement operators in phase space weighted
by Gaussian functions representing the probability amplitude
distribution of these displacements. Physical states described
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by continuous variables are thus intrinsically noisy and, within
this picture, displacements in phase space are the main source
of noise for such encoding. Moreover, since all physical states
are noisy, errors propagate throughout quantum operations
and must be corrected regularly. This picture is particularly
suitable to a number of relevant physical systems, as the
quantum state produced by optical parametric oscillators
(OPO) [8–10] and continuous degrees of freedom of pho-
ton pairs, as discussed in the present paper. The problem
of correction from displacement errors was considered by
Gottesman, Kitaev and Preskill (GKP), who introduced what
we refer now on as GKP states [11], which are qubits defined
in CV displaying a periodic structure.

In spite of the importance of GKP states in quantum
information with CV [12–14], their experimental engineer-
ing remains extremely difficult in quantum optics [15–17].
They correspond to highly non-Gaussian states composed
of the coherent superposition of several delocalized states.
The engineering of non-Gaussian states using OPOs is still
challenging, and even if some experiments have demonstrated
it [18–20] they involve single photon addition and/or sub-
traction through postselection. As a consequence, one of the
major advantages of using such systems, determinacy, is lost.
Also, the generated non-Gaussian states are still far from
the physical GKP states. Recently, such states have been
produced using the motional states of one trapped ion [21], in
superconducting qubits [22], and for other platforms [23–25].

In the present paper, we show that biphoton frequency
combs produced by intracavity spontaneous parametric down
conversion (SPDC) can be used to experimentally generate,
manipulate, and detect grid states encoded in time (t) and
frequency (ω). We propose a method to implement a funda-
mental operation of quantum error correction. Our results rely
on the analogy between quantum states composed of many
photons in one mode of the electromagnetic field and one
photon that can occupy a continuum of frequency modes,
which is the continuous degree of freedom we consider here.
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We show that the time-frequency phase space at the single-
photon level has the same noncommutative structure as the
usual quadrature position-momentum phase space. Our results
are experimentally illustrated using an AlGaAs nonlinear
cavity producing photon pairs by SPDC at room temperature
and telecom wavelengths that are compliant with electrical
injection [26]. The proposed scheme is not specific to the
considered platform and it could be implemented with other
quantum-optical setups, such as those in Refs. [27,28].

This paper is organized as follows. We start in Sec. II by
describing the properties of the time-frequency phase space
of a single photon and describe its quantum structure and
properties. We use these results to properly introduce the
chronocyclic Wigner distribution. In Sec. III, we define the
time-frequency GKP states, or more generally the time-
frequency grid states [23], which are fully analogous to the
ones made from position-momentum quadrature states [11].
Following the formalism developed, we mathematically in-
troduce the two-dimensional (2D) time-frequency GKP state.
In Sec. IV A, we present an experimental implementation of
our results in a chip-integrated source consisting of a AlGaAs
Bragg reflector waveguide generating a 2D time-frequency
grid state, and in Sec. IV B we show how such states can
be used for correcting time-frequency shift errors. This state
can be experimentally manipulated and characterized using
Hong-Ou and Mandel (HOM) interferometry [29], as shown
in Sec. IV C. Finally, in Sec. IV D, we theoretically propose
a simple experimental scheme based on photon detection to
implement quantum error correction for time-frequency GKP
states.

II. TIME-FREQUENCY PHASE SPACE
OF A SINGLE PHOTON

In this section, we introduce the time-frequency phase
space of a single photon, following the construction of
the usual nonrelativistic phase space in quadrature position-
momentum variable. For the sake of completeness and to
clarify the analogy with the traditional quadrature position-
momentum CV, we also mention some results of this
formalism.

A. Time-frequency phase space description

In order to fix the notation, the photon creation operator at
frequency ω acts on the vacuum |0〉 as

â†(ω)|0〉 = |1ω〉 = |ω〉. (1)

We thus have that |1ω〉 and |ω〉 are equivalent notations for
a single photon at frequency ω. In the present paper, we will
be mostly interested in the single-photon subspace and so we
will use the simplified notation |ω〉. We can also define an
annihilation operator fore the mode ω as â(ω)|ω〉 = |0〉. If we
consider only the frequency degree of freedom, the creation
and annihilation operators obey the bosonic commutation
relation:

[â(ω), â†(ω′)] = δ(ω − ω′)I, (2)

where I is the identity operator. Analogously, we define the
creation operator for a single photon at time t , â†(t ), where t

is the time interval elapsed from the photon’s creation at the
source and its arrival at the detector. The creation operator
â†(t ) can be obtained from a Fourier transform of â†(ω):

â†(t ) = 1√
2π

∫
R

dωeiωt â†(ω), (3)

and we have that |t〉 = |1t 〉 = â†(t )|0〉 = 1√
2π

∫
R dωeiωt |ω〉.

Since {|ω〉} is an orthogonal basis, we can expand a pure
single-photon state |�〉 in this basis:

|�〉 =
∫
R

S(ω)dω|ω〉, (4)

where S(ω) is the amplitude spectrum of the single photon,
with the normalization condition

∫
R

|S(ω)|2dω = 1.
We also consider single photons with a temporal structure,

described by the state

|�〉 =
∫
R

S̃(t )dt |t〉, (5)

where S̃(t ) is the Fourier transform of the amplitude spectrum
S(ω) of the source. Free space propagation for a time t leads
to the evolution of the creation operator: â†

t (ω) = e−iωt â†(ω),
and the wave function at time t reads

|�(t )〉 =
∫
R

S(ω)e−iωt dω|ω〉. (6)

Rigorously, the integration range in Eqs. (6) and (4) should
be R+. We have extended it to R as we consider experiments
where the amplitude spectrum fulfills S(ω � 0) = 0. In the
experimental setup we implement in this paper, S(ω) is typi-
cally nonzero only in the telecom wavelength.

The above definitions [Eqs. (1)–(6)] are completely analo-
gous to the ones commonly defined in the case of a monomode
multiphoton electromagnetic field, modeled by a quantum
harmonic oscillator. Indeed, the quantized electromagnetic
field is described by quadratures X̂ and P̂ defined by

X̂ =
√

h̄

2ω
(â + â†), (7)

P̂ = −i

√
h̄ω

2
(â − â†), (8)

where ω is the frequency of the field and â, â† are the
annihilation-creation operators (implicitly at the frequency ω)
which obey the commutation relation [â, â†] = I. X̂ and P̂
admit real eigenvalues noted as x and p, called the position and
momentum quadratures. The associated eigenvectors |x〉, |p〉
are analogous to the state |ω〉 defined by Eq. (1) and the state
|t〉. Since they are canonical conjugate variable, |x〉, |p〉 are
related by a Fourier transform:

|x〉 = 1√
2π h̄

∫
R

e−ixp/h̄|p〉d p, (9)

which is equivalent to Eq. (3) after applying it to the vacuum
state |0〉 on both sides the equation. The position and mo-
mentum basis are orthogonal and complete as the frequency
and time basis of a single photon. Also, they are not physi-
cal since they correspond to infinitely squeezed (in position
or momentum state) and not square normalizable [1]. They
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are nonetheless useful for building physical states with a
finite squeezing in both position and momentum variables,
described by the wave function

|ψ〉 =
∫

dxψ (x)|x〉. (10)

In conclusion, the state described by Eq. (10) is perfectly
mathematically analogous to Eq. (4). |ψ (x)|2 represents the
quadrature position probability distribution and is normalized
to unity, as |S(ω)|2 describes the spectrum probability distri-
bution. In the following, we will set the Planck’s constant h̄ to
one.

1. Time-frequency Wigner distribution for a single photon

We now define the time-frequency Wigner distribution.
The Wigner distribution in phase space can be seen as the ex-
pectation value of the parity operator [30] or, equivalently, as
the inverse Fourier transform of a characteristic function. The
latter is constructed using a symmetric ordering of bosonic
operators. We will proceed analogously, by introducing the
displacement frequency mode operator in the single-photon
subspace.

Using the previously introduced bosonic operators, we can
define the displacement mode operator in frequency as

D̂(μ) =
∫

â†(ω + μ)â(ω)dω. (11)

Analogously, for the displacement in time we can write

D̂(τ ) =
∫

â†(t + τ )â(t )dt . (12)

As for Eq. (6), we have extended the range of integration from
R+ to R. Indeed, for the envisaged application, μ will be
small enough so that the resulting displaced state amplitude
spectrum S(ω) will have its support in R+.

Displacement operators do not commute, and we obtain the
Weyl relation,

D̂(μ)D̂(τ ) = eiμτ D̂(τ )D̂(μ). (13)

Using the commutation relations, in analogy with the
quadrature position-momentum phase space case, we can
identify different possible orderings of the operators: the
normal order D̂n(μ, τ ) = D̂(μ)D̂(τ ), the antinormal order
D̂an(μ, τ ) = D̂(τ )D̂(μ), and the symmetric order, D̂s(μ, τ ) =
D̂(μ)D̂(τ )e−iτμ/2.

For a monomode multiphoton field, the quadrature
position-momentum displacement operator in the symmetric
ordering is defined by

D̂s(x, p) = e−ixp/2e−iX̂ peiP̂x. (14)

The position displacement operator eiP̂x′
acts on the posi-

tion and momentum kets as eiP̂x′ |x〉 = |x + x′〉 and eiP̂x′ |p〉 =
eipx′ |p〉 and have a similar algebra to that of the frequency
displacement operator which acts on the frequency and time
state D̂(μ)|ω〉 = |ω + μ〉 and D̂(μ)|t〉 = eiμt |t〉.

Even though the quadrature position-momentum displace-
ment operators D̂s(x, p) have the same algebraic properties
than the time-frequency ones, they do not have the same
mathematical representation. An exponential representation

of the time-frequency displacement operators [see Eq. (14)]
would require the introduction of a time operator. We point
out that such operator was introduced recently in Ref. [31], but
a quantum reference frame (a quantum clock) is needed and
allows us to avoid considering time as a conditioned quantity.
Nevertheless, the formalism introduced [31] is not necessary
in the mathematical treatment dealt in this paper.

We return to the study of the time-frequency phase space
of a single photon. All the following properties and defini-
tions are borrowed from the quadrature position-momentum
formalism, since we showed the mathematical analogies be-
tween these two sets of continuous variables, within the dis-
placement operators. The unitary displacement operators D̂ξ ,
irrespective of the ordering, ξ = s, an, n, obey the following
orthogonality relation:

Tr[D̂†
ξ (μ, τ )D̂ξ (μ′, τ ′)] = δ(τ ′ − τ )δ(μ′ − μ), (15)

and the completeness relation∫∫
dμdτ D̂ξ (μ, τ )D̂†

ξ (μ, τ ) = I. (16)

Using Eqs. (15) and (16), we can expand all Hermitian matri-
ces in this orthogonal basis, and thus the density matrix reads

ρ̂ =
∫∫

χρ,ξ (μ, τ )D̂ξ (μ, τ )dμdτ. (17)

The coordinate function χρ,ξ (μ, τ ) = Tr(ρ̂D̂†
ξ (μ, τ )) is called

the characteristic function, and it can be normal, antinormal,
or symmetric depending on the ordering of the displacement
operator. The Fourier transform of the characteristic function
leads to a quasiprobability distribution. In particular, using
the symmetric characteristic distribution, one can obtain the
chronocyclic Wigner distribution,

W (ω, t ) = 1√
2π

∫
dω′e2iω′t 〈ω − ω′|ρ̂|ω + ω′〉. (18)

The chronocyclic Wigner distribution gives the same in-
formation as the associated density matrix, following the
completeness property. This distribution is also normalized:∫∫

dtdωW (ω, t ) = Tr(ρ̂) = 1. In the case of a pure state ρ̂ =
|ψ〉〈ψ | characterized by its amplitude spectrum S(ω) [see
Eq. (4)], the chronocylic Wigner distribution can be written
as

W (ω, t ) = 1√
2π

∫
dω′e2iω′t S(ω − ω′)S∗(ω + ω′). (19)

The marginals of the Wigner distribution lead to different
physically measurable quantities such as the spectrum of the
source, ∫

W (ω, t )dt = |S(ω)|2, (20)

and the distribution of the arrival time of the photon of the
source (using a fixed origin of time),∫

W (ω, t )dω = |S̃(t )|2. (21)

We can also see the chronocyclic Wigner distribution here
as the expectation value of the displaced parity operator by
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applying the same methods as in Ref. [30] using the symmet-
ric displacement operator D̂s,

W (ω, t ) = Tr(ρ̂D̂s(ω, t )�̂D̂†
s (ω, t )), (22)

where �̂ is the parity operator which acts on a frequency state
as �̂|ω〉 = | − ω〉. Consequently, measuring the chronocyclic
Wigner distribution at the origin is a measurement of the
average value of the parity operator.

Finally, it can be shown that the chronocyclic Wigner
distribution obeys the Stratonovich-Weyl rules [32,33].

Owing to the noncommutativity of the bosonic operator
Eq. (2) and, consequently, the noncommutativity of the dis-
placement operators [see Eq. (13)], the time-frequency phase
space of a single photon is noncommutative, as the quadrature
position-momentum phase space. It leads to the analogy be-
tween one single photon in many frequency modes and many
photons in one frequency mode.

The introduced Wigner distribution can be generalized to
the situation where more than one photon occupy different
frequency modes. We will describe in details the two-photon
case in the next section.

2. Wigner distribution of two photons and associated marginals

For a two-photon state, the wave function can be written as

|ψ〉 =
∫∫

dωsdωiF (ωs, ωi )|ωs, ωi〉, (23)

where F denotes the joint spectral amplitude and ωs(ωi ) is the
frequency of the signal (idler) photon. The Wigner distribution
of a pure state |ψ〉 is

W (ωs, ωi, ts, ti )

=
∫∫

dω′dω′′e2iω′ts e2iω′′ti〈ωs − ω′, ωi − ω′′||ψ〉

× 〈ψ ||ωs + ω′, ωi + ω′′〉, (24)

with marginals∫∫
W (ωs, ωi, ts, ti )dtsdti = |F (ωs, ωi )|2. (25)

We also have∫∫
W (ωs, ωi, ts, ti )dωsdωi = |H (ts, ti )|2, (26)

which corresponds to the joint temporal intensity, which is
the probability of measuring a photon at an arrival time ts
in one detector and a photon at an arrival time ti in another
detector, H is the corresponding probability amplitude. We
can also define two other “crossed” marginals: the probability
to detect one photon at the arrival time ts (resp. ti) and the other
at the frequency ωi (resp. ωs). The measurement of the four
marginals and the reconstruction of the joint spectral ampli-
tude has been performed in Ref. [34]; however, this technique
cannot be applied to all optical systems and depend on the
spectral width of the considered joint spectral amplitude.

In the next section, we use the formalism presented here
to analyze the phase space distribution and representation for
some relevant quantum states. As a first example, we will
describe coherent-like state in time-frequency variables. Then,

we will address grid and GKP state formed with one and two
photons.

III. TIME-FREQUENCY GRID STATES

Before introducing grid states, we describe coherent-like
states in time-frequency phase space.

A. Coherent-like state in time-frequency variables

The coherent state is a specific state of the monomode
multiphoton field. Its wave function in the position basis [35]
can be written as

|x0, p0〉 =
∫
R

dxe−(x−x0 )2
eixp0 |x〉. (27)

The associated Wigner distribution in the (x, p) phase space
is a Gaussian centered at (x0, p0). The analogy between the
mathematical structure of frequency states of single photons
and the quadratures’ position-momentum state motivates the
definition of the coherent-like state | ω1

�ω
, τ�ω〉 as a single-

photon state with a Gaussian amplitude spectrum:∣∣∣ ω1

�ω
, τ�ω

〉
=

∫
dωe−(ω−ω1 )2/(2�ω2 )eiωτ |ω〉, (28)

where ω1 and τ are two parameters representing the average
value of the chronocyclic Wigner distribution and �ω is the
spectral width of the Gaussian spectrum. As in the usual
phase-space representation, the coherent-like state also forms
an overcomplete basis.

The physical interpretations of the coherent and coherent-
like frequency time state are very different. The coherent state
|x0, p0〉, also noted |α〉 with Re(α) = x0 and Im(α) = p0,
is the eigenvector of the annihilation operator â with the
corresponding complex eigenvalue α. |α|2 is the average value
of the photon number 〈â†â〉 of the monomode multiphoton
field. Also, the free evolution trajectory in the quadrature
position-momentum phase space of a coherent state is a circle,
as the classical harmonic oscillator, which justify its name.
For the coherent-like time-frequency state, the average value
of the photon number is one, since it is a single photon and
the trajectory of a free evolution in time-frequency phase
space is a translation along the time axis. The aim of these
remarks highlight the main physical difference between these
two states, despite their mathematical analogies.

B. Grid states

We now use the formalism developed in the previous
section to introduce the time-frequency grid state and, more
specifically, the time-frequency GKP state. We also show their
application for time-frequency quantum error correction.

Grid states were first defined using quadrature position-
momentum continuous variables [11,36] and correspond to
a two-dimensional lattice in phase space where the area
of the unit cell is a multiple of 2π . Time-frequency grid
states also verify the following property: They are peri-
odic structures formed by the superposition of many modes
of a single photon. Such states are mathematically equiva-
lent to the quadrature position-momentum ones due to the
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FIG. 1. Time-frequency GKP state in the frequency and time
bases.

noncommutative algebra of the time-frequency displacement
operators.

More precisely, the time-frequency grid state is defined
as a common eigenstate with the eigenvalue +1 of the two
commuting operators D̂(ω) and D̂(t ) when the product of the
two parameters verify ωt = 0 mod 2π . This property allows
us to measure both the time and the frequency modulo 2π .
The wave function of a general grid state can be written as

|ψ〉 =
∑
n∈Z

|√π (2n + μ〉ω, (29)

where μ is an integer. The +1 eigenspace of the displacement
operators is two dimensional and allows us to define a qubit
taking for instance the values μ = 0 and 1. It is developed in
more details in the following paragraph.

C. Time-frequency GKP state

1. Definition and notation

We start by providing the general framework to define
single-photon GKP states with many frequency modes. The
two possible states of the qubit are the eigenstates of the dis-
placement operators D̂(2ω), D̂( 2π

2ω
), also called the stabilizer

of the code (see Fig. 1):

|0〉ω =
∑
n∈Z

∣∣∣ωp

2
+ 2nω

〉
, (30)

|1〉ω =
∑
n∈Z

∣∣∣ωp

2
+ (2n + 1)ω

〉
. (31)

In the above, 2ω is the periodicity of the state and ωp/2 is a
constant that will be later associated to a physical parameter.
These states are called time-frequency square GKP states,
because their time-frequency phase space representation is
squared [37]. For simplicity, we will call them simply time-
frequency GKP states.

Alternatively, as we show in Fig. 1, we can use the time
representation of the GKP states (up to normalization):

|0〉ω = τrt

∑
n∈Z

ei
ωp
2

nτrt
2

∣∣∣nτrt

2

〉
= |+〉t , (32)

|1〉ω = τrt

∑
n∈Z

ei
ωp
2

nτrt
2 (−1)n

∣∣∣nτrt

2

〉
= |−〉t , (33)

where τrt = 2π
ω

. Here we have used that
∑

n∈Z e2inπt/τrt =
τrt

∑
n∈Z δ(t − nτrt ). If we have the equality exp(i ωp

2
nτrt
2 ) = 1,

which corresponds to the condition that ωp is a multiple of ω,
we can define a qubit. It will be the case in the experimental
configuration specified in the next section. For the sake of
simplicity, we will now set ωp = 0. The |0〉t , |1〉t logical time
GKP state [the eigenstates of the stabilizer D̂(τrt )] are then (up
to normalization)

|0〉t = τrt

∑
n∈Z

∣∣∣∣2nτrt

2

〉
= |+〉ω, (34)

|1〉t = τrt

∑
n∈Z

∣∣∣∣ (2n + 1)τrt

2

〉
= |−〉ω, (35)

where we have introduced |±〉t = 1√
2
(|0〉t ± |1〉t ) and analo-

gously for |+〉ω.
The time-frequency phase space representation of the time-

frequency GKP state is analogous to the GKP state in the
(x, p) phase plane [11]. The wave function of the coherent
superposition |+〉ω, with the amplitude spectrum S(ω) =∑

n∈Z〈ω||nω〉 = ∑
n∈Z δ(ω − nω) has the following chrono-

cyclic Wigner distribution:

W (ω, t ) =
∫
R

dω′e2iω′t S(ω − ω′)S∗(ω + ω′)

=
∑

n,m∈Z2

(−1)nmδ
(

t − π

ω
n
)
δ

(
ω − ωp

2
− ω

2
m

)
.

(36)

This shows that the chronocyclic Wigner distribution is
negative when n, m are both odd. Also, such states are not
physical since we are summing over an infinite number of
perfectly well-defined frequency (or time) modes.

2. Physical time-frequency GKP state

In this section, we will see how to formally describe
physical (intrinsically noisy) time-frequency GKP states and
how to physically interpret their number of peaks and the
uncertainty of each mode. For that, we apply the formalism
introduced in Ref. [38].

Physical time-frequency GKP states are constructed by
applying a Kraus-like operator ξ̂ to the ideal time-frequency
GKP state:

|0̃〉ω = ξ̂ |0〉ω =
∫∫

dωdtξ (ω, t )D̂(t )D̂(ω)|0〉ω. (37)

If we suppose that frequency and time noise are uncorrelated
Gaussian distribution, we have that ξ (ω, t ) = Gδω(ω)Gκ (t ) =
e−ω2/2δω2

e−t2/2κ2
. The physical interpretation of these two

Gaussian noises becomes clearer after performing the time
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integral in Eq. (37), which leads to

|0̃〉ω =
∑
n∈Z

∫
T2n(ω)e−ω2κ2/2|ω〉dω, (38)

with Tn(ω) = exp(−(ω − nω)2/(2δω2)) and we have used
D̂(t )D̂(ω)|0〉ω = ∑

n eit (nω+ω). In our terminology, time noise
creates an envelope, limiting the number of relevant frequency
modes while frequency noise introduces an intrinsic width
to each peak. Alternatively, we can construct the physical
GKP state by permuting the time and frequency displacement
operators. Since they are noncommuting operators, the state
obtained by this procedure is not the same as Eq. (38).
For a quadrature position-momentum GKP state, the Kraus
operator applied on ideal GKP state [24,38] models the finite
width (which corresponds to the finite amount of squeezing
or its inherent noise) of each position peak and of the to-
tal envelope. These Kraus operators are simply the unitary
squeezing operators. Here, our Kraus-like operator modeled
the bandwidth of the frequency peaks and the total envelope
of the single-photon state but could also be used to describe
the bandwidth of a coherent state. In both cases, quadrature
position-momentum variable for a multiphoton field or time-
frequency degree of freedom of single photon, the Kraus
operators are unitary and do not alter the purity of the state.

The physical origin of the finite width of the time and
frequency distribution are considered in our formalism as
errors that can be due to the propagation of single photons
in a dispersive medium, as an optical fiber. They can also
be related to time and frequency uncertainties inherent to the
state preparation process, as is the case of the setup presented
in Sec. IV.

D. The 2D entangled time-frequency GKP state: Some useful
mathematical tools

We now move to the two-qubit case and show how two
GKP states can be entangled in time and frequency degrees
of freedom. We start by considering an ideal separable two-
photon state, a two-dimensional GKP state, that can be written
as

|+〉ωs |+〉ωi = 1
2 (|0〉ωs |0〉ωi + |0〉ωs |1〉ωi

+ |1〉ωs |0〉ωi + |1〉ωs |1〉ωi ). (39)

As in the one-qubit case, physical qubits can be constructed
from (39) using the noise model introduced previously, based
on the application of Kraus-like operators:

|+̃〉ωs |+̃〉ωi

=
∫∫

dtdt ′D̂s(t )D̂i(t
′)G1/�ωp (t )G1/�ω− (t ′)

×
∫∫

D̂s(ω)D̂i(ω
′)Gδωs (ω)Gδωi (ω

′)dωdω′|+〉ωs |+〉ωi .

(40)

The functions Gα (x) are Gaussians of width α corresponding
to the noise distribution on variables x. Using a calculation

similar to that in Sec. III C 2, the corresponding joint spectral
intensity of the state Eq. (40) has an elliptical envelope elon-
gated along the ωs or ωi axis if �ωp < �ω− or �ω− < �ωp

and is composed of circular cavity peaks of radius δω.
Frequency (or time) entanglement can be created by the

application of a symmetric controlled-NOT (CNOT) operator Ĉ′
that performs the following operation:

Ĉ′|ts, ti〉 = |ts + ti〉|ts − ti〉. (41)

Equivalently, Ĉ′|ω,ω′〉 = |ω+ω′
2 , ω−ω′

2 〉. This gate operates in
an analogous way to a balanced beam splitter that acts on
the frequency or time degree of freedom instead of the field’s
quadratures [39]. We mention that the CNOT gate Ĉ acts on
the position quadrature |x, y〉 as Ĉ|x, y〉 = |x + y, x − y〉 and
corresponds to the transformation of a balanced beam splitter.

The entangling gate Ĉ′ transforms displacement operators
as follows:

Ĉ′D̂s(t )D̂i(t
′)Ĉ′−1 = D̂s

(
t + t ′

2

)
D̂i

(
t − t ′

2

)
. (42)

Such entangling gate is physically produced by a nonlinear
effect that occurs naturally in the optical device we study here,
as we will see in the next section.

We now consider a particular time-frequency noise
model. It is obtained by first applying the frequency
noise described by the Kraus-like operator on the
ideal time-frequency 2D GKP state |ψ〉1 = (

∫∫
D̂s(ω)

D̂i(ω′)Gδω(ω)Gδω(ω′)dωdω′)|+〉ωs |+〉ωi . The associated
joint spectral intensity of the state |ψ〉1 is an infinite
square grid, where each frequency peak is circular
with radius δω. The state is still unphysical, since the
frequency envelope along both frequency directions is
infinite. Then, the envelop of the joint spectral intensity
of the two-photon state is described by application of
the correlated time noise, using the Kraus-like operator:∫∫

D̂s( t+t ′
2 )D̂i( t−t ′

2 )G1/�ωp (t )G1/�ω− (t ′)dtdt ′ on state |ψ1〉.
After these two operations, the wave function |ψ〉2 describing
the two-photon state can be written as

|ψ〉2

=
∫∫

D̂s

(
t + t ′

2

)
D̂i

(
t − t ′

2

)
G1/�ωp (t )G1/�ω− (t ′)dtdt ′

×
∫∫

D̂s(ω)D̂i(ω
′)Gδω(ω)Gδω(ω′)dωdω′|+〉ωs |+〉ωi .

(43)

After performing the integral over time variables, we obtain
the wave function

|ψ〉2

=
∫∫

dωsdωiG�ωp(ω+)G�ω−(ω−)Gδω(ωs)Gδω(ωi )|ωs, ωi〉,

(44)

where we have defined ω± = ωs±ωi
2 . The full calculation is

detailed in Appendix A. The states described by Eq. (44) are
noisy frequency-entangled states, displaying an elliptical joint
spectral intensity in the (ω+, ω−) basis. The ellipticity R of the
joint spectral intensity determines how entangled the state is.
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FIG. 2. Numerical simulation of the joint spectral intensity for
a two-photon source in an optical cavity using arbitrary units. The
size of the ellipse is delimited by the energy conservation (with a
frequency width 1/�ωp) and the phase-matching condition (with a
frequency width of 1/�ω−). The center of the ellipse corresponds to
frequency degeneracy. Here the state is said to be anticorrelated since
�ω− > �ωp.

It is defined as R = 1/�ω2
−−1/�ω2

p

1/�ω2−+1/�ω2
p
, and the time noise in axis

ω− and ω+ plays a role in the correlation-anticorrelation of
the photons. A state with an arbitrary positive ellipticity is
represented in the numerical simulation Fig. 2. Note that such
biphoton state can be produced with an integrated chip in a
transverse pump configuration [40,41]. In Fig. 3, we recap in
a quantum circuit representation all the time-frequency gates
which act on the initial ideal time-frequency GKP state.

IV. PRODUCTION AND MANIPULATION
OF TIME-FREQUENCY GRID STATE

We are now ready to apply the previous definitions to
describe the spectrum of a photon pair generated by spon-
taneous parametric down conversion (SPDC) in a nonlinear
optical cavity. We will focus on a specific platform in order to
perform both a detailed numerical study and the experimental
illustration of our results, and also to study its application to
measurement-based error correction.

FIG. 3. Quantum circuit representing the generation of entangled
2D time-frequency GKP state.

FIG. 4. (a) A pump beam illuminates an AlGaAs waveguide
where photon pairs are generated by SPDC. The refractive index con-
trast between AlGaAs and air creates a cavity around the nonlinear
medium, as the waveguide’s facets play the role of mirrors. (b) Sim-
ulated joint spectral intensity of the state emitted by the nonlinear
cavity, using the nominal structure of the device. (c) Experimental
joint spectral intensity (detail).

A. Presentation of the integrated device for the generation
of time-frequency GKP state

The device we consider here consists of an AlGaAs Bragg
reflector waveguide emitting pairs of orthogonally polarized
photons in the telecom band by type II SPDC. The working
principle of the device is sketched in Fig. 4(a) [42]. The device
is pumped with a continuous wave laser at λp = 764 nm hav-
ing a linewidth �ωp = 2π × 100 kHz, much smaller than the
phase-matching bandwidth and the free spectral range. This
leads to the generation of strongly anticorrelated photon pairs
over a spectral band of 2π × 10.9 THz centered around the
frequency degeneracy as shown in the numerical simulations
reported in Fig. 4(b). Moreover, the refractive index contrast
between the semiconductor nonlinear medium and the air
induces a Fabry-Perot effect, resulting in a built-in cavity. The
free spectral range of the cavity is ω = 2π × 19.2 GHz, yield-
ing a comblike spectrum with approximatively 570 peaks.
Figure 4(c) shows the measurement of a portion of the joint
spectral intensity via stimulated emission tomography [40],
evidencing a frequency comb structure.

The generated two-photon state can be written as

|ψ〉 =
∫∫

dωsdωiF (ωs, ωi )|ωs〉|ωi〉, (45)

where the F is the product of four terms:

F (ωs, ωi ) = f+(ω+) f−(ω−) fcav(ωs) fcav(ωi). (46)

The function f+ is related to the conservation of the energy,
while f− is related to the phase-matching condition. Both
functions can be modeled as Gaussian functions. The effect
of the cavity on each mode (signal and idler) is taken into
account by the cavity functions fcav(ωs(i) ) that act as an
imperfect frequency filter. We will assume that the cavity
function is a sum of Gaussians, which is a good approximation
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in the limit of a high-finesse cavity:

fcav(ω) =
∑
n∈Z

Tn(ω), (47)

where again Tn(ω) = exp(−(ω − nω)2/(2δω2)). The fre-
quency width δω depends on the finesse of the cavity. For
a high-finesse cavity, we have ω � δω, and the two-photon
state can be written as

|ψ〉 =
∑
n,m

∫∫
dωsdωi f+(ω+) f−(ω−)Tn(ωs)Tm(ωi )|ωs〉|ωi〉.

(48)
The resulting state is analogous to a grid state because of
the cavity functions. We point out that states described by
Eqs. (48) and (44) are equal, justifying the interpretation in
terms of GKP states as depicted in Fig. 2.

It is interesting to notice that in the case where
G�ωp (ω+) = δ(ω+) and ω/δω 	 1, we can approximate

|ψ〉 = ˜|+̄〉|+̄〉 
 Ĉ′|+̃〉|+̃〉, where we used Eqs. (40) and (41).
In this case, |ψ〉 is anticorrelated, and �ωp 	 �ω−. The joint
spectral intensity is shown in Fig. 4(b) and it is close to a
line along the ω− direction. We thus have that F (ωs, ωi ) 

δ(ω+ − ωp) f−(ω−) fcav(ωs) fcav(ωi ) and integration over ω+
in Eq. (48) leads to

|ψ〉 =
∫

dω− f−(ω−) fcav

(
ωp + ω−

2

)
fcav

(
ωp − ω−

2

)

×
∣∣∣∣ωp + ω−

2
,
ωp − ω−

2

〉
. (49)

This state is the one produced experimentally whose joint
spectral intensity is represented on Fig. 4.

To summarize, the generation of 2D time-frequency GKP
state can be apprehended in two ways. The first and usual
one (described in Ref. [43], for instance) is to consider a
pump beam which crosses a nonlinear crystal and generates
by SPDC two photons, called signal and idler. The ellipticity
of the joint spectral intensity quantifies the level of frequency
entanglement and the optical cavity resonances determines
the frequencies of both photons. The second interpretation
provided in this paper is to consider the generation of the 2D
physical time-frequency GKP state from fictitious 2D ideal
time-frequency GKP state entangled by the time-frequency
noise model described by Eq. (43).

B. Applications on time-frequency quantum error correction

The previously described 2D entangled time-frequency
GKP state can be used to implement a measurement-based
error-correction protocol, which was previously defined for
quadrature position-momentum continuous variables [13,44].

In this scenario, the result of a measurement performed on
one qubit (say, B, encoded in the idler photon, also called
the ancilla) is used to correct the error on the other qubit A,
encoded in the signal photon, also called the data qubit).

We will consider the effect of a time measurement on the
ancilla qubit of state Eq. (48). Since both qubits are entangled,
measuring the ancilla qubit (B) has an effect on the data qubit
(A), as shown in Fig. 5 [4]. The operation realized in qubit B
is teleported to qubit A, up to a known displacement on qubit

FIG. 5. The data qubit (signal) in arm A and the ancilla one
(idler) in arm B are prepared in state |+̄〉ωs |+̄〉ωi = |0〉ts |0〉ti . After
displacements and the Ĉ′ gate, we perform a time measurement on
the ancilla.

A, which is given by the result of the measurement performed
in qubit B. In the spirit of QEC, the interest of this approach
is that, if noise corresponds to displacements in conjugate
variables, as it is the case in the GKP code, one can show that,
if qubit B is measured in one variable (time or frequency), its
error in the measured variable is teleported to qubit A’s error
in the same variable. Thus, if qubit B’s error is smaller than
A’s, this scheme can be used to decrease the noise in physical
GKP states of A [44].

While the described protocol is very general, the QEC of
GKP states requires a specific ordering of optical elements.
This protocol allows for the correction of small displace-
ments in phase space, for which the GKP is designed to
be robust due to its comb structure. For the time-frequency
GKP states that we consider in this paper, the small dis-
placement shifts are due to temporal broadening in a dis-
persive medium and can cause an overlap between the |0̃〉t

and |1̃〉t peaks of the logical qubit state. The correctabil-
ity (the “small” displacement which occurs) of the GKP
states is quantified thanks to a figure of merit developed in
Refs. [38,45].

An interesting aspect of using measurement-based tech-
niques is that they provide an alternative to a deterministic
two-qubit gate in single-photon-based devices. As a matter
of fact, implementing deterministic gates is a challenge in
such setups, and starting from useful entangled resources can
help achieving determinacy in different protocols. Possible
ways to scale up the generation of time-frequency GKP states
would be using on-demand production of pure single-photon
states, reviewed in Ref. [46], for instance. Such ideas can
be combined to implement efficient frequency gates, which
are currently realized with electro-optic modulators and pulse
shapers [28,47].

We expect that the fast technological evolution of the
integrated circuits physics will enable effective photon-photon
interaction with higher probability in the near future.

C. Experimental manipulation of time-frequency grid state
and state detection

In this section, we study the implementation of a single
qubit gate Ẑts on the state described by Eq. (49).

A possibility to manipulate frequency states is using
electro-optical modulation (EOM) [28] for frequency-bin
encoded qubits. Such techniques can also be used in the
present context, with the difference that while in Ref. [28]
each frequency is manipulated independently, in the present
encoding redundancy is a key aspect, and qubit manipulation
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FIG. 6. (a) Hong-Ou-Mandel experiment enabling state manipulation and measurement. After being generated, signal and idler photons
are separated with a polarizing beam splitter (PBS) and sent into two different arms of a HOM interferometer. In order to have the same
polarization for the photons, a half-wave plate is added. Time delay (τ ) in one arm performs a Ẑts gate for τ = −τrt/2. State measurement
can be done by recombining both photons in a second beam splitter and performing coincidence measurements for different values of τ .

(b) Experimental coincidence measurements corresponding to the state ˜|+̄〉|+̄〉. (c) Experimental coincidence measurements corresponding to

the state ˜|−̄〉|+̄〉. The continuous lines are the result of numerical calculations taking into account the effects of birefringence, reflectivity, and
chromatic dispersion in the AlGaAs chip.

requires acting on the whole frequency comb. It must then
be manipulated as a whole, a situation that does not add
any experimental complexity to the techniques considered in
Ref. [28].

Interestingly, using EOM is not strictly necessary to ma-
nipulate time-frequency GKP states. We demonstrate here an
experimentally simpler way to implement a quantum gate
Ẑts for time-frequency GKP states and obtain a signature of
the manipulation using a Hong-Ou-Mandel (HOM) interfer-
ometer [29,48] that can be used for state measurement, as
detailed in the following. The HOM setup is sketched in
Fig. 6(a): Signal and idler photons are sent to different arms
of an interferometer, A and B. We consider them to be in
the limit �ωp 	 �ω− for simplicity. When we introduce a
time delay τ between the two arms, the two photons acquire
a phase difference such that the biphoton state arriving in the
recombining beam splitter is given by

|ψ (τ )〉 =
∫

dω−e−i(ω−+ωp)τ/2 f−(ω−) fcav

(
ωp + ω−

2

)

× fcav

(
ωp − ω−

2

)∣∣∣∣ωp + ω−
2

,
ωp − ω−

2

〉
. (50)

Without loss of generality for the present purposes, we con-
sider g(ω−) = f−(ω−) fcav( ωp+ω−

2 ) fcav( ωp−ω−
2 ) to be real. This

function is also symmetric with respect to ω− = 0. The phase
e−iω−τ corresponds to a displacement of τ in time, the conju-
gate variable to ω−, as shown in Sec. III. It corresponds to the
application of the D̂s(τ ) operator to the signal photon before
the entangling operation.

By choosing τ = −τrt/2, the nth peaks of g(ω−) with n
even, remain unchanged, while for n odd, they gain a π phase
and change signs, implementing the gate Ẑts |+̄〉ωs = |−̄〉ωs

with a simple interferometric configuration and coincidence
detection. Consequently, before its arrival on the HOM re-
combining beam splitter, the two-photon state can be written

as |ψ ′〉 = ˜|−̄〉|+̄〉.
The signature of time displacement operator and the

orthogonality of the two states can be detected by mea-
suring temporal correlations with a HOM interferome-
ter. As shown in Refs. [49,50], the HOM experiment is
a direct measurement of the chronocyclic Wigner distri-
bution of the phase-matching part of the joint spectral
amplitude. The first experimental demonstration of these
ideas can be found in Ref. [51]. In the experimental
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context discussed here, it gives access to a cut in the
time-frequency phase space of the Wigner function associated
to the global variable ω−, W (μ, τ ), where μ is the amplitude
of displacement of ω− and τ is the amplitude of displacement
in time. The HOM experiment corresponds thus to a cut along
the μ = 0 line, where τ is varied. The partial information
obtained is enough to distinguish between the two orthogonal
states.

We have implemented the setup sketched in Fig. 6(a) on the
state produced by our AlGaAs device presented in Sec. IV A.
The two output ports of the beam splitter are connected to
single-photon detectors (idQuantique ID230), which are free-
running InGaAs/InP avalanche photodiodes whose efficiency
is set to 25% and have a dead time of 25 μs. A time-to-digital
converter (QuTau QuTools) measures the time differences
between the detection events of each detector in a start-stop
configuration with a temporal bin size of 81 ps. For τ = 0, we
expect a coincidence dip with a visibility fixed by the degree
of indistinguishability between the signal and idler photons:
This corresponds to the state Ĉ′|+̃〉ωs |+̃〉ωi . For τ = −τrt/2,
we expect to observe a replica of the previous dip whose
visibility is related to a combination of facets reflectivity,
birefringence, and chromatic dispersion: This corresponds to
the state Ĉ′Ẑts |+̃〉ωs |+̃〉ωi . The results of the corresponding
measurements are shown respectively in Figs. 6(b) and 6(c).
In the first [Fig. 6(b), in the vicinity τ = 0] the visibility is
86%, while in the second case [Fig. 6(c), around τ = −τrt/2],
we obtain a visibility of 12%, making these two states well
distinguishable.

We show in Appendix B numerical simulations of the
visibility of the second dip of the HOM experiment as a
function of the cavity reflectivity and for different bandwidths
of the filters placed before the beam splitter. A visibility
higher than 80% for the adjacent dips from the central dip
can be obtained by improving the reflectivity of the facets
and filtering the produced spectrum, which would decrease
the number of exploitable peaks and reduce the detection rate
but would still keep them of the order of a hundred.

Further possible manipulation of the time-frequency grid
state has been proposed in Ref. [42], where tuning the pump
frequency allows to engineer the joint spectral amplitude
symmetry. Compared to other schemes where each comb line
is manipulated individually [47,52], this technique enables us
to address the odd and the even peaks collectively with low
optical losses. In the formalism developed in Sec. II, the pump
tuning corresponds to a frequency displacement operation on
the signal and idler photons (see Fig. 2 of Ref. [42]), namely to
nonlinear operation without the need to introduce a nonlinear
material or EOM after the generation of the two-photon state.

D. Experimental proposal for quantum error correction
in time-frequency variable

We now discuss the experimental feasibility of the time
quantum error correction. The joint temporal intensity of the
state given by Eq. (48) is represented in Fig. 7. The state is
periodic, with periodicity of 2π/ω = 50 ps using the param-
eters of the above-described source, along the two orthogonal
directions t±. But since the inverse of the energy conserva-
tion width 1/�ω+ is much larger than the cavity round-trip

FIG. 7. Numerical simulation of the joint temporal intensity of
the time-frequency GKP states in the case �ω− � �ωp with a 50-ps
periodicity. It corresponds to the Fourier transform of the state shown
in Fig. 4(b). The state is periodic in both directions, but since the
1/�ωp � 2π/ω, we cannot see the periodicity in the t+ direction
since the data qubit is very noisy.

time τrt, the periodicity along the t+ is not visible. A time
measurement of the idler photon leads to a random temporal
distribution which corresponds to the different peaks along the
t− axis. A single-photon detector should have 50-ps temporal
resolution to distinguish these peaks, which is possible with
current technology. Once the state is measured, further time
or frequency correction operators could be applied on the
data [38].

Error correction is also possible in frequency degrees of
freedom, and it requires measuring one of the photons in
the ω± variables. This operation could be performed with
nonlinear devices implementing a controlled quantum gate in
the frequency degrees of freedom.

V. CONCLUSION

We detailed a formalism establishing the analogy between
continuous variables consisting of many modes of single
photons and those associated to a single mode field’s quadra-
tures. We introduced a rigorous construction and provided
a physical and mathematical meaning to the chronocyclic
Wigner distribution in a quantum optics experiment. Using
the introduced formal analogies, we showed that experi-
mental setups consisting of a SPDC source and a filter-
ing cavity can be a natural source of time-frequency GKP
states, which are time-frequency non-Gaussian states useful
for fault-tolerant quantum protocols manipulating continuous
variables. Qubits can be encoded in frequency and time
degrees of freedom of photons and entangled GKP states
can be generated and manipulated. We have experimentally
illustrated these results in an integrated optical platform. Fi-
nally, we have shown that the produced state is a resource for
measurement based quantum computing (MBQC) and error
correction, and both can be implemented through time or
frequency measurement of one photon of the pair. A natural
perspective is to combine our results with already existing
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technologies for quantum photonic circuits for further appli-
cations and scaling [53–56]. Using the measurement-based
principle, other protocols involving quadrature position-
momentum GKP states could be generalized to time-
frequency variables such as the correction of Gaussian errors
using GKP states as a non-Gaussian resource with the two-
mode GKP repetition code [12,57].
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APPENDIX A: CALCULATION OF THE WAVE FUNCTION
OF 2D TIME-FREQUENCY ENTANGLED GKP STATES

WITH THE TIME-FREQUENCY NOISE MODEL

In this section, we detail the calculation of the 2D en-
tangled time-frequency GKP states from the time-frequency
noise model described in Sec. III C 2.

We start by applying the unitary operator describing
the uncorrelated frequency noise between the signal and
the idler fictitious ideal time-frequency GKP states: |ψ1〉 =∫∫

D̂s(ω)D̂i(ω′)Gδω(ω)Gδω(ω′)dωdω′)|+〉ωs |+〉ωi . After ap-
plying the frequency displacement operator, we obtain the
wave function

|ψ1〉 =
[∫∫

Gδω(ω)Gδω(ω′)dωdω′
]

×
∑
n,m

|nω + ω〉|mω + ω′〉. (A1)

The entangling gate described by Eq. (42), which equivalently
corresponds to a correlated time noise, is then applied on the
previous state:

|ψ2〉 =
(∫∫

D̂s

(
t + t ′

2

)
D̂i

(
t − t ′

2

)
G1/�ωp (t )

× G1/�ω− (t ′)dtdt ′
)

|ψ1〉. (A2)

The time displacement operators are then applied:

|ψ2〉 =
∫∫

G1/�ωp (t ) × G1/�ω− (t ′)dtdt ′

×
∫∫

Gδω(ω)Gδω(ω′)dωdω′

×
∑
n,m

ei(nω+ω)(t+t ′ )/2ei(mω+ω)(t−t ′ )/2|nω+ ω〉|mω+ ω′〉.

(A3)

We then integrate over the time variables, using the Fourier
transform of Gaussian function:∫

dtG1/�ωp (t )ei[(n+m)ω+ω+ω′]t/2

= G�ωp

[
(n + m)ω + ω + ω′

2

]
. (A4)

We thus obtain the following wave function:

|ψ2〉

=
∫∫ ∑

n,m

G�ωp

(
(n + m)ω + ω + ω′

2

)
Gδω(ω)Gδω(ω′)

× G�ω−

(
(n− m)ω+ω−ω′

2

)
dωdω′|nω+ω〉|mω+ω′〉.

(A5)

A final frequency variables change gives

|ψ2〉 =
∫∫

G�ωp (ω+)G�ω− (ω−)Gδω(ω − nω)

× Gδω(ω′ − mω)dωdω′|ω〉|ω′〉, (A6)

which corresponds to Eq. (48) and the wave function of the
state created by SPDC described by Eq. (44).

APPENDIX B: IMPLEMENTING GATES USING THE
HONG-OU-MANDEL EXPERIMENT

1. Implementing the Ẑ for the time-frequency GKP states

In this section, we detail how to implement the single-qubit
gate Ẑ for the time-frequency GKP states. The frequency ωp

is taken different from zero. For simplicity, we will describe
the principle of the gate for an ideal GKP state. Starting from
the Eq. (49) and supposing that each photon goes to one arm
of a Hong-Ou-Mandel (HOM) interferometer where a linear
medium was inserted in one of the arms (see Fig. 6), the wave
function can be written, after the beam splitter, taking into
account only the coincidence terms as

|ψ〉τ = 1

2

∫
dω− f−(ω−) fcav

(
ωp + ω−

2

)
fcav

(
ωp − ω−

2

)

× e−i
(ωp+ω− )τ

2

(∣∣∣∣ωp + ω−
2

,
ωp − ω−

2

〉

−
∣∣∣∣ωp − ω−

2
,
ωp + ω−

2

〉)
, (B1)

where τ is the temporal delay introduced by the linear medium
in the upper path. After performing a change of variable, we
obtain

|ψ〉τ = 1

2

∫
dω−

(
f−(ω−)e−i ω−τ

2 − f−(−ω−)e+i ω−τ

2

)

× fcav

(
ωp + ω−

2

)
fcav

(
ωp − ω−

2

)

×
∣∣∣∣ωp + ω−

2
,
ωp − ω−

2

〉
. (B2)
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In the last equation, we discard an unimportant global phase.
The coincidence probability I (τ ) = ∫∫

dωsdωi|〈ωs, ωi||ψ〉τ |2
reads

I (τ ) = 1

2

{
1 − 1

N
Re

[∫ ∣∣∣∣ fcav

(
ωp + ω−

2

)
fcav

(
ωp − ω−

2

)∣∣∣∣
2

× f−(ω−) f ∗
−(−ω−)e−iω−τ/2dω−

]}
, (B3)

where N = ∫ | fcav( ωp+ω−
2 ) fcav( ωp−ω−

2 )|2 f−(ω−) f ∗
−(−ω−)dω−.

In Ref. [50], it was shown that the coincidence probability is
proportional to a cut of the chronocyclic Wigner distribution
at ω− = 0. We can then only partially characterize the state,
but the information obtained is enough to analyze different
time-frequency GKP states.

Experimentally, we realize the HOM experiment having as
initial state (49), so that we can observe the effect of the gate
Ẑts . For τ = −τrt/2, the odd peaks of state (49) gain a negative
amplitude, which means that a Ẑts gate was implemented. This
corresponds to the transformation Ẑts |+̄〉ωs applied to the ideal
GKP state, which means that the physical state is transformed

according to ˜|+̄〉|+̄〉 → ˜|−̄〉|+̄〉.
Here, we perform the analytical calculation for the coin-

cidence probability of the state, for a high reflectivity of the
cavity and without taking into account the birefringence and
the chromatic dispersion. Assuming that ω/δω � 1, we have

I (2τ ) = 1

2

[
1 − e−τ 2δω2/2

d∑
n=−d

αncos(nωτ )

]
, (B4)

where d is the number of peaks, 1
N = 1∑d

n=−d αn
, and αn =

e−(
ωp
2 −nω)2/δω2

. In Figs. 8(a) and 8(b), we show the plot of
the coincidence probability with arbitrary units for a cavity
with a reflectivity of r = 0.9. The HOM interference exhibits
a replica [48], and depending on the time displacement we
perform, we obtain for the signal photon the state |+̃〉ωs or
|−̃〉ωs . The visibility of the central dip and the nearest replica
are too close to distinguish the two states, contrary to the
experimentally studied case where low reflectivity and chro-
matic dispersion increase the coincidence probability of the
state |−̃〉ωs . For a high reflectivity of the cavity, to distinguish
the two orthogonal states, we then have to choose two replicas
away from the central dip.

2. Numerical simulations of the visibility of the second dip of the
HOM experiment

We now present the visibility of the secondary dip from the
central one with respect to the reflectivity of the facets in our
specific AlGaAs device. The intersection of the dashed lines
indicates the conditions in which the experiment has been
performed: a modal reflectivity of the facets of 0.3 without fre-
quency filters, which leads to a theoretical prediction of 15%
of visibility, which is in good agreement with the experimen-
tally observed result of 12%; see Fig. 6(c). Such visibility is
enough to distinguish both possible GKP states. Note that the
visibility of the second dip can be increased by depositing a
reflective coating on the facets, but this solution would equally

(b)

(a)

FIG. 8. (a) Numerical simulation of the HOM experiment for the
two-photon state for a highly reflective cavity without taking into
account the birefringence and the chromatic dispersion. Coincidence
probability as a function of the delay in units of τrt. Selecting τ =
±τrt/2 performs a Ẑts gate. (b) Detail of panel (a).

enhance the detrimental effect of the cavity birefringence by
making peaks corresponding to different polarizations more
distinguishable. In addition to coating, a potential strategy to
improve the visibility is to add frequency filters in order to
select the central part of the spectrum and reduce the effect of
birefringence and chromatic dispersion. For instance, the total
frequency bandwidth for about 500 peaks is 70 nm as shown
in Fig. 9. For each curve in Fig. 9, we note that the visibility
reaches a maximum and then decreases when increasing the
reflectivity, well illustrating our discussion on the antagonist
roles of the reflectivity and the birefringence. It shows that a
visibility of the order of 80% is well on reach.

APPENDIX C: QUANTUM ERROR CORRECTION

We now consider the situation where the widths of the
phase matching and energy conservation conditions are fi-
nite and the state obtained corresponds to an ellipse in the
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FIG. 9. Numerical simulation of the visibility of the secondary
peaks, nearest to the central dip, as a function of the reflectivity of the
facets for different bandwidth of the frequency filters placed before
the beam splitter. The birefringence and the chromatic dispersion
are here taken into account. The intersection of the two dashed
lines indicates the conditions of the realized experiment whose
coincidence measurement is presented in Fig. 6(c).

joint spectral intensity plane, as discussed in Sec. IV. As
mentioned, in this situation we have an entangled GKP
state in time. We can consider that one of the photons,
say, the idler, plays the role of the ancilla while the sig-
nal one is the data qubit in a measurement-based cir-
cuit as in Fig. 5. We will thus perform a measurement
in the ancilla (frequency or time measurement) and use
the measurement result to correct the data qubit, as in
Refs. [4].

1. Correction against temporal shift (MBQC)

The principle of the MBQC is the following: We prepare an
entangled GKP state, noisy in time and frequency [Eq. (48)],
which can be prepared with a SPDC source in an optical
cavity as shown in the main text. Then we perform a time

or frequency measurement on the qubit ancilla in a particular
basis. Since only the time noise is entangled [see Eq. (42)],
the time measurement provides the information about this
displacement (see Fig. 5).

We then report the same procedures as in Ref. [4], as-
suming a Dirac distribution for the time and frequency noise,
and investigate the influence of the time measurement of the
ancilla on the time noise of the signal.

We start from a separable state, where the data (signal) and
the ancilla (idler) are initialized in the frequency |+〉ωs |+〉ωi :

|ψ〉 = |+〉ωs |+〉ωi = |0〉ts |0〉ti =
∑

n,m∈Z
|nT 〉|mT 〉, (C1)

with T = 2πτrt. Frequency and time Dirac distribution noises
are assumed for both qubits:

|0〉ts |0〉ti → D̂s(t )D̂i(t
′)D̂s(ω)D̂i(ω

′)|0〉ts |0〉ti , (C2)

and then time noises are entangled with the Ĉ′ operation:

Ĉ′D̂s(t )D̂i(t
′)Ĉ′−1

D̂s(ω)D̂i(ω
′)|0〉ts |0〉ti

= D̂s

(
t + t ′

2

)
D̂i

(
t − t ′

2

)
D̂s(ω)D̂i(ω

′)|0〉ts |0〉ti

=
∑
n,m

einωT eimω′T
∣∣∣∣nT + t + t ′

2

〉∣∣∣∣mT + t − t ′

2

〉
. (C3)

We realize a time measurement on the ancilla (the idler), so let
us consider that the detector clicks at time τ , which can take
only the values τ = t−t ′

2 + mT . The initial state is projected
into

|0〉ts → eiω′(τ− t+t ′
2 )D̂s

(
t + t ′

2

)
D̂s(ω)|0〉ts . (C4)

The temporal shift of the data qubit is entirely determined
by the noise (shift) of the ancilla. The probability of success is
given by |t − t ′| < π

2ω
, which means the probability to avoid

a fall in another π
2ω

time window.

2. Gaussian distribution of the noise

Now we consider that the time and frequency noises obey a
Gaussian distribution. We thus have the state, as written before
Eq. (40),

|ψ〉 =
[∫∫ ∫∫

Gδω(ω)Gδω(ω′)G1/�ω− (t )G1/�ωp (t ′)D̂s

(
t + t ′

2

)
D̂i

(
t − t ′

2

)
D̂s(ω)D̂i(ω

′)ddt ′dωdω′
]
|0〉ts |0〉ti . (C5)

We then apply the time and frequency displacement operators on the GKP state:

|ψ〉 =
∫∫ ∫∫

Gδω(ω)Gδω(ω′)G1/�ω− (t )G1/�ωp (t ′)
∑

n,m∈Z
einωT eimωT

∣∣∣∣nT + t + t ′

2

〉∣∣∣∣mT + t − t ′

2

〉
dtdt ′dωdω′. (C6)

The joint temporal amplitude of the state 〈ts, ti||ψ〉 = H (ts, ti ) is a circle whose radius is the frequency width ω, with elliptical
peaks whose half axis are equal to �ω− and �ωp; see Fig. 7. In the case where �ω− � �ωp, the joint temporal amplitude
associated is a periodic (along t−) set of lines along t+.
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We then perform a time measurement on the ancilla, a click is detected at time τ that can take the value τ = mT + t−t ′
2 . The

new wave function |ψ ′〉τ = 〈τ ||ψ〉 is, after performing an integration over t and after normalization,

|ψ ′〉τ =
∫ ⎛

⎝∫∫ ∑
n,m∈Z

eiωnT G�ω− (t ′ + 2(τ − mT ))G�ωp (t ′)
G√

�ω2−+�ω2
p
(2(τ − mT ))

Gδω(ω′)Gδω(ω)eiω′mT |(n − m)T + τ + t ′)〉dωdt ′

⎞
⎠dω′. (C7)

After the time measurement of the ancilla (idler), the state is projected into a one-dimensional GKP state. The time noise
distribution of the signal is updated,

G�ω− (t ′ + 2(τ − mT ))G�ωp (t ′)
G√

�ω2−+�ω2
p
(2(τ − mT ))

= Gδ (t ′ − tm). (C8)

It is a normal distribution with variance δ2 = �ω2
−�ω2

p

�ω2−+�ω2
p

and mean value tm = �ω2
−

�ω2−+�ω2
p
(τ + mT ). The time noise of the data

depends on both the noises of the ancilla and the data.
Hence, the state can be written as

|ψ ′〉τ =
∑
m∈Z

∫ ∫∫
dωdt ′dω′Gδω(ω)Gδ (t ′ − tm)Gδω(ω′)eiω′mT D̂s(−mT + τ + t ′)D̂s(ω)|+〉ts . (C9)

We point out that for time-correlated photons with high noise in time variables �ω− � �ωp, the time distribution of the signal
only depends on the noise of the idler, since δ ∼ �ω− and tm = τ + mT . Therefore, the analysis is the same than the previous
section. We can understand this noise reduction on Fig. 7 as follows: When we perform a measurement on the t− axis, the signal
is projected into a less noisy state since the updated time distribution of the signal depends on the time distribution of the idler. As
a consequence, according to (C8), the state becomes periodic along the t+ direction, since the time width of each peak becomes
�ωp (instead of �ω−) which is smaller than 2π/ω.

Note that if we had considered an anticorrelated initial state, error correction would be effective if the signal photon were
detected, instead of the idler one.
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