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Improved heralded schemes to generate entangled states from single photons
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We present a semianalytical methodology to construct optimal linear-optical circuits for the heralded
production of three-photon Greenberger-Horne-Zeilinger (3-GHZ) and two-photon Bell states. We provide a
detailed description and analysis of the resulting optical schemes, which deliver success probabilities of 1/54
and 2/27 for dual-rail encoded 3-GHZ and Bell-state generation, respectively. Our results improve the known
constructive bounds on the success probabilities for 3-GHZ states and are of particular importance for a ballistic
quantum computing model [M. Gimeno-Segovia et al., Phys. Rev. Lett. 115, 020502 (2015)], for which these
states provide an essential resource.
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I. INTRODUCTION

Contemporary quantum computing technology is capa-
ble of engineering quantum devices operating with tens of
qubits. Various physical platforms are competing in a race
to implement quantum algorithms in practice. The linear-
optical platform is attractive in many ways but suffers
from a major hindrance—a probabilistic nature of multi-
qubit gates [1]. Even though current theoretical proposals
explore ways to seamlessly incorporate nondeterministic en-
tangling gates [2], the currently known linear-optical quan-
tum computer (LOQC) architectures still have to consume
small entangled states as a resource for successful operation.
A current state-of-the-art model for linear-optical quantum
computing requires a deterministic source of entangled three-
photon states of the Greenberger-Horne-Zeilinger (GHZ) type
(3-GHZ) [3]. There are approaches to deterministic gener-
ation of such states [4], however, high-quality deterministic
preparation is still out of reach for the current technology. Al-
ternatively, active multiplexing and heralded entangled state
generation circuits provide a solution to the problem at the
cost of additional resources. A cornerstone of this approach
is the success probability of the entangling gate used, which
determines the required volume of supplementary resources.

Probabilistic entangling gates may be divided in two
classes—postselected and heralded ones. The successful op-
eration of a postselected gate is identified postfactum at the
latest stage of an experiment and requires detection of all
photons in the circuit. Such gates cannot be concatenated
since the input of each gate has to be encoded exclusively in
the logical basis—a requirement which is impossible to fulfill
due to the unitary behavior of the circuit [5]. In other words,
the output of any postselected gate with nonunity success
probability will contain unwanted states (often outside the
logical basis), which will ruin the operation of the consequent
gates. Furthermore, recent work [6] provides evidence that
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postselected entangling gates cannot span the full space of
multiphoton entangled states. Last, but not least, the post-
selected setting demands the photons to pass through the
whole circuit which poses extremely stringent requirements
on loss in the optical circuit. For the reasons above the use of
postselected gates for scalable quantum computing appears to
be infeasible. However, we must note that in specific small-
scale cases the interconnection between different degrees of
freedom of a single photon can help to overcome the issue [7].

In turn, the heralded gates use some of the input photons
to trigger the successful operation event without detecting
and thus destroying the photons carrying the logical informa-
tion. The heralding principle enables a completely different
strategy for a linear-optical quantum computer architecture:
Since the successful trigger event exists, the photons carrying
the logical information can be measured during the circuit
operation and not at the very end of it. The consequence is
a drastic increase of the tolerable loss in the optical circuit. It
has been shown that a specific large-scale cluster state gener-
ation procedure tolerates a few percent of photon loss [3,8].
Throughout the rest of the paper we will discuss only the
problem of designing heralded entangling gates.

Let us briefly review the existing results on the optical
circuit for heralded entangled state generation. We will focus
on the circuits using nonentangled ancillary photons and dual-
rail encoded logical qubits. The first example of the heralded
controlled-Z (CZ) gate was reported in the seminal work by
Knill et al. [9] and had a success probability of 1/16. Later
on Knill devised a CZ gate circuit with two ancillary single
photons [10] succeeding with probability 2/27 and a loose
upper bound for any linear-optical CZ gate of 3/4 [5]. The
best result for Bell-state generation is due to Zhang et al. [11]
who experimentally demonstrated a circuit with a success
probability of 3/16. The GHZ states [12] are substantially
harder to generate and few results are known for the general
case [13,14]. To our knowledge, the best result for heralded
3-GHZ generation is reported in Ref. [15] and guarantees a
success probability of 1/256 without feedforward and 1/32 if
feedforward is allowed.
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The step-by-step recipe for designing a circuit implement-
ing a particular multiqubit linear-optical gate does not exist.
A few examples of insights on linear-optical gate construction
may be found in the literature [9–11]. However, for a general
problem of finding an optical circuit guaranteeing maximal
gate success probability, a more generic approach should be
considered. For instance, the linear-optical transformation of
the input Fock state may be described in terms of a system of
polynomial equations [16], which has a well-known numeri-
cal solution—the Buchberger algorithm—unfortunately, with
an EXPSPACE complexity.

Better performance may be achieved by formulating the
circuit design task as an optimization problem, which fits the
unitary transformation of the circuit to a desired quantum gate
and minimizes some figure of merit, for example, fidelity of
the desired gate and the current gate computed during the
procedure [17]. This methodology of the quantum gate design
is highly sensitive to the details of the numerical optimization
problem setup and thus requires accurate formulation.

Here, we report a detailed analysis of the numerical op-
timization procedure of finding linear-optical circuits for the
heralded generation of a 3-GHZ state. As a result, we present
a circuit for dual-rail encoded 3-qubit GHZ state generation
with a probability of 1/54 representing a nearly fivefold
improvement over the best known result [15]. A part of
this circuit may be used to generate two-qubit Bell states
with a probability of 2/27. Both circuits do not require any
feedforward.

II. PROBLEM SETUP

We consider a problem of finding a unitary transformation
U of an initial separable state of Nph photons in N + M modes,

|ψin〉 =
Nph∏
k=1

a†
ik
|0〉⊗[N+M], (1)

such that particular measurement patterns in M ancillary
modes herald the desired N-mode target states with maxi-
mal success probability (see Fig. 1). In particular, we will
be most interested in maximally entangled two- and three-
photon target states (Bell-like and GHZ families), assuming

FIG. 1. Generic problem setup illustrated for the case N = Nph =
6, M = 4.

the detectors are capable of distinguishing zero, one, and more
than one photons, and focus on single-photon ancillary states.
The transformation U of the photonic state in the Fock space
corresponds to a unitary transformation U of the annihilation
operators, describing an underlying N + M mode interferom-
eter. Matrix elements of U are related to permanents of the
matrix U [18].

Quantitatively, there are two objects to consider:
Probability Pa = ∑

m |〈m, a|U |ψin〉|2 of ancillary state
|a〉 detection and corresponding overlaps Mt,a =
P−1

a |〈t, a|U |ψin〉|2 of the heralded wave function with
target vectors, where |m, a〉 denotes a normalized Fock-space
state |m1, . . . , mN , a1, . . . , aM〉 with Mph = ∑

i ai being the
number of ancillary photons. Postselection (probability Pa) of
a particular target state means that the ath column of the M
matrix has a single unit element (remaining entries are zero),
and for multiple targets the overall success probability is a
sum of all appropriate Pa. Therefore, the goal is to find both
the optimal set A(U ) of admissible ancillary states and the
corresponding unitary transformation U of optical modes,

A(U ) = {a|∃t∗ : Mt∗,a(U ) = 1},
(2)

U = arg max
V

∑
a∈A(V )

Pa(V ).

Note that the solution is not expected to be unique, therefore,
it makes sense to augment the problem with additional per-
formance measure(s). A natural choice comes from practical
considerations: Among various equivalent solutions the “sim-
plest” one is preferable, where “simplicity” is defined as the
minimal number of nontrivial U (2) factors (optical elements)
required to realize a given unitary transformation. There are
various ways to factorize unitary matrices [19–26], and here
we stick exclusively with the approach of Ref. [24],

U (N ) � U = D · T (n1,m1 )
1 · · · T (nQ,mQ )

Q , (3)

where Q = N (N − 1)/2, D is a diagonal matrix of pure
phases, and T (n,m) are U (2) rotations (two-mode “splitters”),

T =
[

eiϕ cos θ − sin θ

eiϕ sin θ cos θ

]
,

(4)
θ ∈ [0, π/2], ϕ ∈ [−π, π ],

embedded in (n, m) rows/columns. The transformation T be-
comes trivial at θ = {0, π/2}—up to a global phase it reduces
either to an identity or a permutation matrix. Therefore, an
additional performance measure to be minimized is

S(U ) =
∑

i

{(1 − cos[4θi]) + ε(1 − cos[2ϕi])}

+ δ
∑

i

|Di − 1|2, (5)

where ε and δ are small parameters, which gently push the
respective phases towards “trivial” values (e.g., ϕi = 0,±π ).

III. SOLUTION METHODOLOGY

We solve the above described problem using numeri-
cal optimization methods, supplemented with an analytic
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postprocessing of the results. Our methodology consists of
two main stages:

(1) A particular approximate solution of (2) is obtained
using numerical methods (see below for details).

(2) Once the candidate ancillary indices A are established,
we numerically solve (5) supplemented with appropriately
lower-bounded ancilla probabilities Pa, a ∈ A, and corre-
sponding requirements on the overlap matrix elements.

These steps are repeated multiple times to assure a global
search of an optimal solution, and the best results obtained are
collected for further processing.

A silent feature of (2) is that it does not admit a direct
formulation as a constrained optimization problem because
neither the relevant set of ancillary indices A nor the target
states with unit overlaps are known a priori. Theoretically, one
could try to introduce additional discrete variables, however,
available methods to solve the resulting nonlinear constrained
mixed-integer task are rather inefficient and are likely to
reduce to exhaustive enumeration. Experience revealed that
the most efficient approach is to consider, following Ref. [27],

U = arg max
U

∑
t,a

PaMp
t,a, (6)

where the summation is done over all targets and ancillas and
p is some positive power, which ensures sufficient suppression
of small matrix elements Mt,a (in practice, we used p =
3, 4, 5). The resulting formulation has no explicit constraints
and can be solved efficiently. However, optimal solutions of
the original problem (2) generically become only local optima
of (6), therefore, all extremal points of the latter are to be
considered. Fortunately, this limitation is not very relevant
in practice, since the most powerful gradient-based local
optimization methods, which we use, find only local optima
anyway. In more detail, the considered objective function
is smoothly differentiable almost everywhere and its deriva-
tives are known analytically. It follows then that (locally)
optimal points are to be found most efficiently with second-
order gradient-based algorithms of the (quasi-)Newton fam-
ily. Specifically, we utilized a particular modern numerical
realization of the dumped Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method stabilized with Wolf-like line search rules,
which constitutes an inherent part of the pSeven Core algorith-
mic package (see Ref. [28] for more details). Although other
suitable optimization techniques are applicable as well, their
performance in the present context is expected to be much
worse.

Another cornerstone of the proposed methodology is a
proper parametrization of the unitary group. In this study
an open neighborhood of an arbitrary U0 ∈ U (N + M ) is
parametrized via the Cayley transform

U = U0
i − H

i + H
, (7)

where H is an (N + M ) × (N + M ) Hermitian matrix with
(N + M )2 unconstrained real parameters. Representation (7)
is well known in matrix analysis [29] and was proven to
be efficient in various applications (see, e.g., Refs. [30,31]).
In our case, for an arbitrary constant unitary U0, the real
parameters of H define the design space for the problem (6),
the exploration of which is to be started at H = 0 with

local optimization methods. To ensure a globalized search we
considered tens of thousands of Haar-random initial U0, each
of which were then locally optimized using the parametriza-
tion (7). Note that an appropriate solution to (6) is not always
established—there is a large number of improper stationary
points, Mt,a 	= 0, 1, which do not admit identification of an
optimal set A(U ) and thus are to be rejected.

A suitable solution of (6) establishes both the subset of an-
cillary indices A and the set of overlaps Mt,a to be kept at unit
value during the second stage. Therefore, next we consider the
problem (5) supplemented with additional constraints

Pa � P∗
a , Mt∗,a = 1, a ∈ A, (8)

where P∗
a denotes the ancilla probabilities obtained at the first

stage. In turn, the quality of the second stage solution is given
by the minimal number of nontrivial optical elements within
the decomposition (3). Therefore, at the second stage one has
to solve a constrained single-objective optimization task (5)
and (8), the solution of which was obtained with a sequential
quadratically constrained quadratic programming (SQCQP)
algorithm provided by pSeven Core [28]. The above two-step
procedure is repeated several thousand times with different
random starting points U0 and different powers p. The selected
set of best U ’s is left for further analytic treatment, to which
we turn next.

IV. 3-GHZ STATE GENERATION

In this section we consider the problem of optimal three-
particle GHZ state generation using six unentangled photons
and four ancillary modes, which corresponds to N = Nph = 6,
M = 4 in the setup in Fig. 1. Without loss of generality
the input state is taken to be |ψin〉 = |1〉⊗6|0〉⊗4. The target
vectors are ± superpositions of states with three photons in
six modes and all mode occupation numbers being zero or
one, e.g., |tk〉 ∝ |100110〉 ± |011001〉 and all unique particle
number permutations thereof (the second component is a
binary complement of the first). Such states correspond to
3-qubit GHZ states in appropriately chosen dual-rail encod-
ings. Admissible measurement patterns include states with
three photons in four ancillary modes, where each mode con-
tains zero or one photon (thus, there are only four legitimate
heralding patterns).

Extensive numerical experiments revealed that solutions
of (6) with the same quality appear quite often, e.g., a
Haar-uniform distribution of initial points U0 results in the
same quality transformations in ∼20% of cases. Meanwhile,
the typical distance ρ(U ∗,U0) = 1 − Tr[U ∗U †

0 ]/(N + M ) be-
tween U0 and the reached optimal element U ∗ is of the order
1/2 [more precisely, it is 〈ρ〉 = 0.45(15) under a Gaussian
approximation to the attained statistics]. A distinguishing
feature of all numerically identified unitary matrices is that
two and only two ancillary states have appropriate overlaps
with the selected targets. Specific ancilla indices as well as
heralded states might change, however, they always come
in pairs. The extension or reduction of the number of target
GHZ states does not change this property—the corresponding
success probabilities remain Pa = 0.009 259 26(1) ≈ 1/108
per each successful measurement.
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FIG. 2. The simplest scheme identified (12 two-mode elements).
The port assignment agrees with Fig. 1 (the input state |1〉⊗6|0〉⊗4 is
on the left). Ellipses represent single-mode phase shifters, and boxes
stand for splitters (4) with ϕ = 0. All angles are in degrees rounded to
the second digit when appropriate, in particular, 54.75◦ = arccos 1√

3
.

Candidate tuning via (5) and (8) indicated that the transfor-
mation complexity varies greatly, and the required minimal
number of two-mode elements might be as large as ∼30.
However, we attribute this to the inherent multimodality of
the considered formulation, because of which only locally op-
timal designs are often identified. Globalization is achieved as
usual via the selection of the simplest unitaries demonstrating
the same performance from those collected in all conducted
runs. It turns out that the minimal attainable number of
elementary splitters is 12, and at least we never encountered a
better solution.

Finally, we collected a few dozen of the best optical
transformations with the number of splitters equal to 12 and
13 [which is to be compared with the generic case of 10(10 −
1)/2 = 45 elements]. It turned out that all of them are just the
repetitions (up to permutations of ports and rearrangement of
phase shifters) of the same scheme, presented in Fig. 2. Note
that each box in the figure represents a two-mode transfor-
mation (4) taken at ϕ = 0, where ellipses denote single-mode
phase shifts (actually, sign flips). The scheme of Fig. 2 is not
a direct result of a numerical experiment—it was obtained
with extensive analytic postprocessing (the reduction of phase
shifters and the removal of unnecessary optical path crossings)
and guessing of the involved algebraic numbers. Nevertheless,
the numeric treatment was invaluable in its determination.

In fact, the established optical scheme is almost disjoint
and consists of two nearly symmetric arms interconnected
via a couple of 45◦ splitters at the output. The corresponding
decomposition, equivalent to Fig. 2 up to the input port
permutation, is shown in Fig. 3, where we kept a conventional
6 + 4 ordering of the output ports at the expense of a perhaps
redundant number of optical path crossings. Until the end of

FIG. 3. Optical scheme decomposition, obtained via relabeling
of the input (left-hand side) ports so that the appropriate initial state is
|1011010110〉. Output ports are ordered in accordance with the 10 =
6 + 4 convention, and the heralded state is in the first six modes.
The vertical line separates the disjoint structure from the two-mode
mixing elements and the output port permutations.

the current section we will concentrate on this representation,
although it seems not to be the most illuminating: We argue
below that further scheme surgery delivers more comprehen-
sive insights and reveals its connections with some known
protocols.

An analytic form of the established transformation is easy
to derive. The unitaries, corresponding to the top UT and
bottom UB disjoint parts (to the right of the vertical line in
Fig. 3), are almost the same,

UT,B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∓
√

2
3

1√
6

±1
2
√

3
∓1

2
√

3

−1√
2

±1
2

∓1
2

±1√
3

1√
3

±1√
6

∓1√
6

1
2

1
2

−1√
2

1
2

1
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where only nonzero matrix elements are shown. In accordance
with Fig. 3, the total transformation matrix is obtained from
the block-diagonal diag[UT ,UB] matrix via a permutation of
rows (output ports), the left application of two 45◦ splitters
(rows mixing), and relabeling of modes to arrive at the 10 =
6 + 4 convention. The GHZ state is heralded in modes (0–5)
if and only if single photons are detected in both (6,7) and
in either one of (8,9) ports (the remaining one is to be found
in a vacuum state). Each event happens with probability Pa =
1/108, so that the overall success rate is equal to Psuccess =
1/54.
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To justify the above assertion let us note that the transformed state is determined by the polynomial (27 · 25)−1Q(a†
0 · · · a†

9) in
creation operators,

Q = [A+
6,7 − 2a†

0][A−
6,7 + 2a†

3]

[
A+

6,7 −
√

3

2
A−

8,9 + C(1)

][
A−

6,7 +
√

3

2
A+

8,9 + C(3)

]

×
[

A+
6,7 +

√
3

2
A−

8,9 + C(2)

][
A−

6,7 −
√

3

2
A+

8,9 + C(4)

]
,

(10)
C(1,2) = a†

0 +
√

3(a†
1 ± a†

2),

C(3,4) = −a†
3 −

√
3(a†

4 ∓ a†
5),

where A±
i, j = a†

i ± a†
j . The required measurement patterns correspond to the products a†

6a†
7a†

8 and a†
6a†

7a†
9, which are entirely

contained in the terms proportional to (A±
6,7)2 A±

8,9 (all sign combinations). The structure of the above expression reveals that the
monomials (A+

6,7)2 A−
8,9 and (A−

6,7)2 A+
8,9 enter with zero coefficients. The coefficients of the remaining same-sign monomials are

given by

(A+
6,7)2 A+

8,9 = 2a†
6a†

7(a†
8 + a†

9) : 2

√
3

2
(C(4) − C(3) )(a†

3[C(1) + C(2)] − 2a†
0a†

1) = −1√
2

(2
√

3)3a†
1a†

3a†
5, (11)

(A−
6,7)2 A−

8,9 = 2a†
6a†

7(a†
9 − a†

8) : 2

√
3

2
(C(2) − C(1) )(a†

0[C(3) + C(4)] + 2a†
0a†

3) = 1√
2

(2
√

3)3a†
0a†

2a†
4. (12)

Therefore, the relevant terms in the transformed state are
readily obtained,

a†
6a†

7a†
8 :

−1

6
√

3

(a†
0a†

2a†
4 + a†

1a†
3a†

5)√
2

, (13)

a†
6a†

7a†
9 :

1

6
√

3

(a†
0a†

2a†
4 − a†

1a†
3a†

5)√
2

, (14)

confirming our assertion.

V. SCHEME ANALYSIS AND BELL-STATE GENERATION

The above considerations were somewhat formal and only
show that the established scheme operates properly, producing
3-GHZ states with a success probability of 1/54. In this
section we perform a more detailed analysis and generalize the
scheme to the case of maximally entangled two-photon Bell-
state generation. It turns out that the resulting transformation
shares some similarities with known protocols. Specifically,
we will demonstrate how a well-known result of 2/27 prob-
ability for Bell-state generation [32] is reproduced using the
building blocks identified in the 3-GHZ generation circuit.

Figure 4 represents a useful dissection of the optical
scheme described above. Note that the heralded state (3-GHZ
in this case) is to be found in the target ports t0 · · · t5, the
remaining ancillary modes are marked with the appropriate
measured photon numbers, and the input occupation numbers
are indicated explicitly (all other conventions are the same as
before). 	 blocks to be discussed shortly are defined in Fig. 5,
from which it follows that the scheme of Fig. 4 is identical to
what we considered previously.

Despite its rather complex look, Fig. 4 admits a straight-
forward interpretation. Indeed, the four leftmost 45◦ splitters
are designated to prepare an appropriate input state to be
further processed in the 	 blocks, while the two analogous
rightmost devices are dedicated to heralding measurements.

One can observe that the input ports 	.1 can receive zero or
two photons only due to the Hong-Ou-Mandel interference
at the preceding beam splitters [33]. For the same reasons
and because of the indicated heralding measurements only the
coherent superpositions of zero and two photons at the output
ports 	.2 are relevant. Therefore, the scheme functions via a
coordinated operation of two 	 blocks, while the complicated

FIG. 4. Representation of the 3-GHZ state generation scheme
equivalent to Fig. 3. The output ports are t0 · · · t5, and the inputs
are marked with appropriate photon numbers. The ancillary mode
measurement patterns (on the left) are labeled with heralding photon
counts. The 45◦ elements are the matrices (4) taken at ϕ = 0, ellipses
represent π -phase shifts, and 	 blocks are detailed in Fig. 5.
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FIG. 5. 	 block of the considered optical circuit, and the appro-
priate number of photons is indicated in square brackets for each
input port.

combination of 45◦ splitters is somewhat auxiliary and, in fact,
is well known. It was proposed in Ref. [34] for multiphoton
GHZ state production and provides a success probability of
1/64 in the three-photon case.

Therefore, it makes sense to consider a simplified version
of the scheme (Fig. 6), which is aimed to produce Bell
states. The only different element is an optional π/2-phase
shift, marked as an s circle (s = ±1 or simply s = ±), which
implements a sign flip of a two-photon component amplitude,
|2〉 → s|2〉. Qualitatively, the circuit operates in the same way
as before, however, its quantitative characteristics deserve a
separate discussion. Qubits a and b are identified with the
output mode pairs (a0, a1), (b0, b1) and we use a set of Bell
states associated with this dual-rail encoding: |φ±〉 ∝ (a†

0b†
0 ±

a†
1b†

1)|0〉, |ψ±〉 ∝ (a†
0b†

1 ± a†
1b†

0)|0〉. Below, we will need to
analyze a few different 	-like blocks, therefore, in accordance
with expected input states and heralding measurements, it is
worth considering a generic transformation of ω

†
0, (ω†

1 )2,

ω
†
0 → αω

†
2 + βω,

1
2 (ω†

1 )2 → A(ω†
2 )2 + 2Bωω

†
2 + Cω, (15)

FIG. 6. Scheme to generate maximally entangled Bell states of
two photons [ports (a0, a1) and (b0, b1)] using 	 blocks from Fig. 5.
The ancillary modes are a2, b2, and input photon numbers are
indicated in square brackets.

where α, A are block-specific numbers and Bω, βω (Cω)
are linear (quadratic) in ω

†
0,1 creation operators, naturally

assigned to respective modes. The transformation rule for
ω

†
0(ω†

1 )2/2 reads

1
2ω

†
0(ω†

1 )2 → (ω†
2 )0(· · · ) + (ω†

2 )1(Dω )

+ (ω†
2 )2(Aβω + 2Bωα) + (ω†

2 )3(· · · ), (16)

where Dω = αCω + 2Bωβω and dots denote unimportant
terms. Indeed, in the proposed scheme of Fig. 6, heralding
measurements require two photons in modes a2, b2 and se-
lect only the terms quadratic in ω

†
T,2, ω

†
B,2 operators. After

the action of the very first 45◦ splitter the state is propor-
tional to ω

†
T,0ω

†
B,0[(ω†

T,1)2 − s(ω†
B,1)2], from which it follows

that quadratic in ω
†
T,2, ω

†
B,2 expressions cannot arise from

∼(ω†
2 )0,∼(ω†

2 )3 terms in Eq. (16). Finally, accounting for
the leftmost 45◦ splitter and naturally identifying ω

†
T,k = a†

k ,

ω
†
B,k = b†

k , k = {0, 1}, one obtains the following expressions
in front of the relevant operators,

a†
2b†

2 : −[(1 + s)Aβaβb + 2α(Bbβa + sBaβb)], (17)

(a†
2)2

√
2

,
(b†

2)2

√
2

:
1√
2

[(1 − s)Aβaβb

+ 2α(Bbβa − sBaβb) ∓ α(Db − sDa)]. (18)

For the 	 block illustrated in Fig. 5, the respective unitary
transformation matrix is

U	 =
⎡
⎣−√

2/3 1/
√

6 1/
√

6
0 1/

√
2 −1/

√
2

1/
√

3 1/
√

3 1/
√

3

⎤
⎦, (19)

from which it follows that

α = 1/
√

3, A = 1/6, βa = −
√

2/3a†
0,

(20)
Ba = ã†

0/3
√

2, Ca = (ã†
1)2/3, Da = ã†

0ã†
1/3,

where operators ã†
0,1 are related to a†

0,1 via a 60◦ rotation,

ã†
0,1 = a†

0,1/2 ± a†
1,0

√
3/2. Using (17), one derives

a†
2b†

2 :

√
2

3
√

3

a†
0b†

1 + sa†
1b†

0√
2

=
√

2

3
√

3
|ψ s〉, (21)

which implies that the measurement of the |1a2 1b2〉 ancillary
state heralds the maximally entangled state of a and b qubits
for either choice of sign s with a success probability of 2/27.

Finally, let us consider the significance of the rightmost 30◦
splitter in the 	 block discussed above. Upon removal of this
optical element the scheme in Fig. 6 becomes similar to the
one presented in Ref. [32], which, as claimed, operates with
a 2/27 success rate [35]. Note, however, that this similarity
is somewhat formal: In the scheme of Ref. [32], the coherent
superposition of |02〉 and |20〉 states is fed to the 54◦ splitters
(the input modes of 	.2 in Figs. 5 and 6), while our scheme
requires it to be in 	.1. In either case, the modified 	′ block
of Fig. 7 corresponds to

U	′ =
⎡
⎣1/

√
2 −1/

√
2 0

1/
√

6 1/
√

6 −√
2/3

1/
√

3 1/
√

3 1/
√

3

⎤
⎦, (22)
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FIG. 7. Modified block 	′, which corresponds to (22). It leads
to (23), when used within the circuit of Fig. 6.

from which one obtains the coefficients in the transformed
wave function relevant for heralding measurements,

a†
2b†

2 :
−√

2

3
√

3

{
1
2 |ψ+〉 −

√
3

2 |φ−〉, s = +,

|ψ−〉, s = −,

(a†
2)2

√
2

:

√
2

3
√

3

{
(|ψ̃−〉 + |χ̃−〉)/

√
2, s = +,√

3
2 |φ̃−〉+ 1

2 |ψ̃+〉−|χ̃+〉√
2

, s = −,
(23)

(b†
2)2

√
2

:

√
2

3
√

3

{
(|ψ̃−〉 − |χ̃−〉)/

√
2, s = +,√

3
2 |φ̃−〉+ 1

2 |ψ̃+〉+|χ̃+〉√
2

, s = −,

where |χ±〉 ∝ (a†
0a†

1 ± b†
0b†

1)|0〉. One can see that a particular
choice of sign s allows one to herald the states which are the
closest to a conventional Bell basis. In particular, for s = +1
the modified scheme operates similarly, and the deleted 30◦

element effectively rotates 1
2 |ψ+〉 −

√
3

2 |φ−〉 to |ψ+〉.

VI. DISCUSSION

We have presented a general methodology for the numeri-
cal search of optimal linear-optical circuits for heralded entan-
glement generation. We discussed its application to design the
circuit for a 3-GHZ state of dual-rail encoded photonic qubits.
The obtained circuit has a success probability of 1/54. Impor-
tantly, the proposed circuit does not require any feedforward
and may be used with detectors resolving up to two photons.

It is important to note that although our heralding scheme (as
well as most of the others) requires a minimal photon number
resolution to detect the required ancillary Fock state correctly,
recent progress in photon-number-resolving superconducting
nanowire single-photon detectors (SNSPDs) [36,37] indicates
that this technology is now available. Although the ancillary
states heralding successful outcomes in our schemes contain
only single-photon or vacuum states in each ancillary mode,
the photon number resolution is required to dismiss the terms
with higher occupation numbers leading to incorrect results.
At the same time, since the gate scheme is designed in
such a way that the number of ancillary photons heralding
a successful result is always three and they are distributed in
three distinct modes (two in two modes for Bell states), exper-
imentally challenging heralding on vacuum is not required.

We also identify an elementary subcircuit which enables
the dual-rail encoded Bell-state generation with probability
2/27 and has the potential to be applied to other entanglement
generation problems in linear-optical systems.

An important issue in real-world implementations of
linear-optical circuits is the effect of loss. If the photon loss
probability is uniform for all channels of the circuit, the over-
all effect will be just in reduction of the success probability.
If, however, different channels experience different loss, the
fidelity of the heralded state may be compromised [26,38,39].
If the proposed scheme is to be realized as an integrated
optical circuit, it is therefore important to design the circuit
topology in such a way that all the relevant paths are of equal
length, such that the optical loss is distributed uniformly. This
is, however, a general requirement for any implementation of
an optical mode transforming unitary [24].

The main advantage of our numerical method, as shown by
these two examples, is the possibility to find simple decompo-
sitions for the required unitaries by an optimization procedure,
which may be used to bring insight to linear-optical entangling
gate design.
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