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Experimentally undoing an unknown single-qubit unitary
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Undoing a unitary operation, i.e., reversing its action, is the task of canceling the effects of a unitary evolution
on a quantum system, and it may be easily achieved when the unitary is known. Given a unitary operation without
any specific description, however, it is a hard and challenging task to realize the inverse operation. Recently,
a universal quantum circuit has been proposed [Phys. Rev. Lett. 123, 210502 (2019)] to undo an arbitrary
unknown d-dimensional unitary U by implementing its inverse with a certain probability. In this paper, we report
the experimental reversal of three single-qubit unitaries (d = 2) by linear optical elements. The experimental
results prove the feasibility of the reversing scheme, showing that the average fidelity of inverse unitaries is
F = 0.9767 ± 0.0048, in close agreement with the theoretical prediction.
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In quantum theory, quantum operations are mathematical
maps evolving quantum states in the Hilbert space. They play
a crucial role in quantum computation and quantum informa-
tion processing [1]. Among quantum operations, unitaries are
those inherently reversible. To recover or reset the original
quantum state after evolution [2,3], or to cancel the action of
a quantum circuit, one needs to undo a unitary operation, i.e.,
to reverse the original unitary. The inverse unitary operation,
defined as the inverse physical process of the original unitary,
can be calculated mathematically if the unitary is known.
Indeed, given a known unitary operation U , one may easily
find the inverse unitary U −1 by a classical computer, and then
decompose it into the tensor product of a series of fixed causal
order and low-dimensional unitary quantum gates [1].

Here, we address a somewhat different problem: Can we
implement the inverse operation U −1 without having any
knowledge about the unitary U , which is given as a black
box? This task is in general very challenging, since the
only direct approach is that of reconstructing the unknown
unitary by quantum process tomography (QPT) [4], which,
however, requires repeated preparations of the system and is
characterized by low efficiency.

Recently, attention has been paid to reversing methods
based on gate estimation. For instance, Chiribella and Ebler
[5] developed a semidefinite programming approach to op-
timize quantum networks, and applied it to engineer in-
verse gates. Moreover, they calculated the maximum expected
fidelity in obtaining the inverse operation of an arbitrary
d-dimensional unitary Ud as F = 2

d2 . With the purpose of
correcting the undesirable effects of a perturbation in an
isolated quantum system, Sardharwalla et al. [6] proposed
a new inverse-free version of the Solovay-Kitaev theorem
[7,8] which approximates inverse gates. However, estimation
precision is limited and therefore the above schemes are only
approximate and cannot realize the exact inversion of unitary
operations.
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Quite recently, Quintino et al. [9,10] proposed a proba-
bilistic scheme to implement an inverse unitary operation by a
gate teleportation scheme [11,12], thus providing a universal
quantum circuit to exactly implement the inverse operation
U −1

d of an arbitrary unknown d-dimensional unitary operation
Ud . The scheme can be divided into two parts. The first part
consists in realizing the complex conjugate of an arbitrary
d-dimensional unitary operation [13], whereas the second part
involves the implementation of the transpose of the remaining
quantum operation. The probability of failure of this scheme
decreases exponentially as the number of U queries increases.

In this paper, we report a proof-of-principle experiment,
implementing the inverse operation of a single-qubit unitary
by linear optical elements. Our scheme exploits a pair of
entangled photons as a quantum resource, carrying informa-
tion about the target unitary to realize the inverse operation
on the input qubit. The paper is organized as follows. First,
we introduce the scheme to realize the inverse operation
of arbitrary single-qubit unitary. Then, we illustrate our ex-
perimental implementation by linear optics, and present our
results. Finally, we close with some concluding remarks.

I. INVERSION OF SINGLE-QUBIT UNITARY BASED ON
GATE TELEPORTATION

Here, we briefly review the general scheme for undoing an
unknown single-qubit unitary. As illustrated in Fig. 1, given an
arbitrary single-qubit state |ϕ〉 (qubit 1), the inverse operation
of the single-qubit unitary U may be obtained on the final
state of qubit 3 by performing U on qubit 2 of the entangled
resource. To be more specific, let us consider a singlet state
|ψ−〉23 = 1√

2
(|0〉2|1〉3 − |1〉2|0〉3) as the quantum resource for

teleportation. If the unitary U is operated on qubit 2 of |ψ−〉23,
we obtain the two-qubit entangled state

|ψU 〉23 = (U ⊗ I )|ψ−〉23. (1)

Since U −1U = I , Eq. (l) can be rewritten as

|ψU 〉23 = (U ⊗ U −1U )|ψ−〉23 = (I ⊗ U −1)(U ⊗ U )|ψ−〉23.
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FIG. 1. Quantum circuit to implement the inverse operation U −1.
The unitary U is applied on qubit 2 of a singlet state |ψ−〉23 =

1√
2
(|0〉2|1〉3 − |1〉2|0〉3), and a Bell state measurement is performed

on qubit 1 and qubit 2. The remaining qubit 3 is left in the state
U −1X iZ j |ϕ〉, which leads to the desired gate operation U −1 when
i = j = 0.

It is worth noticing that when the same single-qubit unitary U
is performed on both qubits of |ψ−〉, the system is left in the
same quantum state |ψ−〉, apart from a global phase which
has been ignored. Hence, the two-qubit entangled state can be
written as

|ψU 〉23 = (I ⊗ U −1)|ψ−〉23. (2)

Equations (l) and (2) are equivalent. Thus, for the singlet
state |ψ−〉 performing the unitary operation U on one qubit
is equivalent to performing the inverse operation U −1 on the
other qubit. In order to achieve the inverse unitary operation
on |ϕ〉, a Bell state measurement (BSM) is required on qubit 1
and qubit 2, leaving qubit 3 in the state |ϕout〉 = U −1X iZ j |ϕ〉,
where X and Z denote Pauli matrices and i, j ∈ {0, 1} are the
outcome of the BSM. Notice that given an arbitrary unitary
U , its inverse U −1 generally does not commute with the

Pauli operators X and Z , and thus the circuit is inherently
probabilistic.

The success probability of the scheme is 1
4 with a single

query of U . If qubit 1 and qubit 2 are projected onto |ψ−〉12 =
1√
2
(|0〉1|1〉2 − |1〉1|0〉2), corresponding to the outcome i =

j = 0 in the BSM, the single-qubit inverse unitary operation is
exactly performed on the output qubit 3, i.e., |ϕout〉 = U −1|ϕ〉.
On the other hand, if the outcome of BSM is not i = j =
0, more queries are required, i.e., we must make use of U
again to apply the operation Z− jX −iU on |ϕout〉 to recover
|ϕ〉 and then restart the protocol again. The times needed
to repeat the queries of U increase approximately linearly,
whereas the success probability increases exponentially. Upon
registering the 00 outcome, the inverse unitary operation is
exactly performed on the input state with unit fidelity.

II. EXPERIMENTAL SETUP AND RESULTS

Based on the theoretical scheme above, we now present
our experimental linear optics implementation. Typically, this
needs to be done with a three-photon experiment. Here,
for experimental simplicity, we use a two-photon source
[14,15] to demonstrate this scheme. As shown in Fig. 2, a
polarization-entangled singlet state of two photons |ψ−〉AB =

1√
2
(|H〉A|V 〉B − |V 〉A|H〉B) degenerated at 810 nm, is pro-

duced by pumping a type-II BBO crystal with an ultraviolet
laser at 405 nm, where H (V ) denotes horizontal (vertical)
polarization. Photon A then goes through an unknown single-
qubit unitary U , which can always be described as

U =
(

cos θ sin θeiφ2

sin θeiφ1 − cos θei(φ1+φ2 )

)
.

In our experiment, U is realized by a sandwichlike structure
composed of two quarter-wave plates (QWPs) and a half-wave

FIG. 2. Experimental setup: The barium borate (BBO) crystal is pumped by a 405-nm laser to generate a pair of polarization-entangled
photons via type-II spontaneous parametric down-conversion (SPDC). The box, denoting an unknown unitary operation, is realized by two
quarter-wave plates (QWPs) and one half-wave plate (HWP) on photon A. Photon A then passes through the beam displacer BD1, with the
two HWPs set at 0◦ and 45◦ in the upper path (u) and lower path (l), respectively, to achieve the conversion of the degree of freedom between
the polarization and path of photon A. Therefore, the quantum state of the two photons can be written as |H〉A ⊗ 1√

2
(|u〉A ⊗ U −1|V 〉B − |l〉A ⊗

U −1|H〉B). The polarization qubit of photon A is then prepared in |ϕ〉A = α|H〉A + β|V 〉A by QWP1 and HWP1. The polarization qubit and the
path qubit of photon A are projected into the singlet state 1√

2
(|H〉A|l〉A − |V 〉A|u〉A) by BD2 with a HWP at 67.5◦, polarization beam splitter

PBS1, and D1. The remaining qubit 3, encoded in the polarization of photon B, is measured by a polarization analyzer consisting of QWP2,
HWP2, PBS2, and D2.
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plate (HWP). After photon A passes through U , the state of
the two photons becomes

|ψU 〉AB = (U ⊗ I )|ψ−〉AB

= 1√
2

(U |H〉A ⊗ |V 〉B − U |V 〉A ⊗ |H〉B)

= 1√
2

[(cos θ |H〉A + sin θeiφ1 |V 〉A) ⊗ |V 〉B

− (sin θeiφ2 |H〉A − cos θei(φ1+φ2 )|V 〉A) ⊗ |H〉B]

= 1√
2

[|H〉A ⊗ (− sin θeiφ2 |H〉B + cos θ |V 〉B)

− |V 〉A ⊗ (− cos θei(φ1+φ2 )|H〉B − sin θeiφ1 |V 〉B)]

= 1√
2

(|H〉A ⊗ U ′|V 〉B − |V 〉A ⊗ U ′|H〉B)

= (I ⊗ U ′)|ψ−〉AB,

where

U ′ =
(− cos θei(φ1+φ2 ) − sin θeiφ2

− sin θeiφ1 cos θ

)
,

and U ′U = −ei(φ1+φ2 )I . As a result, the effect of U operating
on photon A is equivalent to U −1 operating on photon B up to
a global phase.

Photon A then passes through the beam displacer BD1 and
two HWPs fixed at 0◦ and 45◦ in the upper path (u) and lower
path (l), respectively. A beam displacer is used to cause the
horizontally polarized component to walk off, whereas the
vertically polarized component is transmitted unperturbed. As
a result, the effect of BD1 and the two HWPs is to add a path
qubit on photon A, converting |H〉A to |H〉A ⊗ |u〉A, and |V 〉A

to |H〉A ⊗ |l〉A. After the two HWPs, the quantum state of the
two photons can be written as

|H〉A ⊗ 1√
2

(|u〉A ⊗ U −1|V 〉B − |l〉A ⊗ U −1|H〉B),

where the path qubit of photon A and the polarization qubit of
photon B are entangled, and the polarization qubit of photon
A is separable to the other two qubits. QWP1 and HWP1
are then used to prepare the polarization qubit of photon A
to the generic superposition state |ϕ〉A = α|H〉A + β|V 〉A, and
the two-photon state becomes

|ϕ〉A ⊗ 1√
2

(|u〉A ⊗ U −1|V 〉B − |l〉A ⊗ U −1|H〉B). (3)

Comparing with the theoretical scheme, there is a one-to-
one correspondence between the polarization qubit of photon
A (the path qubit of photon A/the polarization qubit of photon
B) and qubit 1 (qubit 2/qubit 3) shown in Fig. 1.

Equation (3) can be expanded into the following form,

(α|H〉A + β|V 〉A) ⊗ 1√
2

(|u〉A ⊗ U −1|V 〉B

−|l〉A ⊗ U −1|H〉B)

= 1√
2

(α|H〉A|u〉A ⊗ U −1|V 〉B + β|V 〉A|u〉A ⊗ U −1|V 〉B

−α|H〉A|l〉A ⊗ U −1|H〉B − β|V 〉A|l〉A ⊗ U −1|H〉B)

= 1

2
√

2
(|H〉A|u〉A + |V 〉A|l〉A) ⊗ U −1(−β|H〉B + α|V 〉B)

+ 1

2
√

2
(|H〉A|u〉A − |V 〉A|l〉A) ⊗ U −1(β|H〉B + α|V 〉B)

− 1

2
√

2
(|H〉A|l〉A + |V 〉A|u〉A) ⊗ U −1(α|H〉B − β|V 〉B)

− 1

2
√

2
(|H〉A|l〉A − |V 〉A|u〉A) ⊗ U −1(α|H〉B + β|V 〉B)

= 1

2
|φ+〉A ⊗ U −1XZ|ϕ〉B + 1

2
|φ−〉A ⊗ U −1X |ϕ〉B

− 1

2
|ψ+〉A ⊗ U −1Z|ϕ〉B − 1

2
|ψ−〉A ⊗ U −1|ϕ〉B, (4)

where |φ±〉A and |ψ±〉A are the Bell states of the polarization
qubit and path qubit of photon A, and |ϕ〉B = α|H〉B + β|V 〉B

is the generic state of photon B.
From Eq. (4), it is clear that the desired state U −1|ϕ〉B

can be obtained by projecting the polarization qubit and
the path qubit of photon A into the singlet state |ψ−〉A =

1√
2
(|H〉A|l〉A − |V 〉A|u〉A). Such state projection is realized by

BD2, a HWP at 67.5◦, a polarization beam splitter (PBS1),
and a single-photon detector D1 as shown in Fig. 2. This can
be understood as follows: BD2 can convert 1√

2
(|H〉A|l〉A −

|V 〉A|u〉A) to 1√
2
(|H〉A − |V 〉A) ⊗ |u〉A; a HWP at 67.5◦ then

converts 1√
2
(|H〉A − |V 〉A) to |H〉A, which can go through

PBS1 and be detected by D1. When D1 clicks, the singlet pro-
jection succeeds and photon B becomes the desired U −1|ϕ〉B,
which is detected by a polarization analyzer consisting of
QWP2, HWP2, PBS2, and D2. Here, we note that, as the
path qubit is used in the experiment, the setup needs a phase
stability at an optical wavelength level, which is guaranteed by
constructing the interferometer with beam displacers [16,17].

In our experiments, we tested the scheme using the follow-
ing three single-qubit unitary operations,

U1 =
(

1
2

√
3

2

−
√

3
2

1
2

)
, U2 =

(
1 0

0 ei 4π
3

)
,

U3 = 1

2

( −1 − i 1 + i
−1 + i −1 + i

)
.

The success of reversing the unitaries above is witnessed by a
coincidence detection.

In order to assess the implementation of the inverse unitary,
we have applied the scheme to different input preparations
and performed process tomography at the output. The selected
input states have been |H〉, |V 〉, |D〉 = 1√

2
(|H〉 + |V 〉), |A〉 =

1√
2
(|H〉 − |V 〉), |R〉 = 1√

2
(|H〉 + i|V 〉), and |L〉 = 1√

2
(|H〉 −

i|V 〉). For each input state, the output state of qubit 2 has
been then measured using three mutually unbiased bases
{|H〉, |V 〉}, {|D〉, |A〉}, and {|R〉, |L〉}. Upon exploiting data
from the above measurements, we may perform QPT and fully
characterize the inverse unitary operation by reconstructing
the corresponding completely positive (CP) map.

According to Jamiolkowski-Choi isomorphism [18,19], a
single-qubit quantum operation ξ may be represented by a
positive semidefinite operator χ on the Hilbert spaces of a
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FIG. 3. Experimental results: The reconstructed process matrices are shown in the top panels and the ideal process matrices are shown in
the bottom panels. The red color (left) and blue color (right) graph represent real and imaginary elements of the reconstructed process matrices
χ , respectively. (a) shows the process matrix χU−1

1
. (b) shows the process matrix χU−1

2
. (c) shows the process matrix χU−1

3
.

two-qubit state. In particular, a trace-preserving map corre-
sponds to a density operator and its density matrix χ may
be obtained from an initial maximally entangled state |φ+〉 =

1√
2
(|HH〉 + |VV 〉) by applying the operation ξ on one of the

qubits, i.e., χ = I ⊗ ξ (|φ+〉〈φ+|). In turn, the action of the
map may be expressed as ρout = Trin[(ρT

in ⊗ Iout )χ ], where T
denotes the transposition in a fixed basis.

We employ a maximum-likelihood estimation [20,21] to
reconstruct the quantum process matrix χ and use fidelity
to compare the results with the theoretical process matrix
representing the unitary operation

F (χ ) = Tr[χχideal]

Tr[χ ]Tr[χideal]
, (5)

where χideal is the theoretical process matrix representing the
unitary operation V , i.e.,

χideal = I ⊗ V (|φ+〉〈φ+|)I ⊗ V †. (6)

The reconstructed matrices and the ideal matrices
corresponding to the inverse unitary operations U −1

1 ,
U −1

2 , and U −1
3 are shown in Fig. 3. The corresponding

fidelities, calculated using Eq. (5), are given by
F (U −1

1 ) = 0.9778 ± 0.0042, F (U −1
2 ) = 0.9772 ± 0.0071,

and F (U −1
3 ) = 0.9752 ± 0.0032. The average process fidelity

is F (U −1) = 0.9767 ± 0.0048, which is in good agreement
with the theoretical prediction.

III. CONCLUSION

In summary, we have experimentally demonstrated the
inversion of an unknown single-qubit unitary U . Our results
prove the validity and feasibility of the reversing unitary
scheme [9]. The inverse operation serves as the essential
part of the Harrow-Hassidim-Lloyd (HHL) algorithm [22],
which can be used to solve linear systems of equations and
be applied to quantum machine learning [23]. Apart from
the scheme proposed by Quintino et al. [9], there are other
universal unitary inversion protocols that may have applica-
tions in quantum communications [24,25], quantum memory
storage [26], and Hamiltonian evolution [27] in quantum
dynamics.
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