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Machine-learning-based three-qubit gate design for the Toffoli gate
and parity check in transmon systems
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We use machine-learning techniques to design three-qubit entangling gates with fidelities of >99.9% and
duration of 50 ns for nearest-neighbor coupled flux-tunable transmons in circuit quantum electrodynamics
architectures. The gate design procedure enforces realistic constraints and analyzes the robustness of the new
gates under decoherence, distortion, and random noise. The controlled-controlled-phase gate in combination
with two single-qubit gates realizes a Toffoli gate which is widely used in quantum circuits, logic synthesis, and
quantum error correction. We also introduce a three-qubit entangling Parity Checker gate which has applications
in quantum arithmetic circuits and quantum error correction schemes. Using these three-qubit gates, we design
a circuit for Shor’s nine-qubit quantum error correction code and compare its performance to conventional
realizations.
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I. INTRODUCTION

Circuit quantum electrodynamics (cQED) [1,2] systems
utilizing transmons [3–5] are potential candidates for realizing
gate model quantum computers [6], with qubit coherence
times of hundreds of microseconds [7] and the potential to
scale up facilitated by quantum error correction schemes [8,9].
In these systems, the realization of high-fidelity single-qubit
and two-qubit entangling controlled-phase (CZ) gates enables
universal quantum computation [7]. However, it is desirable
to design three-qubit entangling gates to achieve better per-
formance in certain quantum circuits.

Multiqubit controlled-phase gates in transmons are typ-
ically designed by detuning the qubit transition frequen-
cies to approach the avoided-level crossing regions. In this
regime, state mixing or level shifting due to noncomputa-
tional quantum levels allows nonuniform phase collection
within the computational subspace. This gives rise to entan-
gling operations between qubits [10–15]. Finding the optimal
transmon frequency detuning to achieve the desired avoided-
level crossings between system energy levels is a complex
task which can take advantage of machine-learning (ML)
approaches [16–18]. Designing quantum gates and optimized
control pulses using ML techniques and optimization theory
has been demonstrated for various quantum systems [19–22].
We model the quantum gate design problem as a supervised
ML exercise, by adjusting the system control parameters to
converge to the target gate [17]. In this model, the training
set is the desired unitary matrix and the cost function is
the gate fidelity. We realize two types of three-qubit gates,
the controlled-controlled-phase (CCZ) and the Parity Checker
(ParChe) gates for transmon systems based on resonator-
mediated nearest-neighbor (NN) couplings [23]. The CCZ
gate collects a π rotation when all three qubits are in the
state |1〉, while the ParChe gate collects a π rotation when
the middle qubit is in the state |1〉 and the two distant qubits

are in opposite states. Both gates are designed with duration
50 ns and gate fidelities of 99.99% and 99.975% for CCZ
and ParChe gates, respectively. Moreover, the gates fidelities
>99.9% are observed using simulated process tomography.

In Secs. II and III, we explain the motivation behind our
work, introduce the CCZ and ParChe gates from a logic
perspective, and discuss some of their applications in various
quantum circuits. In Secs. IV and V, our simulation method
and gate design methodology are explained, respectively.
The gates are characterized in Secs. VI and VII. Finally, in
Sec. VIII, we show how quantum error correction circuits can
benefit from these gates by applying them to the circuit for
Shor’s nine-qubit error correction code [24].

II. MOTIVATION

Three-qubit gates have broad applications in quantum
error correction [24,15], reversible computing [25,26], and
quantum arithmetic circuits [27,28]. The Toffoli gate in com-
bination with Hadamard gate are computationally universal
[29,30]. However, typically multiqubit gates are decomposed
into one-qubit and two-qubit gates depending on the avail-
able universal gate set in the physical quantum system [31].
The most common decomposition of the Toffoli gate using
standard single- and two-qubit gates requires multiple single-
qubit gates (H , T , and T †) and six two-qubit controlled-NOT
(CNOT) gates [32]. In this decomposition, at least two of
the CNOT gates are applied to non-neighboring qubits which
results in the addition of four SWAP gates in a NN-coupled
architecture; the total circuit depth is 16 steps. Another de-
composition of the Toffoli gate with circuit depth of three is
possible based on a three-qubit CCZ gate and two single-qubit
gates [31]. The latter decomposition significantly reduces the
cost of quantum circuits by improving the performance and
lowering logical error rate. In this paper, our main goal is to
improve the performance and the cost of quantum circuits by
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designing high-fidelity single-shot three-qubit gates such as
CCZ-based Toffoli gate for a resonator-mediated NN-coupled
transmon system [23]. In Sec. III, we explain the realization
of Toffoli (based on CCZ) and ParChe gates as well as how
the quantum circuits can benefit from these three-qubit gates.

The experimental design of single-shot three-qubit gates is
challenging due to the large state space and nonconvex control
landscape [14,15]. The first experimental realization of a π

rotation CCZ gate for three transmons coupled to a single
resonator was designed by Reed et al. [15] via two engineered
interactions within the state space. The higher complexity of
the multiqubit gate design problem for transmons in cQED
architecture requires leveraging ML techniques for improving
fidelity and gate speed. Our goal is to use the machine-
learning methods to realize multiqubit gates with the best
fidelities possible in predefined reasonable gate times.

Although there are many machine-learning and optimal
quantum control algorithms [16–22], the Subspace-Selective
Self-Adaptive Differential Evolution (SUSSADE) [16] tech-
nique is particularly well suited for this study as it has been
previously examined for designing high-fidelity multiqubit
gates for a comparable system consisting of transmons with
capacitive couplings. And, it is shown that SUSSADE out-
performs greedy and global optimization algorithms such as
quasi-Newton, and Differential Evolution, respectively [17].
Moreover, it is structured based on evolutionary algorithms
which naturally enable the usage of parallel programming on
high-performance computing systems [33].

Utilizing SUSSADE, we present an extensible gate design
framework to design robust and high-fidelity single-shot mul-
tiqubit gates. Key features of this work include the following:

(1) The framework uses SUSSADE only to reduce the
search space. It then employs a repetitive sequential local
search algorithm to fine-tune the control parameters. The
combined search algorithms enable faster realization of high-
fidelity quantum gates for complex systems.

(2) Realistic experimental constraints are enforced during
the initialization and learning phases.

(3) The gates are characterized comprehensively using
simulated quantum process tomography and noise modeling.

III. REALIZATION OF TOFFOLI AND ParChe GATES

The typical avoided-level crossing used for two-qubit
gates in transmons is between eigenstates |11〉 and |02〉 in
a two-transmon system and these levels occupy the double-
excitation manifold [10]. Here, we generalize this idea to a
three-transmon system and consider the primary interactions
up to the triple-excitation manifold. We steer the energy levels
of the three-transmon system by detuning qubit transition
frequencies such that the desired computational states each
pick up a phase factor π , while all other energy levels collect
trivial phases.

In our simulations, we consider the lowest four energy
levels (labeled |0〉 to |3〉) to ensure system evolution within the
full triple-excitation manifold [15]. However, the cost function
evaluation for the ML approach is performed only within the
computational subspace where each transmon may be in state
|0〉 or |1〉. Consider an array of three NN-coupled qubits (L,
M, and R). The CCZ gate is designed to collect a π phase only

FIG. 1. Error syndrome detection circuits using the parity
checker (ParChe) gate. (a) The bit-flip error syndrome detection
circuit, (b) the phase-flip error syndrome detection circuit.

on the |111〉 computational state (i.e., when L, M, and R qubits
are in the |1〉 state). The ParChe gate applies a π rotation only
if qubit M is in state |1〉, and the first and the third qubits are
in different states. In other words, if the exclusive-OR of the
states of qubits L and R is 1, and qubit M is in state 1, then a
π phase is collected. The matrix representations of the ideal
CCZ and ParChe gates are as follows:

UCCZ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

UParChe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the ordering of the states is |000〉 to |111〉 in binary
increments. Following Fedorov et al. [14], and Reed et al.
[15], we use the symbol of three filled dots for the three-qubit
CCZ gates. Here, we introduce a symbol (see Fig. 1) for the
ParChe gate where the first and the last dots are half filled with
opposite orientation, indicating the first and the last control
qubits are in opposite states, while the full dot on the middle
qubit means that it must be in the state |1〉 for phase collection.

From a logic perspective, the proposed three-qubit ParChe
gate is equivalent to two consecutive two-qubit CZ gates. Note
that in our considered physical model [4], one cannot simply
perform two CZ gates simultaneously on three transmons,
since the effect of energy levels in three-excitation manifold
needs to be considered. Utilizing the machine-learning tech-
niques and optimization methods enable us to explore the state
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FIG. 2. Quantum circuits utilizing ParChe gate. (a) Majority
function of three inputs is realized on the middle qubit. (b) The states
of the first and the last qubits are swapped while the state of the
middle qubit is unchanged.

mixing of all three transmons simultaneously and realize true
single-shot three-qubit entangling gates such as ParChe gate.

The ParChe gate can be used in various quantum error
correction (QEC) schemes [9] where a parity check is used to
detect error syndromes. For example, in QEC stabilizer codes,
including SURFACE CODE [34–36], the bit-flip and phase-flip
error syndrome detection circuits can be implemented using
ParChe gate as depicted in Figs. 1(a) and 1(b), respectively.

Utilizing ParChe and CCZ gates, one can efficiently realize
a family of majority-based reversible gates [37]. For example,
the ParChe gate in combination with one CCZ gate and single-
qubit gates as depicted in Fig. 2(a) can realize a majority
function of three inputs which is the “carry-out” in the Full
adder circuits [38].

In technologies where the SWAP operations are decom-
posed to CNOT or CZ gates, one can use the ParChe gate to
perform mirror-inversion (MI) operations [39,40] as shown in
Fig. 2(b). Here, we consider a physical model that the single-
qubit gates take 20 ns and two-qubit CZ gates take 40 ns
[10,23,41]. In this physical model, the reported 40-ns duration
for CZ gate covers the timing required to remove the extra
phase collected on each qubit during the CZ operation. There-
fore, for a fair comparison we add 10 ns to our three-qubit
gate duration to accommodate for the phase compensation.
The three-qubit MI operation based on 40-ns CZ gates would
take 420 ns, while utilizing the 60-ns ParChe gates instead of
CZ gates would result in a 19% performance improvement.
Considering limited coherence time of near-term quantum
systems, this performance improvement is of high importance.

The Fredkin gate is a three-qubit entangling gate which
performs a controlled-SWAP operation, and it is an important
universal gate with applications in reversible logic, quantum
computing [42], and distributed secure quantum machine
learning [43]. As depicted in Fig. 3, the Fredkin gate can be
constructed using a CCZ gate and two CZ gates, in combina-
tion with single-qubit gates.

IV. SIMULATION OF THE SYSTEM DYNAMICS

The behavior of a superconducting qubit connected to a
resonator is similar to the behavior of an atom in a cavity [1,2].
In this model, a virtual photon exchange happens between

FIG. 3. Quantum circuit realizing a Fredkin gate.

the qubit and the coupled resonator. Therefore, a resonator-
mediated coupling can be formed between two qubits coupled
to a single resonator. Here, we consider a physical model
based on frequency-tunable transmons which are coupled to
each other through resonators in a NN architecture. Consid-
ering the coupling resonators are not populated, and in the
dispersive regime, a first-order perturbative analysis of the
Jaynes-Cumming Hamiltonian [7] results in the following
effective Hamiltonian [44]:

H =
n−1∑
k=1

H̃
(k,k+1)
c +

n∑
k=1

H̃
(k)
t . (3)

Here, the Hamiltonian of each transmon k is

H̃
(k)
t ≡

∑
j

ω̃
(k)
j | j〉(k)〈 j|, (4)

where ω̃
(k)
( j) is the dressed transition frequency associated with

the kth transmon at energy level j and is given by

ω̃
(k)
j ≡ jω(k)

q + δk

2
( j − 1) j + jgk

2

ω
(k)
q − ωr + ( j − 1)δk

, (5)

where ω(k)
q is the bare transition frequency associated with

qubit k; gk is the coupling strength between transmon k and
the connected resonator; and ωr represents the frequency of
the coupled resonator. The last term in Eq. (5) is repeated for
each transmon with appropriate modifications depending on
the number of coupled resonators.

For any pair of resonator-coupled transmons, we estimate
the direct coupling between two transmons (k, k + 1) as

H̃
(k,k+1)
c =

∑
jk , jk+1

√
jk + 1

√
jk+1 + 1Jjk , jk+1

× (| jk, jk+1 + 1〉〈 jk + 1, jk+1|
+| jk + 1, jk+1〉〈 jk, jk+1 + 1|), (6)

where Jjk , jk+1 is the estimated direct coupling between the
level jk from the kth transmon and level jk+1 from the (k +
1)th transmon.

Jjk , jk+1 = gkgk+1
(
ω(k)

q + δk jk − ωr +ω(k+1)
q + δk+1 jk+1−ωr

)
2
(
ω

(k)
q + δk jk − ωr

)(
ω

(k+1)
q + δk+1 jk+1 − ωr

) ,

(7)
where δk and δk+1 are the anharmonicity values associated
with transmons k and k + 1, respectively.

Note that in order to obtain the effective Hamiltonian using
the Schrieffer-Wolff method, the rotating-wave approxima-
tion, dispersive approximation, and estimated J coupling were
imposed [44]. Other nonlinearities such as cavity anharmonic-
ity due to the Kerr nonlinearity [45] and higher-order trans-
mon level nonlinearities were ignored. Better modeling and
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inclusion of higher-order effects will enable higher fidelities
of quantum operations on physical systems.

Using the time-dependent Hamiltonian, the time evolution
equation of the system is solved to obtain the unitary transfor-
mation U :

U (t ) = exp

{
− i

h̄

∫ t

0
H(τ ) dτ

}
. (8)

Here t is time, H is the Hamiltonian of the system, and h̄
is the reduced Planck’s constant. To solve Eq. (8), we employ
Trotterization [46]. Hence, the final unitary transformation is
estimated as follows [47]:

U (tk ) = UkUk−1Uk−2 . . . U2U1U0. (9)

Here Ui for i = {0, 1, . . . , k} is calculated using Eq. (8)
for the time-independent Hamiltonian at each time step i,
where U0 = I and k is the total number of steps. The Trotter
step size is T/k, where T is the gate evolution time. In our
simulations, the Trotter step size was 100 ps.

When solving the time evolution equation, we considered
a smaller subspace to reduce the computational expenses. The
Hamiltonian for n transmons with four energy levels spans a
4n-dimensional Hilbert space. For a system composed of three
transmons (n = 3), the Hamiltonian is a 64 × 64 matrix oper-
ator. Solving the Schrödinger equation for this large operator
is computationally expensive, and there are numerous energy
levels that have a minimal impact on the evolution of the
gate of interest. Thus, we project this larger Hamiltonian to a
smaller subspace where at most three excitations are allowed,
resulting in a 20 × 20 matrix [17]. The 20 states considered
are {|000〉, |001〉, |002〉, |003〉, |010〉, |011〉, |012〉, |020〉,
|021〉, |030〉, |100〉, |101〉, |102〉, |110〉, |111〉, |120〉, |200〉,
|201〉, |210〉, |300〉}.

The reduced Hamiltonian is evolved based on the qubit
transition frequencies. The resulting unitary is projected
[17] to the 8 × 8 computational subspace that includes the
states {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}.
Single-qubit phase compensation [13,16,17] is performed on
this resultant unitary using the diagonal compensation matrix

M = e−iθ0 diag(1, e−iθ1 , e−iθ2 , e−i(θ1+θ2 ), e−iθ4 ,

e−i(θ1+θ4 ), e−i(θ2+θ4 ), e−i(θ1+θ2+θ4 ) ), (10)

where θ0 represents the global phase, and θ1, θ2, and θ4

represent the relative single qubit phases of states |001〉, |010〉,
and |100〉, respectively.

The single-qubit phases are canceled out by multiplying
matrix M with the projected unitary matrix in the computa-
tional subspace:

Ufinal = Uproj M. (11)

Finally, we calculate the gate fidelity F considering unitar-
ity and closeness to the target ideal operation [48]:

F = Tr(U †
finalUfinal ) + |Tr(U †

idealUfinal )|2
d (d + 1)

, (12)

where d = 23 is the dimensionality of the computational
subspace.

V. THE GATE DESIGN METHODOLOGY
BASED ON MACHINE LEARNING

We design the system parameters to realize the CCZ and
ParChe gates by combining two learning methods:

(1) Modified SUSSADE algorithm.
(2) Our local search algorithm.
In both learning procedures, the gate fidelity [Eq. (12)]

is considered as the fitness function to achieve the optimal
control parameters for the given ideal unitary matrix. Here, the
control parameters are the frequency detuning of transmons.
We consider three transmons (L, M, R) where transmons L and
M are coupled with an 8.05-GHz resonator, and transmons M
and R are coupled with an 8.2-GHz resonator. In our simula-
tions, the resonator-transmon couplings are g = 0.2 GHz, and
the anharmonicity of each transmon is δ = −0.3 GHz.

To reduce the search space during the learning proce-
dure, the reference transition frequencies of the qubits are
set closer during the ML algorithms search; fL = 5.61 GHz,
fM = 6 GHz, and fR = 6.39 GHz, respectively. The maxi-
mum frequency detuning ranges (in GHz) permitted from the
reference frequency of each qubit are set to [0, 0.5), (−0.5,
0.5), and (−0.5, 0], for qubits L, M, and R, respectively.
These constraints help further reduce the search space and
increase the efficiency of the learning process by removing
the trial of detuning values far away from the interaction
region.

Note that we further impose the following constraints
during learning to ensure that the optimal frequency detuning
sequences are experimentally realistic, achievable and that the
target gate is robust. We enforce these constraints by:

(1) Limiting the maximum point-to-point variation of the
frequency detuning of each qubit to 220 MHz within the
sequence to prevent undesired excitations in the quantum
system. To take into account the limitations of physical signal
instrumentation [41], the initial and the final points of the
sequence are limited to a maximum point-to-point variation
of 500 MHz from the initial reference transition frequencies
of 5, 6, and 7 GHz.

(2) Limiting the minimum difference between transition
frequencies of two adjacent qubits to 210 MHz/309 MHz for
the CCZ/ParChe gate, primarily to prevent interactions within
the single-excitation manifold.

Here, we briefly describe how the SUSSADE algorithm
[16,17] was used to generate the qubit transition detuning
sequences. First, a population of 200 random frequency de-
tuning sequences (chromosomes) is generated in which each
sequence contains 150 frequencies (50 per qubit). For a gate
duration of T = 50 ns, the detuning sequence of each qubit is
discretized to 50 amplitudes. After generating the initial pop-
ulation, we perform SUSSADE by randomly modifying the
values of detuning sequences using the differential evolution
operations such as mutation, crossover, and selection [17,49].
Note that we enforce the realistic constraints on the initial
population as well as during the selection operation where
after the mutation and crossover, the modified detuning se-
quences are adjusted properly to meet the desired constraints.
Then the resulted detuning sequences are fed to the system
Hamiltonian and after time evolution of the Hamiltonian, the
fidelity of the resulting gate is calculated using Eq. (12).
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For any modified detuning sequence, if the fidelity value is
larger than the initial one, the detuning sequence survives to
the next generation. This procedure repeats until we reach
our choice of either the fidelity threshold value (99.99%)
or the maximum number of iterations (one million cycles).
We use the Message Passing Interface (MPI) to distribute
the simulation to 200 nodes on a computer cluster [50] such
that each node is performing a full cycle of solving the time
evolution and fidelity calculation for each member of the
population.

SUSSADE was successfully used to obtain the frequency
detuning sequences for 50-ns three-qubit gates with a fidelity
of 98.8%, but any further progress was slow. Thus, a local
search algorithm was implemented to refine the detuning
sequences and achieve a gate fidelity of >99.9%. Note that
the local search algorithm is efficient once the search space
has been reduced by other learning algorithms.

The local search algorithm consists of the following steps:
(1) At the beginning of the learning process, we define

the largest (100 MHz) and the smallest (1 kHz) change in
frequency detuning allowed per data point. This is referred
to as the optimization step size ε. We also set the maximum
number of iterations (1000), the desired fidelity (99.99%), and
all constraints enforced during SUSSADE.

(2) While the constraints are met and the desired fidelity or
the maximum number of iterations have not been reached, the
following procedure is repeated:

(a) A local search window is moved from the first data
point toward the last data point.

At each window, the frequency detuning value is varied
recursively up or down by the optimization step size ε as long
as it keeps improving the gate fidelity.

(b) Once the local search window has covered all data
points of the detuning sequence of all qubits, ε is reduced for
a finer grain optimization (εnew = 0.1εold).

(c) If the optimization is already completed for the smallest
predefined ε during the iteration, the iteration number is
increased by 1, ε is reset to the largest predefined value, and
the steps (a) to (d) are repeated.

The three-qubit gate duration is set to 50 ns for evolution,
and the learning algorithms operate on 1-ns step size. The
learned frequency detuning sequences are kept constant dur-
ing each 1-ns step to obtain piecewise-constant pulse forms
as shown in Fig. 4. Using the Fidelity formula described
in Eq. (12), we achieved fidelity of higher than 99.99% for
Toffoli gate. For the ParChe gate, we stopped the local search
algorithm after reaching the maximum number of iterations
and observing the fidelity not to improve beyond 99.975% for
many cycles. Therefore, we concluded that with the chosen
set of initial system parameters, we achieved the highest
fidelity possible for the ParChe gate. Notably a small change
in the initial system parameters such as transmon-resonator
coupling strength, transmon anharmonicities, resonator fre-
quencies, etc. would open some room for more optimization.
However, we did not try to change the chosen initial system
parameters to be persistent with the result of 99.99% fidelity
CCZ gate with the same chosen parameters. If we would
have hit the maximum number of iterations but we had seen
improvement in gate fidelity, we could simply rerun the local
search optimization algorithm for a second round.

FIG. 4. The frequency ( f ) vs time (t) plots for learned transition
frequency detuning sequences. The piecewise constant forms are
generated from the learned frequency detuning sequences (50 learned
data points per each transmon). (a) CCZ gate. (b) ParChe gate.

VI. GATE VERIFICATION AND IMPACT
OF DECOHERENCE

Simulated quantum process tomography (QPT) was used
to independently evaluate gate performances by using master
equation simulations. QPT is an excellent tool to evaluate the
dynamics of a quantum system due to any process [51], in this
case, the CCZ and ParChe gates. Given that this is QPT within
the simulation, state preparation and measurement errors do
not affect the methodology. Hence the results from QPT
enable us to fully characterize the introduced gates.

Initial verification was performed assuming no decoher-
ence in the system by using the von Neumann equation for
time evolution:

ih̄
∂ρ

∂t
= Hρ − ρH, (13)

where the Hamiltonian H is the same as that given in Eq. (3)
with the number of levels in each transmon set to jmax = 4
and ρ is the density matrix for the three-transmon system.

The three-transmon system was evolved using the gener-
ated resonance frequency detuning sequences from learning
algorithms. The evolution was performed on all the initial
states given by {I, R0.5π

x , R0.5π
y , Rπ

x }⊗3|000〉 resulting in 64
density matrices. Unlike experimental QPT, it was not nec-
essary to perform quantum-state tomography to reconstruct
these density matrices for the final states. These results were
used to perform QPT by imposing constraints that the process
matrix χ must satisfy [52,53]. The χ matrix completely
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TABLE I. Table of QPT matrices for simulations under different
conditions.

Fp Fg Tr(ρ2)
Conditions CCZ/ParChe CCZ/ParChe CCZ/ParChe

kmax = 4 0.999/0.999 0.999/0.999 0.999/0.999
T1 = T2 = ∞
kmax = 3 0.998/0.996 0.998/0.997 0.999/0.999
T1 = T2 = ∞
kmax = 4 0.995/0.994 0.995/0.995 0.991/0.991
T1 = T2 = 20 μs
kmax = 3 0.993/0.992 0.994/0.993 0.991/0.991
T1 = T2 = 20 μs

characterizes the underlying process and is positive Hermitian
by definition [51].

We use the following metrics as defined in Ref. [52] to
evaluate the performance of the gates:

Process fidelity : Fp = Tr(χ (ideal)χ ), (14)

Average gate fidelity : Fg = dFp + 1

d + 1
, (15)

Average purity : Tr(ρ2) = d Tr(χ2) + 1

d + 1
, (16)

where χ is the experimentally determined process matrix;
χ (ideal) is the ideal process matrix for the gates, and d = 23

is the dimensionality of the computational subspace of the
system. The results from the evaluation are given in Table I.

The simulations incorporating decoherence were per-
formed using the Lindblad-Kossakowski form of the mas-
ter equation [54,55]. The appropriate operators for the de-
phasing portion of the master equation were obtained as in
Refs. [56,57]. For convenience in simulation, T1 and T2 were
both set to 20 μs, assuming coherence times independent
of the flux tuning of the transmons [58]. Please refer to the
Appendix for the details of modeling of the qudits in the
Lindblad formalism, and full process matrices resulting from
QPT. Comparison of results for kmax = 3 ({|0〉, |1〉, |2〉} levels)
and kmax = 4 ({|0〉, |1〉, |2〉, |3〉} levels) from Table I indicates
that the fourth level (|3〉) also plays a limited role in the system
evolution.

VII. ROBUSTNESS EVALUATION

A. Frequency distortion due to smoothing

The frequency detuning sequences derived from the learn-
ing algorithms have a piecewise-constant form. To investigate
the effect of the first-order distortion due to control electron-
ics, we use the following pulse-reshaping method [13,17] to
smooth the frequency detuning sequences:

ωk (t ) = ωki + ωki+1

2
+ ωki+1 − ωki

2

[
Erf

(
t − ( tramp

2

)
√

2σ

)]
,

(17)

where ωk (t ) represents the distorted frequency detuning of
qubit k during ti � t � ti+1, and ti represents the ith time step.

FIG. 5. The frequency ( f ) vs time (t) plots for the smoothed
learned frequency detuning sequences of qubits. (a) CCZ gate.
(b) ParChe gate.

Here Erf(t ) ≡ 2√
π

∫ t
0 e−x2

dx is the error function value of t ,

tramp = 1 ns, and σ = tramp

4
√

2
[13]. The distorted sequences are

shown in Fig. 5. Fidelity >99% is observed for both gates
with smoothed frequency detuning distortions.

B. Random noise injection

To investigate the effect of random noise on the CCZ and
ParChe gates, we plot the average fidelity while increasing
the random noise with amplitudes varying from 0 to 10 MHz.
For each amplitude value, random noise is generated from a
uniform distribution (−1, 1), multiplied by the noise ampli-
tude and added to the optimized detuning sequence. The latter
step is repeated 10 000 times and at each iteration, the system
Hamiltonian is evolved, and the gate fidelity is calculated.
The averaged fidelity of the 10 000 results is reported as the
average fidelity at each noise amplitude. Figure 6 illustrates
the gates’ robustness against random noise and demonstrates
fidelity >99% with random noise amplitudes of up to 6.7 MHz
for CCZ gate and up to 7 MHz for the ParChe gate.

VIII. SHOR’S NINE-QUBIT QEC CIRCUIT
BASED ON CCZ AND PARCHE GATES

In order to evaluate the performance of the parity check
gate in comparison with the conventional CZ-based parity
check, we design the Shor nine-qubit error correction code
using ParChe and CCZ gates. Fig. 7 shows a circuit design
of Shor’s nine-qubit code using Hadamard, ParChe, and CCZ
gates.
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FIG. 6. Average fidelities of CCZ gate and ParChe gate over
10 000 samples under the effect of random noise with amplitudes
ranging from 0 to 10 MHz.

The duration of the single-qubit gates, two-qubit CZ gates,
and three-qubit (CCZ and ParChe) gates are, respectively,
20 ns, 40 ns [10,23,38–40], and 60 ns (50-ns gate
duration+10-ns single-qubit phase compensation). We refer
to a state-of-the-art physical model [41] for the duration of
single- and two-qubit gates where an extra time is considered
for phase compensation through flux control lines. Therefore,
we add an extra 10 ns to the duration of our three-qubit gates
to accommodate the phase compensation timing.

We use the QX SIMULATOR [59] to simulate the differ-
ent designs of the Shor’s error correction code under noise,
where we use the Pauli-Twirling Approximation error model
with qubit relaxation time T1 = 20 μs and an echo time
T2 = 20 μs. The Pauli-Twirling channel [60,61] allows the
approximation of the decoherence channel as an asymmetric
depolarizing channel where the decohering qubit suffers from
discrete Pauli errors (X, Y, Z) with respective probabilities (pX ,
pY , pZ ) [62]. The error probabilities are expressed in terms of
the gate execution time and the qubit coherence times T1 and
T2:

pY = 1

4

[
1 − exp

(−t

T1

)]
(18)

pX = 1

4

[
1 − exp

(−t

T1

)]
(19)

FIG. 7. The proposed Shor’s nine-qubit error correction circuit
using parity checker gates and CCZ gates. Here, a logical qubit is
encoded to nine physical qubits, and E represents an error channel.

FIG. 8. Performance of a Shor’s error correction code under
noise when using the ParChe and CCZ gates in comparison with the
traditional CZ-based design.

pZ = 1

2

[
1 − exp

(−t

T2

)]
− 1

4

[
1 − exp

(−t

T1

)]
(20)

For a given density matrix ρ, the approximated amplitude
damping (AD) channel is given by

εAD(ρ) = EAD
1 ρEAD†

1 + EAD
2 ρEAD†

2 . (21)

Here EAD
1 and EAD

2 are the Kraus matrices for the amplitude
damping channel:

EAD
1 =

(
1 0
0

√
1 − pAD

)
, (22)

EAD
2 =

(
0

√
pAD

0 0

)
, (23)

where pAD corresponds to the probability of single-photon
emission from the qubit. Similarly, the phase-damping chan-
nel can be expressed in terms of Kraus matrices and the action
of the two channels combined within a single channel as in
Ref. [61].

We compare three designs of the Shor’s code:
(1) The CZ-based design where both the parity check

stage and the Toffoli gate are implemented in terms of CZ
and single-qubit gates.

(2) Replacing only the parity check stage of (1) with the
ParChe-based design.

(3) The full three-qubit gate implementation using
ParChe-based parity checking and a CCZ-based Toffoli gate.

For each of the Shor’s code implementations, we apply
many error detection and correction cycles and measure the
logical error rate and thus the fidelity. Figure 8 shows the
fidelity decay of the logical qubit through the correction cycles
of Shor’s code. While the fidelity of the logical state decays
over the correction cycles due to the low coherence time and
the high physical error rate of current systems used in this
simulation, the fidelity is significantly improved after intro-
ducing the ParChe gate for performing faster parity checks
with higher fidelity. The use of the ParChe gate in combination
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with the CCZ-based Toffoli provides further improvement and
results in a lower logical error rate.

As depicted in Fig. 8, utilizing the ParChe gate reduces the
logical error rate as we are mainly limited by the coherence
time and the gate duration is an important factor. The CCZ-
based Toffoli gate implementation is the major contributor to
the improvement in performance, and it relates to both gate
count and gate duration.

As both the CZ and three-qubit gates introduced in this
work are based on interactions related to avoided-level cross-
ings, the relative improvement in gate times is more relevant
as a metric compared to absolute gate time. Given the same
coupling strengths between qubits, we expect the relative gate
time improvement to remain comparable.

IX. CONCLUSION

We designed two fast, high-fidelity, and robust three-
qubit entangling (CCZ and ParChe) gates for resonator-
mediated NN-coupled transmons. We described the gate de-
sign methodology using simulation and machine-learning
techniques and presented a local search algorithm for optimal
quantum control applicable to small search spaces. The oper-
ations of the CCZ gate and the ParChe gate were confirmed
by a C++ simulator that solves the Schrödinger equation for
the time-dependent Hamiltonian of the system. Moreover, the
operations of the gates were verified independently via quan-
tum process tomography in both the presence and absence
of decoherence. The robustness of gates was examined using
random noise injection and frequency detuning distortion.
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FIG. 9. Real part of the process matrix χ (ideal) for the ideal CCZ operation. The imaginary component is identically 0 for all elements. The
process matrix is expressed in terms of the complete basis set of 64 three-qubit Pauli matrices; I, X, Y, Z represent the matrices σ0, σx, σy, σz.
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The presented gate design procedure, verification, and
robustness investigation can be applied to designing gates
for other quantum systems as well. We showed that our
designed gates can significantly increase the performance of
Shor’s nine qubit error correction circuit, compared to the
traditional circuits based on two-qubit controlled-phase gates.
The ParChe gate can be considered as an elementary gate for
quantum computing and can be used in quantum arithmetic
circuits and many QEC schemes.
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APPENDIX: MODELING DECOHERENCE
OF THE TRANSMON SYSTEMS

Lindblad relaxation operators for the transmon qudits were
trivially constructed by taking into account the increased
photon number for higher levels. The Lindblad dephasing
operators were constructed by extending the operator forms
presented in Refs. [56,57]. In total, six Lindblad terms were
used in the master equation (three terms for relaxation and
three terms for dephasing, of each of the transmons). See
Figs. 9–12.
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For the case of kmax = 3, the single-qutrit relaxation and
dephasing “jump” operators were

Arel =

⎛
⎜⎝

0 1 0

0 0
√

2

0 0 0

⎞
⎟⎠

Adph =

⎛
⎜⎝

1 0 0

0 e
2π i
3 0

0 0 e
4π i
3

⎞
⎟⎠.

For the case of kmax = 4, the single-qudit relaxation and
dephasing jump operators were

Arel =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

0 0
√

2 0

0 0 0
√

3

0 0 0 0

⎞
⎟⎟⎟⎟⎠

Adph =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 e
2π i

4 0 0

0 0 e
4π i
4 0

0 0 0 e
6π i
4

⎞
⎟⎟⎟⎟⎠.
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FIG. 12. Absolute values of the differences between elements of ideal and simulated process matrices [χ (ideal) − χ] for the ideal ParChe
operation. Note the change in legend scale to increase clarity of error terms. The process matrix is expressed in terms of the complete basis set
of 64 three-qubit Pauli matrices; I, X, Y, Z represent the matrices σ0, σx, σy, σz.

Then, the three-qudit relaxation Lindblad terms were con-
structed using the following operators:

Arel ⊗ I ⊗ I

I ⊗ Arel ⊗ I

I ⊗ I ⊗ Arel

The three-qudit dephasing Lindblad terms were con-
structed using the following operators:

Adph ⊗ I ⊗ I
I ⊗ Adph ⊗ I

I ⊗ I ⊗ Adph
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