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Quantum coherence is a crucial resource for quantum information processing. By employing the language of
coherence orders largely applied in NMR systems, quantum coherence has been currently addressed in terms of
multiple quantum coherences (MQCs). Here we investigate α-MQCs, a class of multiple quantum coherences
which is based on α-relative purity, an information-theoretic quantifier analogous to quantum fidelity and closely
related to Rényi relative entropy of order α. Our framework enables linking α-MQCs to Wigner-Yanase-Dyson
skew information, an asymmetry monotone-finding application in quantum thermodynamics and quantum
metrology. Furthermore, we derive a family of bounds on α-MQCs, particularly showing that α-MQCs define
a lower bound to quantum Fisher information. We illustrate these ideas for quantum systems described by
single-qubit states, two-qubit Bell-diagonal states, and a wide class of multiparticle mixed states. Finally, we
investigate the time evolution of the α-MQC spectrum and the overall signal of relative purity by simulating the
time-reversal dynamics of a many-body all-to-all Ising Hamiltonian and comment on applications to physical
platforms such as NMR systems, trapped ions, and ultracold atoms.
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I. INTRODUCTION

Quantum coherence is a primary signature of quantum
mechanics. It plays, together with entanglement, a central
role in quantum technologies [1] as well as in fundamental
physics, including quantum thermodynamics [2,3], quantum
phase transitions [4,5], and quantum biology [6,7]. Modern
approaches include the formulation of quantum coherence
within an axiomatic resource theory [8]. Quantum coher-
ence can also be addressed through the framework of mul-
tiple quantum coherences (MQCs), also known as coher-
ence orders, which were introduced in the ’80s in the con-
text of nuclear magnetic resonance (NMR) [9,10]. MQCs
finds applications ranging from solid-state spectroscopy
[11–14] to many-body localization effects induced by de-
coherence [15], entanglement witnessing [16], and quantum
metrology [17].

Notethat it has been recently proved that MQCs provide
a useful criterion to probe the buildup of entanglement in
quantum many-body systems with long-range interactions
[18]. Furthermore, MQCs have also contributed to elucidate
the role played by coherence orders into the delocaliza-
tion of quantum information signaled by out-of-time-order
correlation functions (OTOCs), recently measured with a
quantum simulator implementing the time-reversal dynamics
of a fully connected Ising model [19]. Linking MQC and
OTOC has triggered experimental investigations ranging from
many-body localization in solid-state spin systems [20–22] to
prethermalization effects emerging in nonequilibrium dynam-

ics in a NMR quantum simulator [23,24], and also distinguish-
ing effects of scrambling from decoherence [25].

Despite the growing interest in MQCs, little is known about
its connection with higher order Rényi entropies or even the
relation of the second Rényi entropy and MQCs. The situa-
tion is also unclear for α-Rényi relative entropies (α-RRE),
which take an important role in quantum thermodynamics
[26–28], quantum communication [29], coherence quanti-
fiers [30–33], and Gaussian states [34]. So far, promising
theoretical achievements discussed the feasibility of probing
entanglement by measuring Rényi entropies which, up to now,
remains a challenge [35–38]. Typically, experimental results
mainly focus on second-order Rényi entropy by exploiting its
relationship with quantum purity of the many-body system
[39]. Indeed, significant progress has been made in measur-
ing second-order Rényi entropy of a four-site Bose-Hubbard
system [40], the two-site Fermi-Hubbard model on trapped
ion simulators [41], and the quantum long-range XY model
[42]. Further results include measuring Rényi entropy of order
α = 2, 3, 4 in the context of quench dynamics of bosons in 1D
optical lattices [43].

Here we promote a study of MQCs and the buildup of
correlations in quantum many-body systems via α-Rényi rel-
ative entropy. We focus on the so-called α-relative purity, a
distinguishability measure of quantum states intimately linked
to the Rényi relative entropy of order α (see details in Sec. II).
Motivated by the language of coherence orders developed
in NMR and recently addressed under the viewpoint of re-
source theories, here we will present a class of MQCs, called
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α-MQCs, which is rooted on α-RRE. Our framework unveils
the link among MQCs, α-RRE, and Wigner-Yanase-Dyson
skew information (WYDSI), an information-theoretic quan-
tifier introduced half a century ago and which plays a role
in the theory of asymmetry. Note that it has been shown
that WYDSI also witnesses the role of classical and quantum
fluctuations in many-body systems [44]. We derive bounds
on α-MQCs, proving that α-MQCs are upper bounded by
quantum Fisher information (QFI), a paradigmatic figure of
merit widely applied for enhanced phase estimation [45], and
the detection the metrologically useful entanglement [46,47].

The paper is organized as follows. In Sec. II, we review
useful basic concepts regarding Rényi relative entropies (α-
RREs) and highlight their main features. In Sec. III, we
address the concept of coherence orders and derive a class
of -MQCs linked to α-RREs. In Sec. IV, we prove that α-
RRE is perturbatively linked to WYDSI. Furthermore, we
show that WYDSI testifies the coherence encapsulated in a
quantum state by proving its connection with α-MQCs. In
Sec. V, we derive a family of upper and lower bounds to
the second moment of α-MQC and WYDSI. In Sec. VI, we
illustrate our findings. Sections VI A and VI B provide analyt-
ical results for single-qubit states and two-qubit Bell-diagonal
states, respectively. In Sec. VI C, we focus on systems of
N-particle states, and thus present analytical calculations and
numerical simulations to support our theoretical predictions.
Section VI D examines α-MQC in the context of time revers-
ing the many-body dynamics of a long-range Ising model.
Finally, in Sec. VII we summarize our conclusions.

II. RÉNYI RELATIVE ENTROPY: A SHORT REVIEW

In this section, we will briefly review some basic properties
of quantum Rényi relative entropies. Here we will focus on a
physical system described by finite-dimensional Hilbert space
H, i.e., dim H = d . For completeness, let B(H) be the set
of linear operators acting over H. The state of the system
will be given by the density matrix � ∈ S , where S = {ρ ∈
H | ρ† = ρ, ρ � 0, Tr(ρ) = 1} denotes the convex space of
positive semidefinite density operators. In this setting, given
two states ρ, � ∈ S and α ∈ (0, 1) ∪ (1,+∞), the quantum
α-Rényi relative entropy (α-RRE) is defined by [48–51]

Dα (ρ‖�) =
{

(α − 1)−1 ln[ fα (ρ, �)], if supp ρ ⊆ supp �

+∞, otherwise,
(1)

with the relative purity

fα (ρ, �) := Tr(ρα�1−α ). (2)

Here supp X stands for the support of X ∈ S . In particular,
for α ∈ (0, 1) the restriction supp ρ ⊆ supp � is equivalent to
ρ �⊥ �, i.e., whenever supp ρ ∩ supp � contains at least one
nonzero vector [52]. The positivity of α-RRE follows from
Hölder’s inequality for any ρ, � ∈ S , and its monotonicity
yields that, for α ∈ (0, 1) ∪ (1, 2), one has Dα (E (�)‖E (ω)) �
Dα (�‖ω), where E (•) denotes a completely positive and trace
preserving map [53]. Except for the case α = 1/2, Rényi
relative entropy is not a symmetric information measure and
does not define a metric over the space of quantum states.
Note, for α � 1 Rényi α-relative entropy fulfills the Csiszár-

Pinsker inequality, Dα (�‖ρ) � (1/2)‖ρ − �‖2
1, where the no-

tation ‖A‖1 = Tr|A| stands for the trace norm, with |A| :=√
A†A [54–56]. Moreover, it has been proved that α-RRE also

satisfies a family of Pinsker-type inequalities for α ∈ (0, 1)
[57]. Finally, we also notice the similarity between the α-RRE
and the so-called sandwiched quantum Rényi relative entropy
proposed in Refs. [51,58].

The functional fα (ρ, �) defines the α-relative purity
and it is bounded as 0 � fα (ρ, �) � 1 [59]. The property
f1−α (�, ρ) = fα (ρ, �) for all ρ, � ∈ S and 0 < α < 1 implies
that α-RRE is skew symmetric for

α D1−α (ρ‖�) = (1 − α) Dα (�‖ρ). (3)

In particular, Eq. (2) reduces to fα (ρ, ρ) = 1 for all α and ρ ∈
S , and α-RRE is identically zero in such a case. Remarkably,
for 0 � α � 1 one may verify that relative purity is also
lower bounded by the trace norm (or Schatten 1-norm) as
fα (ρ, �) � 1 − (1/2) ‖ρ − �‖1 [60], which collapses into the
Powers-Størmer’s inequality for α = 1/2 [61,62].

We summarize some limiting cases of α-RRE. For α = 1,
Eq. (1) recovers the so-called Umegaki’s relative entropy,
D1(ρ‖�) = Tr[ρ (ln ρ − ln �)], also known as quantum rel-
ative entropy or Kullback-Leibler divergence [63,64]. Fur-
thermore, α = 0 sets the min-relative entropy Dmin(ρ‖�) =
− ln [Tr(�ρ�)], with �ρ being the projector onto the support
of ρ, while the max-entropy Dmax(ρ‖�) = inf{λ ∈ R | ρ �
exp(λ)�} is obtained for α → ∞ if the kernel of � is contained
in the kernel of state ρ [65].

III. α-MULTIPLE QUANTUM COHERENCES

In the following, we will present the framework to address
a family of MQCs which is related to the relative purity
fα (ρ, �) defined in Eq. (2). Unless otherwise stated, from now
on we will set 0 < α < 1. Let us define the density operator

ρ (α) := cα ρα, (4)

where c−1
α = Tr(ρα ) is a positive real number. Using the

spectral decomposition ρ = ∑
l pl |ψl〉〈ψl |, with 〈ψl |ψr〉 =

δl,r , 0 < pl < 1, and
∑

l pl = 1, one may readily conclude
that c−1

α = ∑
l pα

l > 0.
To formulate the concept of coherence orders, we first

need to fix some preferred basis of states [9,10]. Thus, given
the observable Â ∈ B(H), let us denote by {|
〉}
=1,...,d its
complete set of eigenstates, and {λ
}
=1,...,d the corresponding
set of discrete eigenvalues. In the remainder of the paper, we
will refer to this basis of states as the reference basis. We
furthermore assume that the spacing of the eigenvalues of the
spectrum of Â is an integer m ∈ Z,

λ j − λ
 = m, (5)

for all j, 
 ∈ {1, . . . , d}. The coherence order decomposition
of the density operator ρ (α) reads

ρ (α) =
∑

m

ρ (α)
m , (6)

where we define

ρ (α)
m :=

∑
λ j−λ
=m

〈 j|ρ (α)|
〉| j〉〈
|. (7)
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One should note that Eq. (7) allows us to write down the
density matrix ρ (α) as a sum of non-Hermitian blocks ρ (α)

m
in terms of the reference basis. In other words, ρ (α)

m contains
all coherences between eigenstates | j〉 and |
〉 of Â such that
λ j − λ
 = m, with m ∈ Z.

Note that ρ (α)
m satisfies three crucial properties:

(1) The block ρ (α)
m is asymmetric with respect to index m

under conjugate transposition, i.e.,(
ρ (α)

m

)† = ρ
(α)
−m. (8)

(2) The blocks ρ (α)
m and ρ (β )

n are orthogonal according to
the Hilbert-Schmidt inner product as〈

ρ (α)
m , ρ (β )

n

〉
HS = δm,n

〈
ρ (α)

m , ρ (β )
m

〉
HS, (9)

where we define 〈A, B〉HS := Tr(A†B) for A, B ∈ B(H).
(3) By considering the observable Â which generates the

translationally covariant operation Uφ (•) := e−iφÂ • eiφÂ, with
φ ∈ (0, 2π ], thus block ρ (α)

m acquires a phase shift that reads

Uφ

(
ρ (α)

m

) = e−imφ ρ (α)
m . (10)

Note that ρ
(α)
0 is incoherent under such a phase encoding

process, i.e., the subspace related to the mode of coherence
m = 0 is translationally symmetric with respect to Â [66]. For
details in the proof of Eqs. (8)–(10), see Appendix A.

In the following, we will discuss how the relative purity
fα (ρ, ρφ ) of states ρ and ρφ = Uφ (ρ) behaves under the
framework of coherence orders. From Eq. (10), one may
verify that

ρα
φ = c−1

α

∑
m

Uφ

(
ρ (α)

m

) = c−1
α

∑
m

e−imφ ρ (α)
m , (11)

where we used the property ρα
φ = [Uφ (ρ)]α = Uφ (ρα ), which

holds for 0 < α < 1 [67,68]. Crucially, Eq. (11) implies that
the unitary evolution imprints a phase shift on each block ρ (α)

m
built from the coherence order decomposition of the probe
state ρ. Hence, from Eqs. (6), (9), and (11), the relative purity
becomes

fα (ρ, ρφ ) = (cα c1−α )−1
∑
m,n

e−imφ Tr
(
ρ (α)

n ρ (1−α)
m

)
= (cα c1−α )−1

∑
m

e−imφ Iα
m (ρ), (12)

where Iα
m (ρ) is the α-multiple-quantum intensity (α-MQI)

defined as

Iα
m (ρ) = Tr

((
ρ (α)

m

)†
ρ (1−α)

m

)
. (13)

The set {Iα
m (ρ)}m∈Z is called α-MQI spectrum. Quite remark-

ably, the asymmetry property presented in Eq. (8) implies that
α-MQI satisfies the following algebraic identities:[

Iα
m (ρ)

]∗ = I1−α
m (ρ) = Iα

−m(ρ). (14)

Furthermore, setting φ = 0 into Eq. (12), it is straightforward
to verify that the sum of all α-MQI relative to state ρ fulfills
the normalization constraint:∑

m

Iα
m (ρ) = cα c1−α. (15)

ρ Uφ(•) ρφ

FIG. 1. Schematic depiction of the quantum protocol.

We emphasize that one may access the α-MQI Iα
m (ρ) by

Fourier transforming Eq. (12) with respect to φ ∈ (0, 2π ],
which reads

Iα
m (ρ) = cα c1−α

2π

∫ 2π

0
dφ eimφ fα (ρ, ρφ ). (16)

It should be noted that α-MQI defined in Eq. (13) is analogous
to the standard MQI addressed by Gärttner et al. [18,19].
However, it turns out the framework developed here covers
the subtle case of coherence orders involving rational powers
ρα of the density operator, with 0 < α < 1.

It is worth mentioning that relative purity fα (ρ, ρφ ) implies
a nontrivial constraint involving α-MQI and α-Rényi relative
entropy. Indeed, by substituting Eq. (12) into Eq. (1), one
obtains

Dα (ρ‖ρφ ) = α

α − 1
S1−α (ρ) − Sα (ρ)

+ 1

α − 1
ln

(∑
m

e−imφ Iα
m (ρ)

)
, (17)

where Sα (ρ) is the standard Rényi entropy:

Sα (ρ) := 1

1 − α
ln[Tr(ρα )]. (18)

In summary, Eq. (17) means that, to distinguish states ρ

and ρφ through α-Rényi relative entropy, one requires the
knowledge of Rényi entropy Sα (ρ) and the α-MQI spectrum
of state ρ with respect to the reference basis of generator Â.

IV. BRIDGING RÉNYI RELATIVE ENTROPY, α-MQC, AND
WIGNER-YANASE-DYSON SKEW INFORMATION

In this section, we study the connection between the α-
RRE, the WDSI, and the α-MQC.

A. α-RRE and WYDSI

Let us consider the protocol of Fig. 1, where the param-
eter φ is imprinted on the probe state ρ ∈ S through the
unitary evolution Uφ (•) := e−iφÂ • eiφÂ, where Â ∈ B(H) is
a generic observable. In general, the problem of estimating
the phase shift φ is addressed via the so-called Cramér-
Rao bound [69,70], which relates the inverse of QFI to the
maximum phase sensitivity achievable for state ρ undergoing
the referred physical process. Furthermore, estimating such
an unknown parameter is also a task related to the ability
of distinguishing both states ρ and ρφ = Uφ (ρ) [71]. In this
context, one typically introduces the Bures distance or another
suitable bona fide quantifier also related to the Uhlmann-Jozsa
fidelity [72]. Here we will adopt the α-RRE introduced in
Sec. II as a figure of merit to distinguish quantum states. By
performing a Taylor expansion of α-RRE up to second order
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in φ around φ = 0, one obtains

Dα (ρ‖ρφ ) ≈ − φ2

α − 1
Iα (ρ, Â) + O(φ3), (19)

where we define

Iα (ρ, Â) := − 1
2 Tr([Â, ρα] [Â, ρ1−α]). (20)

Interestingly, Eq. (20) defines the WYDSI [73]. WYDSI
is positive, Iα (ρ, Â) � 0, and a convex quantity [74,75],
i.e., Iα (γ ρ + (1 − γ )�, Â) � γ Iα (ρ, Â) + (1 − γ ) Iα (�, Â),
for all 0 < α < 1 and 0 � γ � 1, with ρ, � ∈ S and
Â ∈ B(H). Furthermore, WYDSI is additive for prod-
uct states, i.e., Iα (ρ1 ⊗ ρ2, Â1 ⊗ I + I ⊗ Â2) = Iα (ρ1, Â1) +
Iα (ρ2, Â2) [76]. Physically, WYDSI quantifies the noncom-
mutativity of operator Â regarding the quantum state ρ.
Note that WYDSI has also been recognized as an asymme-
try measure [66,77]. Moreover, WYDSI also appears in a
slightly modified quantum version of the work dissipation
fluctuation relation in nonequilibrium quantum thermody-
namics [78,79]. In particular, for α = 1/2, WYDSI reduces
to the so-called Wigner-Yanase skew information (WYSI),
which is defined as I1/2(ρ, Â) = −(1/2) Tr ([

√
ρ, Â ]2). In

Appendix B we show that, for α → 1, Eq. (19) is well
behaved and reduces to D1(ρ‖ρφ ) = limα→1 Dα (ρ‖ρφ ) ≈
φ2(Tr(Â2ρ ln ρ) − Tr(ÂρÂ ln ρ)) + O(φ3).

The proof of Eq. (19) is as follows. Given the states
ρ and ρφ = e−iφÂρ eiφÂ, with supp ρ ⊆ supp ρφ , we know
from Sec. II that Dα (ρ‖ρφ ) = (α − 1)−1 ln [ fα (ρ, ρφ )], with
fα (ρ, ρφ ) = Tr(ραρ1−α

φ ). The Taylor expansion of α-RRE up
to second order in φ, around φ = 0, is given by

Dα (ρ‖ρφ ) ≈ [Dα (ρ‖ρφ )]φ=0 + φ[D′
α (ρ‖ρφ )]φ=0

+ φ2

2
[D′′

α (ρ‖ρφ )]φ=0 + O(φ3), (21)

where the notations A′, A′′ stand for the derivatives dA/dφ

and d2A/dφ2, respectively. We notice that [Dα (ρ‖ρφ )]
φ=0 =

0 since ρ0 = ρ. Moreover, both the first- and second-order
derivatives of α-RRE with respect to φ can be written as

[D′
α (ρ‖ρφ )]φ=0 = 1

α − 1
( f ′

α (ρ, ρφ ))φ=0 (22)

and

[D′′
α (ρ‖ρφ )]φ=0 = 1

α − 1
[ f ′′

α (ρ, ρφ ) − ( f ′
α (ρ, ρφ ))2]φ=0,

(23)

where we have used that limφ→0 fα (ρ, ρφ ) = 1. To com-
pute Eqs. (22) and (23), we need to evaluate the derivatives
f ′
α (ρ, ρφ ) and f ′′

α (ρ, ρφ ) at φ = 0. To do so, one may prove
that the quantum state ρφ = e−iφÂρeiφÂ evolving unitarily
implies that ρs

φ = [Uφ (ρ)]s = Uφ (ρs), for 0 < s < 1 (see Ap-
pendix A in Ref. [68]). Therefore, it follows that the kth order
derivative of state ρs

φ becomes

dk

dφk
ρs

φ = (−i)k
[
Â,

[
Â, . . . ,

[
Â, ρs

φ

]
. . .

]]︸ ︷︷ ︸
ktimes

. (24)

Hence, starting from Eq. (24), both first- and second-order
derivatives of the relative purity at the vicinity of φ = 0 are

given by

( f ′
α (ρ, ρφ ))φ=0 = i

[
Tr
(
Â
[
ρα, ρ1−α

φ

])]
φ=0

= 0, (25)

and

( f ′′
α (ρ, ρφ ))φ=0 = [

Tr
(
[Â, ρα]

[
Â, ρ1−α

φ

])]
φ=0

= −2 Iα (ρ, Â), (26)

respectively, where Iα (ρ, Â) is the WYDSI defined in
Eq. (20). Substituting Eqs. (25) and (26) into Eqs. (22) and
(23) yields [D′

α (ρ‖ρφ )]
φ=0 = 0 and also

[D′′
α (ρ‖ρφ )]φ=0 = − 2

α − 1
Iα (ρ, Â). (27)

Finally, by plugging these results into Eq. (21), one recovers
the Taylor expansion of α-RRE aforementioned in Eq. (19).
It should be noted that a similar conclusion was previously
reported in the context of resource theory of asymmetry, but
focusing on the Taylor expansion of relative purity [80].

B. WYDSI and α-MQC

Remarkably, WYDSI captures information about the co-
herence order decomposition of state ρ with respect to the
reference basis of the observable Â. Indeed, one may prove
that

4 cα c1−α Iα (ρ, Â) = Fα
I (ρ, Â), (28)

where here Fα
I (ρ, Â) denotes the second moment of the α-

MQC spectrum defined by

Fα
I (ρ, Â) := 2

∑
m

m2 Iα
m (ρ). (29)

To prove such a statement, we will take advantage of the
framework of coherence orders discussed in Sec. III. Starting
from the definition of WYDSI in Eq. (20), one may write
down

Iα (ρ, Â) = − 1

2 cαc1−α

∑
m,n

Tr
([

Â, ρ (α)
n

] [
Â, ρ (1−α)

m

])
, (30)

where we have used that ρ = c−1
s

∑
m ρ (s)

m [see Eqs. (4) and
(6)]. Now, note that each commutator in Eq. (30) can be
conveniently simplified according to the identity below:[

Â, ρ (s)
m

] =
∑

λ j−λ
=m

〈 j|ρ (s)|
〉 [Â, | j〉〈
| ]

=
∑

λ j−λ
=m

(λ j − λ
︸ ︷︷ ︸
m

) 〈 j|ρ (s)|
〉| j〉〈
|

= m ρ (s)
m , (31)

which descends from Â| j〉 = λ j | j〉. Moreover, from Eqs. (9)
and (13), we also know that

Tr
(
ρ (α)

n ρ (1−α)
m

) = δn,−mTr
(
ρ

(α)
−m ρ (1−α)

m

)
= δn,−m Iα

m (ρ). (32)

Finally, by substituting Eqs. (31) and (32) into Eq. (30), one
arrives at the result indicated in Eq. (28).
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We point out that one could obtain the same result as
in Eq. (28) by simply taking the second-order derivative of
α-RRE in Eq. (17) at φ = 0. Quite interestingly, it is possible
to verify that Fα

I (ρ, Â) is a real number. Indeed, we know
from Eq. (14) that [Iα

m (ρ)]∗ = Iα
−m(ρ), Therefore, by taking

the complex conjugate of Eq. (29), one obtains[
Fα

I (ρ, Â)
]∗ = 2

∑
m

m2
[
Iα
m (ρ)

]∗
= 2

∑
m

m2 Iα
−m(ρ)

= Fα
I (ρ, Â), (33)

where we applied the substitution m → −m over the summa-
tion label.

Equation (28) is one of the main results of the paper. To be
more specific, in Refs. [18,19,81] the second moment of the
MQC spectrum is obtained from quantum fidelity, also called
relative purity, i.e., the overlap between states ρ0 and ρφ ,
which in turn defines a lower bound on QFI. Notwithstanding,
addressing quantum relative Rényi entropy as a bona fide
distinguishability measure of mixed states, here we derive
the class of α-MQI, Iα

m (ρ) [see Eq. (13)]. In turn, α-MQI
implies the second moment of α-MQC spectrum, Fα

I (ρ, Â)
[see Eq. (29)], which plays the role of α curvature. We also
proved that Fα

I (ρ, Â) is related to WYDSI [see Eq. (28)],
a widely established asymmetry measure in the context of
resource theories [66,77], which also captures the signature of
quantum fluctuations in many-body systems at finite tempera-
ture [44]. This means that, by bridging Rényi relative entropy,
α-MQC, and WYDSI, one provides an alternative perspective
to the understanding of quantum fluctuations and quantum
correlations.

V. BOUNDS ON α-MQC

In this section, we will establish a class of bounds on
WYDSI that naturally holds for the second moment of α-
MQI. We introduce the lower bound,

Fα
I (ρ, Â) � 8 α(1 − α) cαc1−α IL(ρ, Â), (34)

where

IL(ρ, Â) := − 1
4 Tr([ρ, Â]2), (35)

which we prove in Appendix C. For the case α = 1/2,
Eq. (34) becomes

F 1/2
I (ρ, Â) � 2 c2

1/2 IL(ρ, Â). (36)

Importantly, quantifiers IL(ρ, Â) have been introduced in the
context of quantum coherence characterization, thus defining
a lower bound on WYSI, i.e., I1/2(ρ, Â) � IL(ρ, Â) [82].
Recently, a detection scheme to measure IL was imple-
mented in an all-optical experiment [83,84]. Equation (36)
generalizes this bound by providing a less tight lower bound
to the quantity F 1/2

I (ρ, Â). To see this, note that Eq. (28)
becomes F 1/2

I (ρ, Â) = 4 c2
1/2 I1/2(ρ, Â) for α = 1/2, which

allow us to recast Eq. (36) into the form I1/2(ρ, Â) �
(1/2) IL(ρ, Â). Hence, the latter inequality differs from the

bound I1/2(ρ, Â) � IL(ρ, Â) by a factor of 1/2 and does not
set the tightest lower bound.

An upper bound on WYDSI and thus on the second
moment of α-MQI can be derived using the inequalities
Iα (ρ, Â) � I1/2(ρ, Â)�V1/2(ρ, Â) and Iα (ρ, Â)�Vα (ρ, Â)�
V1/2(ρ, Â), respectively [85]. Therefore, Fα

I (ρ, Â) fulfills the
two inequalities

Fα
I (ρ, Â)

4 cα c1−α

� I1/2(ρ, Â) � V1/2(ρ, Â) (37)

and

Fα
I (ρ, Â)

4 cα c1−α

� Vα (ρ, Â) � V1/2(ρ, Â), (38)

where Vα (ρ, Â) denotes the α variance,

Vα (ρ, Â) :=
√

[V (ρ, Â)]2 − [V (ρ, Â) − Iα (ρ, Â)]2, (39)

and V (ρ, Â) stands for the variance:

V (ρ, Â) = Tr(ρÂ2) − [Tr(ρÂ)]2. (40)

It is worth emphasizing that inequalities in Eqs. (38) and (39)
cannot be recast in a single inequality. In fact, upon varying
α, there exists intervals over the range 0 < α < 1 in which
I1/2(ρ, Â) � Vα (ρ, Â), and others in which I1/2(ρ, Â) �
Vα (ρ, Â). For more details, see Sec. VI C, particularly panels
in Figs. 3–5.

We are now in a position to derive a class of hierarchical
bounds on the second moment of α-MQI. In fact, one may
bring together inequalities given in Eqs. (34), (37), and (38)
and thus combine them to produce a general family of bounds
on Fα

I (ρ, Â). Therefore, one straightforwardly gets

2 α(1 − α) IL(ρ, Â) � Fα
I (ρ, Â)

4 cα c1−α

� I1/2(ρ, Â) � V1/2(ρ, Â)

(41)
and also

2 α(1 − α) IL(ρ, Â) � Fα
I (ρ, Â)

4 cα c1−α

� Vα (ρ, Â) � V1/2(ρ, Â).

(42)

A. Bounds on the quantum Fisher information

From now on, we shall prove that Fα
I (ρ, Â) defines a lower

bound on QFI. We begin by recalling the standard setup for
phase estimation based on QFI. Given a finite-dimensional
quantum system undergoing a unitary evolution to the output
state ρφ = e−iφÂρ eiφÂ, generated by the observable Â, then
QFI related to estimating the phase shift φ encoded into the
probe state ρ = ∑

j p j |ψ j〉〈ψ j | reads [84,86]

FQ(ρ, Â) = 1

2

d∑
j,l=1

(p j − pl )2

p j + pl
|〈ψ j |Â|ψl〉|2, (43)

where d = dim H is the Hilbert space dimension, 0 < pj <

1, and the sum runs over all the indices { j, l} such that
p j + pl �= 0. In comparison to standard definitions of QFI
(see Refs. [18,84,86]), note that Eq. (43) includes an extra
normalizing factor 1/4 and guarantees that QFI recovers the
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variance of generator Â for pure states [87–89]. To proceed
deriving the upper bound to Fα

I (ρ, Â), we point out that
I1/2(ρ, Â) is also related to QFI according to the inequality
I1/2(ρ, Â) � FQ(ρ, Â) � 2 I1/2(ρ, Â) [88,89]. Therefore, by
substituting the latter into Eq. (41), it is possible to show a
strict bound involving the second moment of α-MQI and QFI,
which reads

Fα
I (ρ, Â)

4 cα c1−α

� I1/2(ρ, Â) � FQ(ρ, Â) � 2 I1/2(ρ, Â). (44)

Equation (44) is one of the main results of the paper. It
provides a family of lower bounds on QFI, FQ(ρ, Â), which
in turn depends on WYSI, I1/2(ρ, Â), and also on the second
moment of α-MQC spectrum, Fα

I (ρ, Â). Importantly, this
result paves the way for a discussion of entanglement charac-
terization by using α-MQCs from α-Rényi relative entropies.
More in general, Eq. (44) defines a criterion for detecting
entanglement in a mixed many-body state.

VI. EXAMPLES

In this section, we present some examples to illustrate
our main findings. In Sec. VI A, by considering the paradig-
matic case of a single qubit state, we obtain analytical ex-
pressions for α-MQI spectrum Iα

m (ρ) and also Fα
I (ρ, Â). In

Sec. VI B, we discuss α-MQCs for the case of two-qubit
Bell-diagonal states. Moving to the multiparticle scenario,
Sec. VI C presents numerical analysis for the α-MQI spectrum
related to a class of mixed entangled states, viz., uniform
superposition state, Greenberger-Horne-Zeilinger state (GHZ
state), and Werner state (W state). Finally, Sec. VI D discusses
α-MQI spectrum for a physical scenario in which the referred
class of multiparticle states evolves under a time-reversal
quantum protocol.

A. Single qubit state

Let us consider the quantum system described by ρ =
(1/2)(I + �r · �σ ), i.e., the Bloch sphere representation of the
single qubit mixed state, where �σ = (σx, σy, σz ) is the vec-
tor of Pauli matrices, �r = r r̂ is the Bloch vector, with r̂ =
{sin θ cos ϕ, sin θ sin ϕ, cos θ}, 0 < r < 1, θ ∈ [0, π ] and ϕ ∈
[0, 2π [, while I is the 2 × 2 identity matrix. Here we will
choose the operator Â = (1/2)(n̂ · �σ ) as the generator of
the phase-encoding protocol, where n̂ = {nx, ny, nz} is a unit
vector with n2

x + n2
y + n2

z = 1. In this case, the reference basis
is composed by the eigenstates {|+〉〉, |−〉〉} of Â defined as

|±〉〉 = 1√
2

(
±
√

1 ± nz |0〉 + nx + i ny√
1 ± nz

|1〉
)

, (45)

where |0〉 = [1 0]T and |1〉 = [0 1]T are the vectors defin-
ing the computational basis states in the complex two-
dimensional vector space C2, where we have that Â|±〉〉 =
λ±|±〉〉, with eigenvalues λ± = ±1/2.

One may verify that, for 0 < α < 1, operator ρ (α) in Eq. (4)
is given by

ρ (α) = 1
2 [I + (1 − 21−α (1 − r)α cα )(r̂ · �σ )] (46)
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FIG. 2. Density plot of figure of merit F̃α
I (ρ, Â) for n̂ = {0, 0, 1}

and r̂ = {cos ϕ, sin ϕ, 0}, with G̃ := (G − min{G})/(max{G} −
min{G}), and F α

I (ρ, Â) is given in Eq. (52). In this case, since vectors
n̂ and �r are orthogonal, Fα

I (ρ, Â) does not depend on the azimuthal
angle ϕ, and thus it is solely a function of r and α.

and

c−1
α = 2−α[(1 + r)α + (1 − r)α]. (47)

Starting from Eq. (46), the coherence order decom-
position reads ρ (α) = ∑

m ρ (α)
m with m = {−1, 0,+1}. The

non-Hermitian matrix blocks ρ (α)
m are given by

ρ
(α)
±1 = 1

4 (1 − 21−α (1 − r)α cα )

× [(n̂ × �σ ) · (n̂ × r̂) ± i(n̂ × r̂) · �σ ] (48)

and

ρ
(α)
0 = 1

2 [I + (1 − 21−α (1 − r)α cα )(n̂ · r̂)(n̂ · �σ )]. (49)

Based on Eqs. (48) and (49), one readily concludes that
Tr(ρ (α)

m ) = δm,0 and ρ
(α)
−1 = (ρ (α)

+1 )†. Therefore, α-MQI defined
in Eq. (13) becomes

Iα
±1(ρ) = 1

4 (2 cαc1−α − 1)[1 − (n̂ · r̂)2] (50)

and

Iα
0 (ρ) = 1

2 [1 + (2 cαc1−α − 1)(n̂ · r̂)2]. (51)

Furthermore, note that if vectors n̂ and r̂ are parallel,
then we have Iα

±1(ρ) = 0 and Iα
0 (ρ) = cαc1−α . Conversely,

if vectors n̂ and r̂ are orthogonal, it follows that Iα
±1(ρ) =

(1/4)(2 cαc1−α − 1) and Iα
0 (ρ) = 1/2. Finally, from Eqs. (50)

and (51), the second moment of α-MQI [see Eq. (29)] is
written as

Fα
I (ρ, Â) = (2 cαc1−α − 1)[1 − (n̂ · r̂)2]. (52)

Let us now analyze the behavior of the second moment of
α-MQI in Eq. (52). Naturally, Fα

I (ρ, Â) inherits some prop-
erties from α-MQI. On the one hand, when vectors n̂ and r̂
are orthogonal, i.e., n̂ · r̂ = 0, thus Fα

I (ρ, Â) depends uniquely
on Bloch sphere radius r and the parameter α. For instance,
this case is illustrated in Fig. 2 choosing vector n̂ = {0, 0, 1}
related to the generator Â = (1/2)σz, and r̂ = {cos ϕ, sin ϕ, 0}
denoting the single qubit mixed state lying in the equatorial
xy plane of the Bloch sphere. On the other hand, when vectors
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TABLE I. Analytical expressions for the family of theoretical-
information quantifiers related to the single-qubit mixed state.

Quantifier Analytical value

IL (ρ, Â) (r2/8)[1 − (n̂ · r̂)2]
FQ(ρ, Â) (r2/4)[1 − (n̂ · r̂)2]
V (ρ, Â) (1/4)[1 − (n̂ · �r )2]
I1/2(ρ, Â) (1/4)(1 − √

1 − r2 )[1 − (n̂ · r̂)2]

n̂ and r̂ parallel, we have that Fα
I (ρ, Â) vanishes. For com-

pleteness, in Table I we summarize analytical expressions,
obtained by using the single-qubit state ρ = (1/2)(I + �r · �σ )
and generator Â = (1/2)(n̂ · �σ ), for the functional IL(ρ, Â),
QFI FQ(ρ, Â), standard variance V (ρ, Â), and also WYSI
I1/2(ρ, Â).

B. Bell-diagonal states

Let us now consider the class of two-qubit states with
maximally mixed marginals represented by the Bell-diagonal
states [90],

ρBD = 1

4

⎛⎝I ⊗ I +
∑

j=x,y,z

a j σ j ⊗ σ j

⎞⎠, (53)

where I is the 2 × 2 identity matrix, σ j is the jth Pauli
matrix, and the coefficients a j = Tr[ρ(σ j ⊗ σ j )] ∈ [−1, 1]
denote the triple �a = {ax, ay, az}, which uniquely identifies
the Bell-diagonal state. In particular, for |ax| + |ay| + |az| �
1 we thus have ρ as a separable state [91]. Here we will
choose the generator Â = n̂ · �S, where n̂ = {nx, ny, nz} is a
unit vector with n2

x + n2
y + n2

z = 1 and �S = {Ŝx, Ŝy, Ŝz} is the
angular momentum vector, with Ŝ j = (1/2)(σ j ⊗ I + I ⊗ σ j )
for j ∈ {x, y, z}. The reference basis {|
〉〉}
=1,...,4 contains the
eigenstates of Â given by

|1〉〉 = 1√
2

(|0, 1〉 − |1, 0〉),

|2〉〉 = − 1√
2

[
n−(n−|0, 0〉 − √

2 nz|L〉)√
1 − n2

z

−
√

1 − n2
z |1, 1〉

]
,

|3〉〉 = 1

2

(
n2

−
1 + nz

|0, 0〉 −
√

2 n−|L〉 + (1 + nz ) |1, 1〉
)

,

|4〉〉 = 1

2

(
n2

−
1 − nz

|0, 0〉 +
√

2 n−|L〉 + (1 − nz ) |1, 1〉
)

,

(54)

with n± := nx ± iny and |L〉 := (1/
√

2)(|0, 1〉 + |1, 0〉). Note
that Â|
〉〉 = λ
|
〉〉, where λ1 = λ2 = 0, λ3 = −1, λ4 = 1,
and thus one obtains m ∈ {±2,±1, 0}.

Given the Bell-diagonal state, one may verify that, for 0 <

α < 1, the operator ρ
(α)
BD = cα (ρBD)α [cf. Eq. (4)] becomes

ρ
(α)
BD = 1

4

⎛⎝I ⊗ I +
∑

j=x,y,z

ηα, jσ j ⊗ σ j

⎞⎠, (55)

TABLE II. Analytical expressions for the family of theoretical-
information quantifiers related to the Bell-diagonal state and genera-
tor Â = n̂ · �S, where n̂ = {nx, ny, nz} is a unit vector with n2

x + n2
y +

n2
z = 1 and �S = {Ŝx, Ŝy, Ŝz} is the angular momentum vector, with

Ŝ j = (1/2)(σ j ⊗ I + I ⊗ σ j ) for j ∈ {x, y, z}. Note that the sum runs
over index j, k, l ∈ {x, y, z}, and |�a|2 = a2

x + a2
y + a2

z .

Quantifier Analytical value

IL (ρBD, Â) 1
16 (2 |�a|2 − ∑

j �=k �=l (a2
j + 2akal )n2

j )

FQ(ρBD, Â) 1
4

∑
j �=k �=l

((ak−al )n j )2

(1+a j )

V (ρBD, Â) 1
2 (1 + ∑

j a jn2
j )

I1/2(ρBD, Â) 1
8

∑
j �=k �=l n2

j (η1/2,k − η1/2,l )2

with

ηα, j := cα

[−υα
1 + (1 − 2 δ j,z )υα

2

+(1 − 2 δ j,y)υα
3 + (1 − 2 δ j,x )υα

4

]
, (56)

for j ∈ {x, y, z}, and also

c−1
α = υα

1 + υα
2 + υα

3 + υα
4 . (57)

Here {υr}r=1,...,4 denotes the set of eigenvalues of the two-
qubit Bell-diagonal state, where

υr = 1
4 [1 − (1 − 2δr,2 − 2δr,3)ax + (1 − 2δr,1 − 2δr,3)ay

+ (1 − 2δr,1 − 2δr,2)az]. (58)

Based on Eq. (55), one may evaluate the non-Hermitian
blocks (ρ (α)

BD )m appearing into the coherence orders decom-
position ρ

(α)
BD = ∑

m (ρ (α)
BD )m, and thus determine the α-MQI

spectrum {Iα
m (ρBD)}, with m ∈ {0,±1,±2}. We will not show

them here as the expressions are cumbersome. After a lengthy
calculation, the expression for α-MQI yields

Fα
I (ρBD, Â) =

∑
j �=k �=l

n2
j (ηα,k − ηα,l )(η1−α,k − η1−α,l ), (59)

where the sum runs over index j, k, l ∈ {x, y, z}. Note
that Eq. (59) collapses into the particular cases (i)
Fα

I (ρBD, Ŝx ) = (ηα,y − ηα,z )(η1−α,y − η1−α,z ) for n̂ =
{1, 0, 0}, (ii) Fα

I (ρBD, Ŝy) = (ηα,x − ηα,z )(η1−α,x − η1−α,z ) for
n̂ = {0, 1, 0}, and (iii) Fα

I (ρBD, Ŝz ) = (ηα,x − ηα,y)(η1−α,x −
η1−α,y) for n̂ = {0, 0, 1}.

In Table II, we list the analytical expressions obtained for
the functional IL(ρBD, Â), QFI FQ(ρBD, Â), standard variance
V (ρBD, Â), and also WYSI I1/2(ρBD, Â).

C. Multiparticle states

In this section, we study multiparticle systems of N-qubit
states belonging to the d-dimensional Hilbert space Hd , with
d = 2N . We consider three prototypical examples of states
which are well known in quantum information. From now on,
we will choose the collective spin operator Â = n̂ · �S, where
n̂ = {nx, ny, nz} is a unit vector with n2

x + n2
y + n2

z = 1 and
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TABLE III. Family of theoretical-information quantifiers IL , quantum Fisher information FQ, variance V , and Wigner-Yanase skew
information I1/2. Here we have evaluated these quantities by considering the following operator pairs: (i) (ρeqn, Ŝz ), (ii) (ρGHZ, Ŝz ), and
(iii) (ρW, Ŝx ), where ρeqn, ρGHZ, and ρW denote the N-particle states in Eqs. (61), (69), and (75), respectively, with d = 2N . The collective
spin operators Ŝx , Ŝz are defined in Eq. (60).

Quantifier (ρeqn, Ŝz ) (ρGHZ, Ŝz ) (ρW, Ŝx )

IL 1
8 N p2 1

8 N2 p2 1
8 (4 + 3(N − 2))p2

FQ N d p2

4(2+(d−2)p) N2 d p2

4(2+(d−2)p) (3N − 2) d p2

4(2+(d−2)p)

V 1
4 N 1

4 N2 1
4 (N + 2(N − 1)p)

I1/2
N
4d (

√
1 + (d − 1)p − √

1 − p )
2 N2

4d (
√

1 + (d − 1)p − √
1 − p )

2 (3N−2)
4 d (

√
1 + (d − 1)p − √

1 − p )
2

�S = {Ŝx, Ŝy, Ŝz} is the angular momentum vector, with

Ŝx,y,z = 1

2

N∑
l=1

I⊗l−1 ⊗ σ
x,y,z
l ⊗ I⊗N−l . (60)

Let us first set n̂ = {0, 0, 1}, i.e., Â = Ŝz, and consider the
probe state

ρeqn =
(

1 − p

d

)
I + p (|+〉〈+|)⊗N , (61)

with d = 2N , 0 < p < 1, and |+〉 = (1/
√

2 )(|0〉 + |1〉) is the
equal superposition state. For 0 < α < 1, we obtain

ρ (α)
eqn = cα

(
1 − p

d

)α

I + ξα (p, d )(|+〉〈+|)⊗N , (62)

where we define

c−1
α = (d − 1)

(
1 − p

d

)α

+
(

1 + (d − 1) p

d

)α

(63)

and

ξα (d, p) := 1 − cα d1−α (1 − p)α. (64)

The coherence order decomposition ρ (α)
eqn = ∑

m (ρ (α)
eqn)m into

non-Hermitian blocks originates cumbersome expressions
that we do not report here. It turns out that the corresponding
expressions for the α-MQI take simple forms. For m = 0, one
obtains

Iα
0 (ρeqn) = 1

d

[
1 +

(
(2N )!

d (N!)2
− 1

)
ξα (d, p) ξ1−α (d, p)

]
,

(65)
while, for m �= 0, we have

Iα
m (ρeqn) = gN,m

d2
ξα (d, p) ξ1−α (d, p), (66)

where

gN,m = (2N )!

(N − m)! (N + m)!
(67)

is the degeneracy of each block. Therefore, from Eqs. (65) and
(66), one may write

Fα
I (ρeqn, Sz ) = N ξα (d, p) ξ1−α (d, p). (68)

In Table III, we list the expressions of IL(ρeqn, Ŝz ), the QFI
FQ(ρeqn, Ŝz ), the standard variance V (ρeqn, Sz ), and the WYSI
I1/2(ρeqn, Ŝz ). In Fig. 3, we plot Eq. (68) for the system sizes

N = 3, N = 4, and N = 5, and mixing parameter values p =
0.25 and p = 0.5.

Let us move to a different case. Now we choose the unit
vector n̂ = {0, 0, 1}, i.e., Â = Ŝz, and consider the state

ρGHZ =
(

1 − p

d

)
I + p |GHZN 〉〈GHZN |, (69)

with d = 2N , 0 < p < 1, and |GHZN 〉 is the GHZ state of N
particles defined as

|GHZN 〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (70)

Based on Eq. (70), for 0 < α < 1, one may verify that

ρ
(α)
GHZ = cα

(
1 − p

d

)α

I + ξα (p, d )|GHZN 〉〈GHZN |, (71)

where both functions cα and ξα (p, d ) are the ones defined in
Eqs. (63) and (64), respectively. By analogy with the previous
example, the expressions for α-MQI take simple forms. We
emphasize that α-MQI is identically zero for all indices m �= 0
and m �= ±N . For m = 0, one obtains

Iα
0 (ρGHZ) = cαc1−α − 1

2 ξα (d, p) ξ1−α (d, p), (72)

while, for m = ±N , one gets

Iα
±N (ρGHZ) = 1

4 ξα (d, p) ξ1−α (d, p), (73)

Therefore, from Eqs. (72) and (73), the second moment of
α-MQI is given by

Fα
I (ρGHZ, Sz ) = N2 ξα (d, p) ξ1−α (d, p). (74)

In Table III, we list the expressions obtained for IL(ρGHZ, Sz ),
QFI FQ(ρGHZ, Sz ), the standard variance V (ρGHZ, Sz ), and the
WYSI I1/2(ρGHZ, Sz ). It is worthwhile to note that, fixing the
generator Â = Ŝz as the collective magnetization along z axis,
Fα

I grows quadratically with system size N for the mixed GHZ
state in Eq. (69), while it grows linearly for the state ρeqn in
Eq. (61). In Fig. 4, we plot Eq. (74) for the values of system
sizes N = 3, N = 4, and N = 5, and mixing parameter p =
0.25 and p = 0.5.

Finally, we turn to our third example. We begin by spec-
ifying the unit vector n̂ = {1, 0, 0} related to the generator
Â = Ŝx, and define the probe state

ρW =
(

1 − p

d

)
I + p |W 〉〈W |, (75)
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FIG. 3. Plot of quantity 2 α(1 − α)IL (ρeqn, Ŝz ) (red solid line),
α-MQI Fα

I (ρeqn, Ŝz )/(4cαc1−α ) (blue dashed line), Wigner-Yanase
skew information I1/2(ρeqn, Ŝz ) (black dot dashed line), 1/2-
variance V1/2(ρeqn, Ŝz ) (magenta dotted line), α-variance Vα (ρeqn, Ŝz )
(brown dashed and double-dotted line), and quantum Fisher in-
formation FQ(ρeqn, Ŝz ) (gray star dashed line). Here we choose
the mixed state ρeqn = ((1 − p)/2N )I + p (|+〉〈+|)⊗N , with |+〉 =
(1/

√
2 )(|0〉 + |1〉), and the generator Ŝz = (1/2)

∑N
l=1I

⊗l−1 ⊗ σ z
l ⊗

I⊗N−l , for values (a) N = 3 and p = 0.25, (b) N = 3 and p = 0.5,
(c) N = 4 and p = 0.25, (d) N = 4 and p = 0.5, (e) N = 5 and
p = 0.25, and (f) N = 5 and p = 0.5. In each panel, the plots
successfully fulfill the constraints imposed by the chain of bounds
given in Eqs. (41), (42), and (44).

where d = 2N , 0 < p < 1, and |W 〉 is the W state of N
particles given by [92]

|W 〉 = 1√
N

N∑
l=1

|0〉⊗l−1 ⊗ |1〉l ⊗ |0〉⊗N−l . (76)
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FIG. 4. Plot of 2 α(1 − α)IL (ρGHZ, Ŝz ) (red solid line), α-MQI
F α

I (ρGHZ, Ŝz )/(4cαc1−α ) (blue dashed line), Wigner-Yanase skew
information I1/2(ρGHZ, Ŝz ) (black dot dashed line), 1/2-variance
V1/2(ρGHZ, Ŝz ) (magenta dotted line), α-variance Vα (ρGHZ, Ŝz )
(brown dashed and double-dotted line), and quantum Fisher informa-
tion FQ(ρGHZ, Ŝz ) (gray star dashed line). Here we choose the mixed
state ρGHZ = ((1 − p)/2N )I + p |GHZN 〉〈GHZN |, with |GHZN 〉 =
(1/

√
2)( |0〉⊗N + |1〉⊗N ), and the generator Ŝz = (1/2)

∑N
l=1I

⊗l−1 ⊗
σ z

l ⊗ I⊗N−l , for values (a) N = 3 and p = 0.25, (b) N = 3 and
p = 0.5, (c) N = 4 and p = 0.25, (d) N = 4 and p = 0.5, (e) N = 5
and p = 0.25, and (f) N = 5 and p = 0.5. In each panel, the plots
successfully fulfill the constraints imposed by the chain of bounds
given in Eqs. (41), (42), and (44).

For 0 < α < 1, it follows that

ρ
(α)
W = cα

(
1 − p

d

)α

I + ξα (p, d )|W 〉〈W |, (77)

where both functions cα and ξα (p, d ) are exactly the same
as defined in Eqs. (63) and (64), respectively. In spite of
the complexity of the expressions of the coherence orders
decomposition ρ

(α)
W = ∑

m (ρ (α)
W )m, it is possible to derive
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I (ρW , Ŝx)/(4 cαc1−α)

I1/2(ρW , Ŝx) V1/2(ρW , Ŝx)

Vα(ρW , Ŝx) FQ(ρW , Ŝx)

FIG. 5. Plot of 2 α(1 − α)IL (ρ1, Ŝx ) (red solid line), α-MQI
Fα

I (ρW, Ŝx )/(4cαc1−α ) (blue dashed line), Wigner-Yanase skew
information I1/2(ρW, Ŝx ) (black dot dashed line), 1/2-variance
V1/2(ρW, Ŝx ) (magenta dotted line), α-variance Vα (ρW, Ŝx ) (brown
dashed and double-dotted line), and quantum Fisher infor-
mation FQ(ρW, Ŝx ) (gray star dashed line). Here we choose
the mixed state ρW = ((1 − p)/2N )I + p |W 〉〈W |, with |W 〉 =
(1/

√
N )

∑N
l=1|0〉⊗l−1 ⊗ |1〉l ⊗ |0〉⊗N−l , and the generator Ŝx =

(1/2)
∑N

l=1I
⊗l−1 ⊗ σ x

l ⊗ I⊗N−l , for values (a) N = 3 and p = 0.25,
(b) N = 3 and p = 0.5, (c) N = 4 and p = 0.25, (d) N = 4 and
p = 0.5, (e) N = 5 and p = 0.25, and (f) N = 5 and p = 0.5. In
each panel, the plots successfully fulfill the constraints imposed by
the chain of bounds given in Eqs. (41), (42), and (44).

analytically the second moment of α-MQI, which reads

Fα
I (ρW, Sx ) =

(
3N − 2

d − 1

)
(d cαc1−α − 1). (78)

Table III reports the expressions obtained for IL(ρW, Ŝx ),
QFI FQ(ρW, Ŝx ), standard variance V (ρW, Ŝx ), and also WYSI
I1/2(ρW, Ŝx ). In Fig. 5, we plot Fα

I (ρW, Ŝx ) for the values of

ρ0 Ut • U†
t

ρt

Ut ρ0 U†
t

Rφ • R†
φ

Rφ ρtR
†
φ

ρt,φ

U†
t • Ut

ρf

U†
t ρt,φ Ut

Forward evolution

P
hase

encoding

Backward evolution

FIG. 6. Depiction of the quantum protocol discussed in
Sec. VI D. In the forward process, the initial state ρ0 of the system
undergoes a unitary evolution and reaches the intermediate state
ρt = Ut ρ0 U†

t . Then, the operator Rφ imprints a phase shift φ into ρt ,
and the system is subsequently described by the state ρt,φ = Rφ ρt R

†
φ .

In the last step of the protocol, the system evolves backward in time
according to the reversed unitary dynamics and is finally described
by the final state ρ f = U†

t ρt,φ Ut .

system sizes N = 3, N = 4, and N = 5, and mixing parameter
p = 0.25 and p = 0.5.

D. Long-range quantum Ising model

Now we move to the dynamical scenario and consider the
protocol depicted in Fig. 6. Such an interferometric scheme
is equivalent to the Loschmidt-echo protocol proposed for
the creation and detection of entangled non-Gaussian states
[93] with an Ising model with long-range interactions recently
realized in a dilute gas of Rydberg-dressed cesium atoms [94].
This protocol is also analogous to time-reversal dynamics sim-
ulating Loschmidt echo in NMR many-spin systems [95,96].
The protocol was implemented in a trapped ion quantum sim-
ulator and used to detect the buildup of quantum correlations
in many-body systems via MQCs [19]. The Hamiltonian of
the system is a fully connected Ising model,

Hzz = J

N

∑
j<l

σ z
j σ

z
l , (79)

where J is the coupling strength, N is the number of spins,
and σ z

j are the Pauli spin matrices. For simplicity, the system
is initialized in the state

ρ0 =
(

1 − p

d

)
I + p (|+〉〈+|)⊗N , (80)

with d = 2N , 0 < p < 1, and |+〉 = (1/
√

2 )(|0〉 + |1〉) being
the equal superposition state.

In the forward step of the protocol of Fig. 6, the
initial state ρ0 of the system evolves unitarily according to
Ut = e−itHzz and reaches the intermediate state ρt = Ut ρ0 U†

t .
Just to clarify, here we set h̄ = 1. Subsequently, the oper-
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FIG. 7. Density plot of normalized relative purity, f̃α (ρ0, ρ f ), for
states ρ0 and ρ f = U†

t Rφ Ut ρ0 U†
t R†

φUt . Here we have Ut = e−itHzz ,
with Hzz = (J/N )

∑
j<l σ z

j σ
z
l standing as the fully connected Ising

Hamiltonian, and also Rφ = e−iφŜx , where Ŝx = (1/2)
∑N

l=1I
⊗l−1 ⊗

σ x
l ⊗ I⊗N−l . The input state is ρ0 = ((1 − p)/d )I + p (|+〉〈+|)⊗N ,

with d = 2N and |+〉 = (1/
√

2 )(|0〉 + |1〉). For simplicity, here we
set p = 0.5 and φ = π/2, and increase the size of the system as
(a) N = 4 and (b) N = 5.

ator R̂φ = e−iφŜx rotates the system about the x axis, with
Ŝx = (1/2)

∑N
l=1I

⊗l−1 ⊗ σ x
l ⊗ I⊗N−l , and thus the system is

characterized by the state ρt,φ = Rφ ρt R
†
φ . Finally, the system

evolves unitarily backward and reaches the final state ρ f =
U†

t ρt,φ Ut . We stress that, in practice, the backward protocol is
implemented inverting the sign of H by changing J → −J .

In the following, we will apply α-relative purity to dis-
tinguish input and output states after running the quantum
protocol. Interestingly, the relative purity involving states ρ0

and ρ f becomes

fα (ρ0, ρ f ) = Tr
(
ρα

0 ρ1−α
f

) = Tr
(
ρα

t ρ1−α
t,φ

) = fα (ρt , ρt,φ ),
(81)

where we have used that ρ1−α
f = U†

t ρ1−α
t,φ Ut , since Ut is a uni-

tary operator [68]. Note that, for φ = 0, we thus have ρt,0 = ρt

and α-relative purity is equal to 1. We point out that α-relative
purity will play the role of revival probability exhibited by
the quantum system undergoing the time-reversal evolution.
Indeed, the right-hand side of Eq. (81) means that, for a
nonzero phase shift φ encoded into the time-dependent state
ρt by the rotation Rφ = e−iφŜx inserted between forward and
backward time evolutions, the α-relative purity fα (ρt , ρt,φ )
will deviate from the unity as a function of time t . Moreover,
such a revival can be interpreted as a signature of the buildup
of correlations of the many-body state ρt [19].

According to Eq. (12), one may write the α-relative purity
in terms of the α-MQI as

fα (ρ0, ρ f ) = (cα c1−α )−1
∑

m

e−imφ Iα
m (ρt ), (82)

where

Iα
m (ρt ) = Tr

([
(ρt )

(α)
m

]†
(ρt )

(1−α)
m

)
, (83)

FIG. 8. Density plot of normalized α-MQI, Ĩα
m (ρt ), for the state ρt = e−itHzz ρ eitHzz , where Hzz = (J/N )

∑
j<l σ z

j σ
z
l is the fully connected

Ising Hamiltonian, and the probe state ρ = ((1 − p)/d )I + p (|+〉〈+|)⊗N , with d = 2N and |+〉 = (1/
√

2 )(|0〉 + |1〉). For simplicity, here we
fix the mixing parameter p = 0.5. The set of nonzero α-MQI is given by Ĩα

±4(ρt ), for (a) N = 4 and (d) N = 5; Ĩα
±2(ρt ), for (b) N = 4 and (e)

N = 5; and Ĩα
0 (ρt ), for (c) N = 4 and (f) N = 5.
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FIG. 9. Density plot of normalized second moment of α-MQI, i.e., F̃α
I (ρt , Ŝx ), related to the generator Sx = (1/2)

∑N
l=1I

⊗l−1 ⊗ σ x
l ⊗

I⊗N−l and the evolved state ρt = e−itHzz ρ eitHzz , where Hzz = (J/N )
∑

j<l σ z
j σ

z
l is the fully connected Ising Hamiltonian. Here we choose the

initial state of the system as ρ = ((1 − p)/d )I + p (|+〉〈+|)⊗N , with d = 2N and |+〉 = (1/
√

2 )(|0〉 + |1〉). For simplicity, here we fix p = 0.5
and increase the size of the system as (a) N = 3, (b) N = 4, (c) N = 5, and (d) N = 6.

with

(ρt )
(α)
m :=

∑
λ j−λ
=m

〈 j|ρ (α)
t |
〉| j〉〈
|. (84)

From Sec. III, we recall that c−1
α = Tr(ρα

t ) = Tr(ρα
0 ), where

we have used that ρα
t = Ut ρα

0 U†
t . Furthermore, we stress that

{| j〉} j=1,...,2N describe the reference basis generated by the
eigenstates of Ŝx, with their respective set of eigenvalues �λ =
{−N/2,−N/2 + 1, . . . , N/2 − 1, N/2} which exhibits degen-
eracy gλ j

= N!/[ (N/2 + λ j )! (N/2 − λ j )! ], and thus m =
{−N,−N + 1, . . . , N − 1, N}.

We now apply the above discussion to numerically study
the time evolution of normalized α-MQI spectrum, {Ĩα

m (ρt )},
and its the second moment F̃α

I (ρt , Ŝx ). Without loss of gen-
erality, here we have adopted the normalization G̃ := (G −
min{G})/(max{G} − min{G}).

In Fig. 7, we plot the normalized relative purity,
f̃α (ρ0, ρ f ) ≡ f̃α (ρt , ρt,φ ) [cf. Eq. (81)], as a function of
t and α. Just to clarify, here ρt = e−itHzz ρ0 eitHzz , where
Hzz is given in Eq. (79) and ρ0 is the probe state in
Eq. (80), and ρt,φ = Rφ ρt R

†
φ , with Rφ = e−iφŜx and Ŝx =

(1/2)
∑N

l=1I
⊗l−1 ⊗ σ x

l ⊗ I⊗N−l . We fix the mixing parame-
ter p = 0.5 and the phase φ = π/2.

In Fig. 8, we plot the time-evolution of the normalized
α-MQI spectrum {Ĩα

m (ρt )} [cf. Eq. (83)] for N = 4 and N = 5.
Given the evolved state ρt = e−itHzz ρ0 eitHzz , for N = 4 the
nonzero α-MQI are given by (a) Ĩα

±4(ρt ), (b) Ĩα
±2(ρt ), and

(c) Ĩα
0 (ρt ). Similarly, for the system size N = 5 the nonzero

α-MQI are given by (d) Ĩα
±4(ρt ), (e) Ĩα

±2(ρt ), and (f) Ĩα
0 (ρt ).

Finally, in Fig. 9 we plot the normalized second moment
of α-MQI spectrum, F̃α

I (ρt , Ŝx ), as a function of t and α,
by varying the size of the system as (a) N = 3, (b) N = 4,
(c) N = 5, and (d) N = 6. As can be seen, time evolution of
F̃α

I (ρt , Ŝx ) oscillates with period πN/2.

VII. CONCLUSIONS

In conclusion, we have shown that, by considering a quan-
tum system undergoing a unitary phase encoding process,
α-RRE is linked to the well-known WYDSI. We further
provided a framework addressing the coherence orders of a
quantum state with respect to the eigenbasis of an observable
Â. We introduced the α-MQI, Iα

m (ρ), which is intimately
linked to α-RRE, and thus proved that WYDSI can be also
written as the second moment of a MQC spectrum (α-MQC),
Fα

I (ρ, Â).
The second main result concerns the derivation of a family

of lower and upper bounds to the second moment of α-MQI.
Interestingly, we have shown that Fα

I (ρ, Â) provides a lower
bound on the QFI. Note that bridging α-MQC and QFI has a
number of implications. On one hand, this link unveils the role
of the second moment of α-MQI in quantum phase estimation
and metrology. On the other hand, it demonstrates that the
second moment of α-MQI can also witness multiparticle
entanglement.

Finally, we illustrate our main results by investigating the
single qubit state, Bell-diagonal states, and some paradigmatic
multiparticle states. We numerically studied the time evolu-
tion of α-MQC spectrum and the overall signal of relative pu-
rity by simulating the time-reversal dynamics of a many-body
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all-to-all Ising Hamiltonian. Interestingly, dynamical behavior
of α-MQC unveils information about buildup of many-body
correlations, and also signals the recently claimed property of
quantum information scrambling [18,19]. Our results might
also find applications in the field of quantum thermodynamics,
regarding the family of second laws of thermodynamics
parametrized by α-RRE which was addressed in Refs. [3,26].
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APPENDIX A: PROPERTIES OF α-MQC

In this Appendix, we prove Eqs. (8)–(10) of the main text.
First, starting from Eq. (7), it is possible to conclude that(

ρ (α)
m

)† =
∑

λ j−λ
=m

〈 j|ρ (α)|
〉∗|
〉〈 j|

=
∑

λ j−λ
=m

〈
| (ρ (α) )†| j〉|
〉〈 j|

=
∑

λ
−λ j=−m

〈
|ρ (α)| j〉|
〉〈 j|

= ρ
(α)
−m. (A1)

From the second to the third line, we have used that ρ (α)

is Hermitian, and from the third to the fourth line we have
changed the summation labels.

Now, we show that ρ (α)
m and ρ (β )

n satisfies an orthogonality
constraint with respect to the Hilbert-Schmidt inner product.
To verify explicitly Eq. (9), one may proceed as〈
ρ (α)

m ρ (β )
n

〉
HS =

∑
λ j−λ
=m

∑
λp−λq=n

〈 j|ρ (α)|
〉∗〈p|ρ (β )|q〉〈q|
〉〈 j|p〉

=
∑

λ j−λ
=m

∑
λp−λq=n

δq,
δ j,p 〈 j|ρ (α)|
〉∗〈p|ρ (β )|q〉

=
∑

λ j−λ
=m

∑
λ j−λl =n

〈 j|ρ (α)|
〉∗〈 j|ρ (β )|
〉, (A2)

where 〈A, B〉HS := Tr(A†B), for A, B ∈ B(H), denotes the
Hilbert-Schmidt inner product. Going into detail, from the
first to the second line, we have applied the cyclic permutation
under the trace, and from the second to the third line we
used 〈r|s〉 = δr,s. From Eq. (A2), one may conclude that the
double summation is nonzero, only for m = n. Indeed, given
two fixed integers m and n, such selection rule comes from

the fact that both constraints λ j − λl = m and λ j − λl = n are
simultaneously fulfilled if, and only if, m = n. Therefore, we
readily obtain〈

ρ (α)
m ρ (β )

n

〉
HS = δm,n

∑
λ j−λ
=m

〈 j|ρ (α)|
〉∗〈 j|ρ (β )|
〉

= δm,n
〈
ρ (α)

m ρ (β )
m

〉
HS. (A3)

Finally, we will conclude by proving Eq. (10). Suppose
now that the density matrix ρ (α) undergoes the translationally
covariant evolution Uφ (•) := e−iφÂ • eiφÂ generated by the
observable Â. Hence, starting from Eq. (6) in the main text,
one gets

Uφ (ρ (α) ) =
∑

m

Uφ

(
ρ (α)

m

)
. (A4)

By using Eq. (7), it is possible to write

Uφ

(
ρ (α)

m

) =
∑

λ j−λ
=m

〈 j|ρ (α)|
〉 e−iφÂ| j〉〈
|eiφÂ

= e−imφ
∑

λ j−λ
=m

〈 j|ρ (α)|
〉| j〉〈
|

= e−imφ ρ (α)
m , (A5)

where m = λ j − λ
. We stress that from the second to the
third line, we used that Â|
〉 = λ
|
〉 since |
〉 is an eigenstate
of the operator Â. Therefore, by substituting Eq. (A5) into
(A4), we finally obtain the result

Uφ (ρ (α) ) =
∑

m

e−imφ ρ (α)
m . (A6)

APPENDIX B: LIMITING CASE OF RELATIVE RÉNYI
ENTROPY FOR α → 1

In this Appendix, we investigate the behavior of Eq. (19)
when taking the limit α → 1. Given the states ρ and ρφ =
eiφÂ ρe−iφÂ, the Taylor expansion of α-relative Rényi entropy
up to second order in φ, around φ = 0, becomes

Dα (ρ‖ρφ ) ≈ − φ2

α − 1
Iα (ρ, Â) + O(φ3), (B1)

where Iα (ρ, Â) stands for the WYDSI and, according to
Eq. (20), is also written as

Iα (ρ, Â) = Tr(ρÂ2) − Tr(ραÂρ1−αÂ). (B2)

In particular, note that WYDSI vanishes for α = 1. In this
case, for α → 1 the right-hand side of Eq. (B1) will exhibit
an indeterminacy form as 0

0 . Notably, one may formally cir-
cumvent this issue by applying l’Hôpital rule, which implies
the prior differentiation of both numerator and denominator
with respect to α, and finally take the limit α → 1. Therefore,
one gets

lim
α→1

Dα (ρ‖ρφ ) ≈ −φ2 lim
α→1

d
dα
Iα (ρ, Â)

d
dα

(α − 1)
+ O(φ3). (B3)

The denominator on the right-hand side of Eq. (B3) is well be-
haved and approaches 1 as α → 1. Moving to the numerator,
to determine explicitly the derivative of WYDSI with respect
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to α, we shall begin by simplifying the quantity Iα (ρ, Â).
Let ρ = ∑


 p
|ψ
〉〈ψ
| be the spectral decomposition of the
density matrix into the basis {|ψ
〉}
=1,...,d , with 0 � p
 � 1,
Tr(ρ) = ∑


 p
 = 1, and 〈ψ j |ψ
〉 = δ j,
 for all j, 
. In this
case, it is straightforward to verify that

Tr(ρÂ2) =
∑

j,


p j |〈ψ j |Â|ψ
〉|2 (B4)

and

Tr(ραÂρ1−αÂ) =
∑

j,


pα
j p1−α


 |〈ψ j |Â|ψ
〉|2. (B5)

By substituting Eqs. (B4) and (B5) into Eq. (B2), and also
using that pj − pα

j p1−α

 = pα

j (p1−α
j − p1−α


 ), one obtains

Iα (ρ, Â) =
∑

j,


pα
j

(
p1−α

j − p1−α



)|〈ψ j |Â|ψ
〉|2. (B6)

To differentiate WYDSI with respect to α, we will take advan-
tage from the algebraic identity d pα

j /dα = pα
j ln p j . Hence,

by combining this result with the derivative of Eq. (B6), it is
straightforward to conclude that

lim
α→1

d

dα
Iα (ρ, Â) =

∑
j,


p j (ln p
 − ln p j ) |〈ψ j |Â|ψ
〉|2

= Tr(ÂρÂ ln ρ) − Tr(Â2ρ ln ρ). (B7)

Finally, from Eq. (B7), one may readily simplify Eq. (B3) and
obtain the limiting case α → 1 of Taylor expansion of relative
Rényi entropy as follows:

lim
α→1

Dα (ρ‖ρφ ) ≈ φ2(Tr(Â2ρ ln ρ) − Tr(ÂρÂ ln ρ)) + O(φ3).

(B8)

APPENDIX C: LOWER BOUND FOR WYDSI

In this Appendix, we will investigate some bounds on
WYDSI. To begin, we notice that, from Eq. (B6), WYDSI
also reads as

Iα (ρ, Â) =
∑
j<


(
pα

j − pα



)(
p1−α

j − p1−α



)|〈ψ j |Â|ψ
〉|2, (C1)

which comes from the fact that, since Â is a Hermitian
operator, thus the amplitude |〈 j|Â|
〉|2 remains invariant under
changing labels j −→ 
. In particular, for α = 1/2 Eq. (C1)
becomes

I1/2(ρ, Â) =
∑
j<


(
√

p j − √
p
 )2|〈ψ j |Â|ψ
〉|2. (C2)

Now, we address the quantifier IL(ρ, Â), which can be written
as

IL(ρ, Â) = 1
2 (Tr(ρ2Â2) − Tr(ρÂρÂ)). (C3)

In turn, notice that

Tr(ρ2Â2) =
∑

j,


p2
j |〈ψ j |Â|ψ
〉|2 (C4)

and

Tr(ρÂρÂ) =
∑

j,


p j p
 |〈ψ j |Â|ψ
〉|2. (C5)

Thus, by substituting Eqs. (C4) and (C5) into Eq. (C3), we
obtain

IL(ρ, Â) = 1

2

∑
j,


p j (p j − p
)|〈ψ j |Â|ψ
〉|2. (C6)

Once more, as the amplitude |〈 j|Â|
〉|2 is invariant under
changing labels j → 
, one gets

IL(ρ, Â) = 1

2

∑
j<


(p j − p
)2|〈ψ j |Â|ψ
〉|2. (C7)

Some remarks are now in order. Yanagi [85] (see Lemma
3.3) has proved that for any x > 0 and 0 � α � 1, the follow-
ing inequality holds

(1 − 2α)2(x − 1)2 − (xα − x1−α )2 � 0. (C8)

Interestingly, we stress that Eq. (C8) can be also written as
4 α(1 − α)(1 − x)2 � (1 − xα )(1 − x1−α ) κα (x), (C9)

where we define
κα (x) := 1 + x + xα + x1−α (C10)

From now on, we will focus mainly on Eq. (C10) in the
search for a new class of bounds to WYDSI. According to
Heinz inequality [97,98], for a > 0, b > 0 and 0 < α < 1, the
following inequality holds:

aαb1−α + a1−αbα � a + b. (C11)

In special, by choosing x = a/b, with x > 0, Eq. (C11) be-
comes

xα + x1−α � 1 + x. (C12)

Hence, Eq. (C12) allows us to conclude the bound:

κα (x) � 2 (1 + x). (C13)

By substituting Eq. (C13) into Eq. (C9), it yields the new
bound:

2 α(1 − α)(1 − x)2 � (1 + x)(1 − xα )(1 − x1−α ). (C14)

We would like to stress that the bound in Eq. (C14) applies to
any x > 0 and 0 � α � 1.

Starting from Eq. (C14), let us choose x = p j/p
, with
x > 0, and 0 < p j � 1 and 0 < p
 � 1. In this case, it is
straightforward to write down the inequality:

2 α(1 − α)(p j − p
)2 � (p j + p
)
(
pα

j − pα



)(
p1−α

j − p1−α



)
.

(C15)
Hence, by substituting Eq. (C15) into Eq. (C7), one may
conclude that

2 α(1 − α) IL(ρ, Â) =
∑
j<


α(1 − α)(p j − p
)2|〈ψ j |Â|ψ
〉|2

� 1

2

∑
j<


(p j + p
)
(
pα

j − pα



)
× (

p1−α
j − p1−α




)|〈ψ j |Â|ψ
〉|2.
(C16)

Now we approach a crucial point in our derivation. Going into
detail, the right-hand side of Eq. (C16) will exactly recover
WYDSI in Eq. (C1) if we turn to the fact that p j + p
 � 2
for all 0 < p j � 1 and 0 < p
 � 1. Therefore, applying such
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a result into Eq. (C16), we obtain
2 α(1 − α) IL(ρ, Â)

�
∑
j<


(
pα

j − pα



)(
p1−α

j − p1−α



)|〈ψ j |Â|ψ
〉|2. (C17)

Finally, it is straightforward to obtain the lower bound:

Iα (ρ, Â) � 2α(1 − α) IL(ρ, Â). (C18)
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