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Quantum teleportation is one of the most pioneering features of the quantum world. Typically, the quality
of a teleportation protocol is solely judged by its average fidelity. In this work, we analyze the performance
of teleportation in terms of both fidelity and the deviation in fidelity. Specifically, we define a quantity called
teleportability score, which incorporates contributions from both the fidelity and its deviation. It also takes into
account the sensitivity one requires for a protocol in which the teleportation of a quantum state is required in
one or many intermediate steps. We compute the teleportability score in the noiseless scenario and find that it
increases monotonically with the entanglement content of the considered pure resource states. The result remains
the same even if we consider an n-chain repeater-like configuration. However, in the presence of noise, the
teleportability score can sometime display a nonmonotonic behavior with respect to the entanglement content
of the initially shared resource state. Specifically, under local bit-flip and bit-phase-flip noise, less entangled
states can have higher teleportability score for certain choices of system parameters. In the presence of global
depolarizing noise, for low entangled resource states and high sensitivity requirements, the noisy states can have
better a teleportability score in comparison to the noiseless scenario.
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I. INTRODUCTION

Quantum information science is continually revolutioniz-
ing the fields of communication and computation. Pioneering
quantum protocols include quantum cryptography [1,2], quan-
tum dense coding [3], quantum error correction [4], quantum
teleportation [5], etc. The field of communication is one of
the major beneficiaries of the advent of these protocols, which
have also been implemented experimentally in a variety of
physical systems [6]. For example, quantum communication
protocols like dense coding [3] outperform the classical ones
(in terms of capacity) by a factor of 2. Furthermore, for
secure communication, the security of quantum protocols
[1,2] is guaranteed by the laws of physics, unlike the classical
case where security is derived from exponential complexity
of some mathematical problem. These examples establish
superiority of the protocols in the quantum domain.

Among the quantum communication protocols, quantum
teleportation [5,7] has been one of the central interests of
study. It has been studied quite extensively both theoretically
[8] and experimentally [9–15]. However, almost all of these
works characterize the performance of a given teleportation
protocol solely by the average fidelity it yields. But such
characterization is very limited since it does not incorporate
the effect of fluctuations. Different input states can have
widely varying fidelities, keeping the average value of fidelity
fixed. Such high fluctuations can be detrimental during imple-
mentation of some quantum information processing protocols,
like that of quantum gates in quantum computation [16,17].
Therefore, not only the average fidelity but also the distribu-
tion of the fidelity for various input states is what determines
the performance of teleportation. Fluctuation and distribution
of fidelities have been analyzed [18] in the context of the

performance of single qubit gates. Similar investigations for
quantum gates have also been carried out using higher order
moments [19]. In the avenue of quantum teleportation, studies
of fluctuations using deviation in fidelities was first introduced
in [20], and was later formalized in [21], where they analyzed
quality of teleportation in the plane of fidelity and its deviation
(see also [22,23]).

In this work, we seek a quantitative answer while com-
paring the performance of two resource states (noiseless or
noisy) for a given teleportation protocol. For this purpose,
we have introduced an performance indicator of quantum
teleportation, “teleportability score,” which, apart from the
average fidelity, also incorporates its fluctuations in the rat-
ing. It also takes into account the sensitivity requirements
of a particular setup in the rating. This is so because not
all experimental setups are equally sensitive to fluctuations
in fidelity. Depending on the sensitivity requirements, one
adjusts the relative weights of fidelity and its deviation in
the teleportability score. We analyze the teleportability score
of resource states subjected to local and global noises and
contrast it with the clean (noiseless) case for different values
of sensitivity requirements.

First, in the noiseless scenario, we find that the fidelity
deviation decreases with increasing values of fidelity, thereby
the teleportability score is always higher for more entangled
states. However, in the presence of local noise, such ordering
of states with respect to entanglement is not always present.
For certain parameter ranges, we find that less entangled
states can yield better or equally good teleportability scores
in comparison to states having higher entanglement content.
This is due to the fact that, unlike in the noiseless scenario,
in presence of noise, both fidelity as well as its fluctuation
might increase when higher entangled states are used for
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teleportation. In this paper, we investigate the teleportability
score in the presence of both locally and globally noisy chan-
nels. The local noise models [24,25] considered in this paper
are, bit-flip, phase-flip, bit-phase-flip, amplitude damping, and
depolarizing noise. We consider these noises to act locally on
both the qubits of the shared entangled state. We also compute
the teleportability score in presence of global depolarizing
(white) noise and when the resource state suffers from both
global and local noises.

The paper is organized as follows. We formally define the
teleportability score in Sec. II. The analysis for the noiseless
scenario is done in Sec. III. The fidelity and its deviation for
an n-chain repeater-like setting are computed in Sec. III A.
The investigation of the teleportability score in the presence
of noise is presented in Sec. IV. The issue of local noise is
dealt with in Sec. IV A. Case studies with bit-flip, phase-flip,
and bit-phase-flip noises are given in Secs. IV A 1–IV A 3. The
issues of global noise and combination of local and global
noises are addressed in Sec. IV B. Finally we conclude in
Sec. V.

II. TELEPORTABILITY SCORE

The average fidelity of a given teleportation scheme is
given by

F =
∫

dφ〈φ|ρφ|φ〉, (1)

where |φ〉 is the arbitrary state to be teleported and ρφ is the
teleported state with |φ〉 at the input. The averaging is per-
formed over all possible input states. Whenever we mention
fidelity F in this paper, we refer to the average fidelity. The
fidelity obtained for a particular input state |φ〉 is simply given
by Fφ = 〈φ|ρφ|φ〉. The corresponding deviation in fidelity
(standard deviation) reads

D =
√∫

dφ〈φ|ρφ|φ〉2 −
(∫

dφ〈φ|ρφ|φ〉
)2

,

=
√∫

dφ〈φ|ρφ|φ〉2 − F 2. (2)

In the usual fidelity based rating of a teleportation scheme,
for a given protocol, two resource states with same F but
different D’s are deemed to be equivalent. But one can easily
argue that the state having a lower value of D is clearly a
better choice. Therefore one might expect a payoff in the
rating scheme of teleportation protocols due to D. With the
motivation of quantifying the quality of teleportation in a
more general context, we define a new quantity, teleportability
score, as

τk = F − kD, (3)

where F and D are the fidelity and its deviation and k has
to be chosen according to the sensitivity requirements for
fluctuations in fidelity of a particular protocol in which the
teleportation is used as an intermediate step. Greater sensitiv-
ity requirements would simply imply a higher payoff in the
score due to D, which is ensured by choosing a higher value
of k. However, practically, we cannot choose an arbitrarily

large k. This simply indicates that there is a physical cutoff
to the maximum amount of sensitivity we can demand out
of the teleportation process. In particular, we call a k value
large (i.e., the score is highly sensitive to fluctuations) when
the payoff function kD is comparable to the average fidelity
F . This defines a scale for the sensitivity values, k∗, defined
via the following relation:

k∗D ≈ F ⇒ k∗ ≈ F/D. (4)

Physically it does not seem natural to consider a payoff func-
tion higher than the average fidelity. So, from a practical point
of view, we can approximately provide an upper bound of k
as k∗. Therefore, approximately, k ∈ (0, k∗). We will examine
the k∗ values in both the noiseless and noisy scenarios in
subsequent sections. Nevertheless, apart from its interpreta-
tion as the sensitivity parameter, there can be situations where
k assumes a mathematical significance. Suppose we want to
design a protocol which maximizes the fidelity for a fixed
value of standard deviation. In such a constrained optimiza-
tion problem, k takes the role of a Lagrange’s multiplier.
Naturally, k is constrained to take non-negative values.

The best fidelity obtained in a classical (entanglement [26]
free) scheme is F cl = 2

3 [27,28]. We will carry out our anal-
ysis of rating teleportation performance using teleportability
score only for those states yielding a nonclassical average
fidelity of teleportation, i.e., F > F cl . Naturally, if F � F cl , it
is anyway not deemed to be useful for quantum teleportation.
Note that, following the same classical fidelity maximizing
protocol, the corresponding fidelity deviation is also easily
calculated to be Dcl = 1

3
√

5
. So, we define the classical value

of the teleporatability score for a given k, following Eq. (3),
as

τ cl
k = F cl − kDcl = 1

3 (2 − k/
√

5). (5)

A state with F > F cl would therefore be considered to pos-
sess a quantum advantage only when, for the given protocol,
its teleportability score is higher than the classical limit, i.e.,
τk > τ cl

k . Therefore, in summary, a quantum state would be
deemed to be useful for quantum teleportation iff it satis-
fies both F > F cl and τk > τ cl

k . Once again, the classical
teleportability score is computed by considering the fidelity
maximizing protocol and not via the overall maximization of
the teleportability score with respect to all classical protocols.
A similar strategy (with respect to the choice of the protocol)
is adopted in the quantum case as well, which we discuss in
the subsequent sections.

III. THE NOISELESS SCENARIO

The initial shared state to be utilized for teleportation, in
the Scmidt form [29], is

|ψα〉 = √
α|00〉 + √

1 − α|11〉. (6)

The maximal singlet fraction, fmax, for this shared state is
given by 1/2 + √

α(1 − α), and following the prescription
given in [30] the maximal teleportation fidelity reads

Fmax = 1
3 (2 fmax + 1) = 2

3 + 2
3

√
α(1 − α). (7)

For brevity, we will henceforward refer to Fmax as F and
the corresponding deviation as D. The above fidelity can be
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FIG. 1. Teleportability score for different values of k in the
noiseless scenario using a single shared resource state. All axes are
dimensionless.

achieved by performing Bell measurements [31] at Alice’s
end and appropriate Pauli unitaries at Bob’s end after 2 bits of
classical communication, i.e., the usual teleportation protocol
[5]. Note that the maximal fidelity in the usual protocol is
obtained by optimizing over local unitary operations. Specifi-
cally, when an arbitrary state, |η〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉 is

teleported using the above protocol, the fidelity reads

F η = 1 − 1
2 (1 − 2

√
α(1 − α)) sin2 θ, (8)

which when uniformly averaged over the Bloch sphere param-
eters yields the same fidelity as in Eq. (7), thereby establishing
the usual teleportation protocol as an optimal one (in terms of
fidelity) for states of the structure as given in Eq. (6). The
fidelity deviation, D, corresponding to the above protocol is
given by

D = 1

3
√

5

√
1 + 4(1 − α)α − 4

√
(1 − α)α

= 1√
5

(1 − F ). (9)

Therefore, in the noiseless scenario, the deviation in fidelity
can be completely specified in terms of the average fidelity,
F . We notice a sort of win-win situation since, in the noiseless
case, the greater the fidelity is, the lower the fluctuation
(deviation) is. For the maximally entangled resource state
(α = 1/2), we get a unit teleportation fidelity, F = 1, and
the corresponding deviation falls to zero (D = 0). In Fig. 1,
we plot the teleportability scores for various k values in
the noiseless scenario and also depict the classical values of
teleportability scores (τ c

k ) for those k values.
Therefore, the teleportability score in the noiseless sce-

nario reads

τk = F − kD =
(

1 + k√
5

)
F − k√

5
. (10)

Note that, in the noiseless scenario, τk is an increasing func-
tion of α for all values of k. Therefore we can conclude that
more entangled resource states yield higher teleportability
scores in the noiseless scenario. Although the observed feature

FIG. 2. The first two steps of teleportation with n-entangled
states in a repeater-like setting. Each element of the chain consists
of the same state |ψα〉 = √

α|00〉 + √
1 − α|11〉. An arbitrary state,

|φ〉 = a|0〉 + b|1〉, is teleported via the chain by successive appli-
cation of the teleportation protocol (n steps). Note that the post-
measurement state after implementing the protocol for m states in
the chain becomes the input state for the m + 1th state. The “CC” in
the figure denotes the classical communication of the clicking results
during the Bell measurement.

is k independent, we explore the k∗ values in this noiseless
case. If we follow Eq. (4), one question still remains: What
should be the choice of α while computing k∗ via Eq. (4)? We
resolve this by selecting the α value that yields the lowest k∗
value. This generates the most conservative upper bound for
k. Therefore, mathematically, we define

k∗ = min
α

F

D
, (11)

Note that α = 0 minimizes the F/D in the noiseless scenario,
and k∗ turns out to be 2

√
5 ≈ 4.5.

Nevertheless, we want to mention that the result of k
independence holds true when, instead of one shared state, we
have a repeater-like configuration consisting of n entangled
states. We shall investigate how this situation changes in the
presence of noise in the succeeding sections. But before that,
we would investigate the fidelity and deviation in a repeater-
like scenario.

A. The n-chain configuration

In a repeater-like setting [32], the teleportation protocol is
executed in succession for each entangled state of the chain.
The teleported state after the mth states becomes the input
state for the m + 1th state of the chain. See Fig. 2. The
fidelity for the n-chain configuration whereby each segment is
constructed of the state |ψα〉 = √

α|00〉 + √
1 − α|11〉, when

an arbitrary state, |η〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉, is to be tele-
ported through the chain, is given by

F η
n = 2n+1αn/2(1 − α)n/2 cos2 θ

2
sin2 θ

2

+
n∑

k=0

(
n

k

)
αk (1 − α)n−k

(
cos4 θ

2
+ sin4 θ

2

)

=
(

1 − sin2 θ

2

)
+ 2n−1αn/2(1 − α)n/2 sin2 θ. (12)
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The corresponding average fidelity and deviation read

Fn = 2

3
+ 2n

3
{α(1 − α)} n

2 ,

Dn = 1

3
√

5

√
1 + 22n{α(1 − α)}n + 2n+1{α(1 − α)} n

2

= 1√
5

(1 − Fn). (13)

Note that the expressions in Eq. (13) reduce to those given in
Eqs. (7) and (9) on substituting n = 1. Thus in the noiseless
scenario, even for the n-chain setting, we have qualitatively
the same results as in the case of a single shared entangled
state. In the rest of the paper where we deal with noisy chan-
nels, we will restrict our investigation of the teleportability
score for teleportation with a single noisy channel.

IV. THE NOISY SCENARIO

The presence of noise is ubiquitous in nature and inevitably
affects the performance of any protocol, quantum or classical.
The noiseless situation is rather ideal and one must go beyond
the noiseless assumption to make predictions in a more real-
istic setting. In the context of this paper, the omnipresence
of noise demands the reexamination of the performance of
teleportation in the presence of imperfections. In this at-
tempt, we consider noisy resource states and compute their
teleportability score for various ranges of noise parameters.
We consider the situation of both local and global noises
and investigate their impact on the quality of teleportation.
Situations where both global and local noises act together are
also analyzed in subsequent sections.

A. Local noise

In this section, we consider the situation where the resource
state for teleportation suffers from local noise in both its
qubits with different rates. The local noise models we have
considered are bit flip, phase flip, bit-phase flip, amplitude
damping channel, and phase damping channel [24]. A com-
parative study of the response of teleportability score to these
different kinds of local noise is presented. Our analysis reveals
a counterintuitive feature in the presence of local bit-flip noise
where, for certain ranges of noise parameter and sensitivity,
we get a higher teleportability score with a less entangled
resource state. In the noisy scenario, the win-win situation of
higher fidelity with less deviation is lost and the teleportability
score becomes a much more realistic quantifier of the perfor-
mance of teleportation. Therefore, teleportability score, which

assumed a passive role as a quantifier of the “goodness” of
teleportation in the noiseless scenario, attains an active role
and becomes much more physically relevant in presence of
noise.

1. Bit-flip noise

The bit-flip noise can be modeled by the action of the Pauli
operator σ x. Unsurprisingly, it flips the state |0〉 to |1〉 and vice
versa. Given an arbitrary state ρ, it keeps it unaltered with a
probability p, and flips its bits with a probability of 1 − p.
Naturally, 0 � p � 1. Note that the Krauss operators for the
noise model can be written as

Kbf
0 = √

pq I ⊗ I, Kbf
1 =

√
p(1 − q) I ⊗ σ x,

Kbf
2 =

√
(1− p)q σ x ⊗ I, Kbf

3 =
√

(1− p)(1 − q) σ x ⊗ σ x,

(14)

where the superscript bf denotes bit-flip noise, σ x
1(2) = [0 1

1 0

]
,

and I = [1 0
0 1

]
. The corresponding state evolves as

ρ
bit flip−−−→

3∑
i=0

Kbf
i ρ

(
Kbf

i

)†
. (15)

Therefore, in the presence of bit-flip noise in both the
qubits with probabilities p and q, an arbitrary resource state
ρ12 becomes

ρ12
bit flip−−−→ pqρ12 + (1 − p)qσ x

1 ρ12σ
x
1 + p(1 − q)σ x

2 ρ12σ
x
2

+ (1 − p)(1 − q)σ x
1 σ x

2 ρ12σ
x
2 σ x

1 , (16)

where the subscript l in σ n̂
l denotes on which qubit of ρ12 it

acts. When an arbitrary state, |η〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉, is
to be teleported through such a channel, the fidelity of the
output state with Bob with |η〉 reads

F η = [pq + (1 − p)(1 − q)]
[
1 − 1

2 (1 − 2
√

α(1 − α)) sin2 θ
]

+ 1
2 (p + q − 2pq)[1 + 2 cos 2φ

√
α(1 − α)] sin2 θ.

(17)

Although the average fidelity and fidelity deviation can be
computed easily from the above equation, the corresponding
expressions, especially for the deviation, become cumber-
some. So, to simplify matters we assume q = 1. Note that we
would have obtained the same results if we instead assumed
p = 1. The computed fidelity reads

F bit-flip = 1
3 [1 − p + 2p(1 +

√
(1 − α)α)] (18)

and the corresponding deviation is given by

Dbit-flip = 1

3
√

5

√
1 + 4(1 − α)α − 4

√
(1 − α)α + 4(1 − p)2(1 + 4(1 − α)α − 2

√
(1 − α)α) − 4(1 − p)(1 + 2(1 − α)α − 3

√
(1 − α)α).

(19)

Clearly, the fidelity, F bit-flip, remains an increasing function
of α (0 � α � 1/2). However, unlike the noiseless case,
Dbit-flip, after some initial nonmonotonicities, also increases
with increasing α. Therefore for high sensitivity requirements,

the weight of the payoff term outweighs the gain in fidelity
with increasing α. So, when the resource states suffer from
local bit-flip noise, there are situations in which the hierarchy
of the teleportability score in terms of entanglement is lost

012428-4



RATING THE PERFORMANCE OF NOISY TELEPORTATION … PHYSICAL REVIEW A 102, 012428 (2020)

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.05  0.1  0.2  0.3  0.4  0.5

τk

α

k = 1
k = 2

k = 2.5

FIG. 3. Teleportability score for different values of k for local
bit-flip and bit-phase-flip noises with p = 0.7 and q = 1. Although
the average fidelity increases with α, τk , depending on how high k is,
might decrease with increasing α. The offset of 0.05 in α assures that
the noisy resource yields nonclassical teleportation. All the axes are
dimensionless.

(see Fig. 3). Thus, in the presence of local bit-flip noise, for
certain choice system parameters, we get higher teleportabil-
ity score with less entanglement.

Note that for the choice of noise parameters chosen for
Fig. 3, i.e., p = 0.7 and q = 1, we get k∗ ≈ 9. The k∗ value
is almost double of what was computed in the noiseless case.
So the choice of k = 2.5 is much lower than the large k = k∗
bound. Moreover, in contrast to the noiseless scenario, the k∗
obtained in this case is for α = 0.5. This is due to the fact
that, unlike the noiseless case, in presence of bit-flip noise
both fidelity and deviation increases with α. But the deviation
increases with a slightly greater rate than the fidelity. There-
fore, the F/D ratio goes down with increasing α. Furthermore,
F > 2/3 when α � 0.05, so we plot Fig. 3 for the same.

2. Phase-flip noise

The phase-flip noise is modeled by the action of the Pauli
operator σ z. It keeps the state |0〉 as it is and adds a phase
of eiπ = −1 to |1〉. Given an arbitrary state ρ, it keeps it
unaltered with a probability p, and phase flips it with a
probability of 1 − p. Again, 0 � p � 1. Note that the Krauss
operators for phase-flip noise can be written as

Kpf
0 = √

pq I ⊗ I, Kpf
1 =

√
p(1 − q) I ⊗ σ z,

Kpf
2 =

√
(1 − p)q σ z ⊗ I, Kpf

3 =
√

(1− p)(1− q) σ z ⊗ σ z,

(20)

where the superscript pf naturally denotes the phase-flip noise
and σ z

1(2) = [1 0
0 −1]. The corresponding state evolves as

ρ
phase-flip−−−−→

3∑
i=0

Kpf
i ρ

(
Kpf

i

)†
. (21)

Therefore, in the presence of phase-flip noise in both the
qubits with probabilities p and q, an arbitrary resource state
ρ12 becomes

ρ
phase flip−−−−→ pqρ12 + (1 − p)qσ z

1ρ12σ
z
1 + p(1 − q)σ z

2ρ12σ
z
2

+ (1 − p)(1 − q)σ z
1σ z

2ρ12σ
z
2σ z

1 . (22)

When an arbitrary state, |η〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉, is to
be teleported through such a channel, the fidelity of the output
state with Bob with |η〉 reads

F η = [pq + (1 − p)(1 − q)]
[
1 − 1

2 (1 − 2
√

α(1 − α)) sin2 θ
]

+ 1
2 (p + q − 2pq)

[
1 − 1

2 (1 + 2
√

α(1 − α)) sin2 θ
]
.

(23)

Again for simplicity, we assume q = 1. The expressions of
fidelity and fidelity deviation read

F phase-flip = 2

3
(1 + (2p − 1)

√
(1 − α)α),

Dphase-flip =
√

1 + 4(2p − 1)2α − 4(2p − 1)2α2 − 4
√

(1 − α)α + 8(1 − p)
√

(1 − α)α

3
√

5

= 1 − 2(2p − 1)
√

(1 − α)α

3
√

5
= 1 − F phase-flip

√
5

. (24)

It is clear from the above expressions that Dphase-flip decreases
with increasing F phase-flip. Therefore, like the noiseless setting,
the usual ordering of resource states is retained in the presence
of phase-flip noise.

3. Bit-phase-flip noise

The bit-phase-flip noise is modeled by the action of the
Pauli operator σ y. We consider an arbitrary resource state
ρ12 that suffers bit-phase-flip noise in both the qubits with
probabilities p and q. Note that the Krauss operators for

bit-phase-flip noise can be written as

Kbpf
0 = √

pq I ⊗ I, Kbpf
1 =

√
p(1 − q) I ⊗ σ y,

Kbpf
2 =

√
(1 − p)q σ y ⊗ I,

Kbpf
3 =

√
(1− p)(1− q) σ y ⊗ σ y, (25)

where the superscript “bpf” naturally denotes the bit-phase-
flip noise and σ

y
1(2) = [0 −i

i 0

]
. The corresponding state
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evolves as

ρ12
bit-phase flip−−−−−−→

3∑
i=0

Kbpf
i ρ12

(
Kbpf

i

)†
. (26)

Now, ρ12 evolves as

ρ12
bit-phase flip−−−−−−→ pqρ12+ (1 − p)qσ

y
1 ρ12σ

y
1 + p(1 − q)σ y

2 ρ12σ
y
2

+ (1− p)(1− q)σ y
1 σ

y
2 ρ12σ

y
2 σ

y
1 . (27)

Note that the expression of fidelity for an arbitrary input state
to be teleported is same as that for the bit-flip noise [see
Eq. (17)]. Consequently the average fidelity and its deviation
are also exactly the same. Therefore, the physics of the
teleportability score remains exactly the same as in case of
bit-flip noise (see Fig. 3).

B. Global noise

Apart from the local noise models considered in the previ-
ous section, the resource state might also suffer from global
noise. In such a situation, the environment interacts with
the whole composite system. In this section, we analyze the
response of teleportability score to global depolarizing noise
where the whole bipartite state becomes a convex mixture
of itself with white noise. We also consider the combined
effect of both local and global depolarizing noise on the
teleportability score of the resource state.

1. Global depolarizing noise

A bipartite entangled state |ψα〉 = √
α|00〉 + √

1 − α|11〉
under the action of a global depolarizing channel gets admixed
with a maximally mixed state, and becomes

ρα,p = pρα + (1 − p)
I ⊗ I

4
, (28)

where ρα = |ψα〉〈ψα| and p is the noise parameter with 0 �
p � 1. When an arbitrary state, |η〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉,

is to be teleported through such a channel, the fidelity of the
output state with Bob with |η〉 reads

F η = p

[
1 − 1

2
(1 − 2

√
α(1 − α)) sin2 θ

]
+ 1 − p

2
. (29)

The average teleportation fidelity F dep(p) can estimated as

F dep(p) = 2p

3
(1 +

√
α(1 − α)) + 1 − p

2

= pF + 1 − p

2
, (30)

TABLE I. Enhancement of αk
n values with k (>2) for depolariz-

ing noise with p = 0.7. For a graphical representation of the k = 2.5
and 3.5 cases, see Fig. 4. Note that in this case αcl = 0.012.

k αk
n

2.1 0.013 (αcl + 0.001)
2.5 0.022 (αcl + 0.010)
3.5 0.033 (αcl + 0.021)
4.0 0.056 (αcl + 0.044)

where F = 2
3 + 2

√
α(1−α)

3 , the average fidelity in the noiseless
case; see Eq. (7). Similarly, the fidelity deviation reads

Ddep(p) = p
√

1 − 4
√

α(1 − α) + 4α(1 − α)

3
√

5

= p(1 − 2
√

α(1 − α))

3
√

5
= p(1 − F )√

5
. (31)

Note that the deviation in fidelity is lower compared to the
noiseless case. This allows for the possibility that, for high
sensitivity requirements, the teleportability score in the pres-
ence of global depolarizing noise becomes better compared to
the noiseless case, as shown in Fig. 4 for a typical example
with p = 0.7. First note that the we need an offset in the α

value, say αcl , which guarantees nonclassical teleportation,
which in this case turns out to be αcl = 0.012. Next, let us
denote αk

n to be the α value up to which the noisy case
is “better” than the noiseless case for a fixed k. Therefore,
αc to αk

n is the region of interest. For p = 0.7, k = 2 gives
the marginal case where αk=2

n = αcl . For k > 2 we enter the
regime where one does get a finite range of α where the noise
state turns out to be “better.” We now tabulate αk

n for some
typical k values in Table I. As expected, the αk

n values, and
correspondingly the α-range which gives better teleportation
for the noisy state, grows with k. Lastly, the k∗ value in this
case is around 8, so the k values chosen for the analysis are
well within the bounds.

2. Joint action of local and global depolarizing noise

Here we consider a scenario where both qubits are both
locally as well as globally affected by depolarizing noise.
Naturally, there will be three independent noise parameters: p
(for global noise) and p1 and p2 (for local noises). The initial
resource state (ρα = |ψα〉) under the action of this channel
would become

ρα,p1,p2,p = p
I ⊗ I

4
+ p1

2
{I ⊗ Tr1(ρα )} + p2

2
{Tr2(ρα ) ⊗ I}

+(1 − p1 − p2 − p)ρα. (32)

The average fidelity F dep-local-global(p, p1, p2) can be estimated
as

F dep-local-global(p, p1, p2) = 2

3
(1 + (1 − p)

√
α(1 − α))

− (p1 + p2)(1 + 4
√

α(1 − α))

8
− p

6
. (33)

012428-6



RATING THE PERFORMANCE OF NOISY TELEPORTATION … PHYSICAL REVIEW A 102, 012428 (2020)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.012  0.1  0.2  0.3  0.4  0.5

τ2

α

k = 2p = 0.7
p = 1.0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.012  0.1  0.2  0.3  0.4  0.5

τ2.5

α

k = 2.5p = 0.7
p = 1.0

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.012  0.1  0.2  0.3  0.4  0.5

τ3.5

α

k = 3.5p = 0.7
p = 1.0

 0.3

 0.4

 0.5

 0.6

 0.012  0.035  0.06
 0.5

 0.54

 0.58

 0.012  0.018  0.024
 0.44

 0.48

 0.52

 0.012  0.018  0.024

FIG. 4. Teleportability score when resource states suffer from global depolarizing noise as compared to the noiseless value for k = 2, 2.5,
and 3.5. For k = 2.5 and 3.5, we get a finite range of α where the noisy states outperform the noiseless one. This range is enhanced for larger
k values. k = 2 is the marginal case above which we observe this feature. Note that the α offset of 0.012 ensures that we sample only those
states which yield nonclassical teleportation for the given noise settings of p = 0.7 and q = 1. All axes are dimensionless.

The corresponding fidelity deviation Ddep-local-global(p, p1, p2) reads

Ddep-local-global(p, p1, p2)= 1

24
√

5

[(
64 − 96p2+ 51p2

2

)+ 4[64 + 3p2(7p2− 32)]α(1 − α)− (
256 − 384p2 + 144p2

2

)√
α(1 − α)

+{64p2 + 32p(3p1+ 3p2 − 4)− 96p1} {1− 4
√

α(1 − α)+ 4α(1 − α)}
+ p2

1{51− 12
√

α(−7
√

α + 7α + 12
√

1 − α)} + p2{−17 + 4
√

α(−7
√

α+ 7α + 12
√

1 − α)}] 1
2 .

(34)

In summary, for the class of states considered in this
work, the teleportation fidelity grows monotonically with the
entanglement content of the state. When these states are
subjected to local noise, the same monotonicity of fidelity
with respect to the entanglement content of the parent state
is observed. This is the usual “ordering of states,” where a
higher entangled initial state always (in presence and absence
of noise) leads to better teleportation if only analyzed via
average fidelity. However, what we show is that such ordering
is not always valid when one incorporates fidelity deviation
into the picture and quantifies the performance of teleporta-
tion by the teleportability score. Higher entangled states can
possess lower values of teleportability score values owing
to the large increase of fluctuations in the presence of local
noise. Therefore the usual “ordering” of states with respect to
entanglement does not remain valid anymore.

V. CONCLUSION

Traditionally, the performance of teleportation is calibrated
by the average fidelity it yields. However, not all states
are teleported equally, and the fidelity of each state can
be widely dispersed for a fixed value of average fidelity.
These fluctuations turn out to be detrimental during various
quantum information processing tasks like implementation
of quantum gates, etc. Therefore, the characterization of the
performance of teleportation via the average fidelity alone is
very restrictive. In this work, we characterize teleportation
via both average fidelity (F ) and fidelity deviation (D), and
reanalyze the usual teleportation protocol in the presence of
local and global noises.

In this work, we define teleportability score, τ , as the
difference between average fidelity and the payoff term due to

fluctuations, F − kD, where, k denotes the sensitivity of the
score to fluctuations in fidelity. In the noiseless scenario, we
find that, for any value of k, τk is a monotonically increasing
function of fidelity for the pure resource states considered in
our analysis. In the presence of local bit-flip and bit-phase-flip
noise, if high sensitivity to fluctuations is imposed, although
the fidelity alone increases with increasing entanglement of
the shared resource state, the teleportability score on the
other hand might decrease. It therefore reverses the known
hierarchy of resource states in terms of their capability of
teleportation. When the resource state is affected by global
depolarizing noise, for low values of entanglement and high
sensitivity demands, the noisy states can sometime outper-
form the noiseless ones in terms of the teleportability score.

Although we have tried to provide an upper bound to the
sensitivity requirements, we want to highlight that we think
it is very difficult to put a bound on k from purely a rigorous
theoretical perspective. Let us illustrate this difficulty via an
example. Suppose one has to build a highway. Cars travel on
the highway with high speed so there is a possibility that they
experience some bumps or fluctuations and fall off the side
of the highway causing an accident. Such accidents can be
minimized if the highway is wide enough. But now if one asks
the question, how wide is wide enough for the highway, then
one runs into trouble since, just like in our teleportation case,
it is very difficult to provide a rigorous mathematical criterion
for the width. In such a situation one has to resort to some
practical reasoning to come up with a safe width, for example
by considering the traffic rate, number of big vehicles per day,
cost of increasing the width, availability of free land, etc. This
practicality strategy is what we employ in this case also to
compute a reasonable upper bound for k.
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We also want to mention a possible utility of our
teleportation-characterizing scheme from an experimental
point of view. We illustrate this via a simple example. Con-
sider a quantum circuit where teleportation is used as an
intermediate step to transfer unknown quantum states amongst
nodes of the circuit. Suppose that in the receiving node,
the quantum information (the unknown quantum state) has
to be processed by a quantum gate. Now as pointed out in
[19], the performance of the quantum gates are sensitive to
fluctuations in its input, which in this case is the state it
receives after teleportation. Typically the resource state that
is used for teleportation is nonmaximally entangled and it
inevitably suffers from environmental noise. So, on average,
the performance of the quantum gate would greatly suffer
fluctuations in fidelity of the state coming out of the tele-
portation process. Therefore, under the constraint that one
uses states of a given (nonmaximal) amount of entanglement,
which suffer from noise, calibrating the performance of this

teleportation protocol via both fidelity and fidelity deviation
becomes essential. Furthermore, note that all quantum gates
will not be equally sensitive to fluctuations in fidelity of its in-
put. This motivates the choice of a measure like teleportability
score to rate the performance of quantum teleportation, which
would help to capture the information about the fluctuations
and thereby aid in providing a better characterization of the
performance of the quantum circuit in general.

Although we have analyzed the performance of telepor-
tation by considering both fidelity and its deviation, similar
analysis can also be carried out for other protocols whose
performance is quantified by the average fidelity.
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