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Quantum-gate errors are a significant challenge for achieving precision measurements on noisy intermediate-
scale quantum (NISQ) computers. This paper focuses on zero-noise extrapolation (ZNE), a technique that can be
implemented on existing hardware, studying it in detail and proposing modifications to existing approaches. In
particular, we consider identity insertion methods for amplifying noise because they are hardware agnostic. We
build a mathematical formalism for studying existing ZNE techniques and show how higher order polynomial
extrapolations can be used to systematically reduce depolarizing errors. Furthermore, we introduce a method for
amplifying noise that uses far fewer gates than traditional methods. This approach is compared with existing
methods for simulated quantum circuits. Comparable or smaller errors are possible with fewer gates, which
illustrates the potential for empowering an entirely new class of moderate-depth circuits on near term hardware.
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I. INTRODUCTION

Gate-based quantum computers are composed of unitary
operations that are inevitably noisy due to interactions with
the environment. Among the sources of errors facing quantum
computation (such as readout errors; see, e.g., Ref. [1]), these
gate errors are significant and a key challenge for achieving
precision measurements on noisy intermediate-scale quantum
(NISQ) computers [2]. The long-term solution to these errors
is active error correction via error-correcting codes [3–7].
However, these algorithms require significant qubit and quan-
tum gate resources and are therefore prohibitively expensive
on NISQ devices. Active error detection and correction has
been demonstrated for simple quantum circuits [8–17], but
complete error correction is infeasible for moderately deep
circuits with current hardware.

An alternative strategy for mitigating quantum-gate errors
is to perform a series of measurements with systematically
amplified errors and then to use these measurements to ex-
trapolate to zero error. These strategies are called zero-noise
extrapolation (ZNE). One possible strategy for enlarging the
errors is to slow down gate operations [18]. This provides
a continuous handle for making circuits noisier, but it also
requires control over the hardware operations beyond that of
a typical quantum computer user. A variety of “software”
alternatives have been proposed which only require modifying
the original quantum circuit and are hardware agnostic [19].
Some of these approaches require knowledge of the quantum
computer noise model in order to amplify the noise [20,21]. In
contrast, a noise-model-agnostic strategy is to replace unitary
operations U with U (UU †). The additional UU † does not
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effect the zero-noise result of the circuit as UU † is the identity.
However, this identity insertion will amplify the noise. One
dominant source of error in current quantum computing hard-
ware is the gate error, which arises during the application of an
entangling gate such as the two-gate controlled NOT operation
(CNOT ). This paper will use CNOT gates as the prototypical
example, but the method applies to any unitary operation.
One can repeat the identity insertion method multiple times
by replacing the ith CNOT in a given circuit with

ri = 2ni + 1 (1)

CNOT gates, for integer ni � 0. When ni = n for all i, this is
the fixed identity insertion method (FIIM). Measurements are
performed for various values of r and then a fit is performed
in order to extrapolate to r → 0. The application of FIIM was
first proposed in Ref. [19] using a linear fit and exponential fits
were studied in Ref. [22]. Linear superpositions of enlarged
noise circuits were also studied in Ref. [21], which are similar
to our results on higher order fits. One challenge with FIIM is
that it requires a large number of quantum gates: For a fit with
n parameters, one needs to add at least (2n + 1) Nc gates to the
nominal circuit with Nc CNOT gates. We propose a solution to
this challenge by promoting the ni from Eq. (1) to random
variables to construct the random identity insertion method
(RIIM). A careful choice of probability mass functions for the
ni can effectively mitigate depolarizing noise as well as or
better than FIIM using far fewer quantum gates. Both RIIM
and FIIM do not require any knowledge of the underlying
quantum computer noise model.

This paper is organized as follows. Section II reviews
linear ZNE in the presence of depolarizing noise. The RIIM
technique is introduced in Sec. III. The potential of nonlinear
fits is discussed in Sec. IV, connecting nonlinear fits and
the superposition methods discussed in Ref. [21]. Sections V
and VI extend the analysis to include other sources of quan-
tum noise as well as statistical uncertainties, respectively.
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Numerical results with a simple two-qubit circuit and the
quantum harmonic oscillator are presented in Sec. VII. The
paper ends with conclusions and outlook in Sec. VIII.

II. LINEAR FIT USING FIIM IN THE DEPOLARIZING
NOISE MODEL

One can build a concept for the impact of identity inser-
tions analytically using a depolarizing noise model. In the
density matrix formalism, the noisy CNOT operation between
two quibits k and l in the state ρ is given by [7]

ρ →
⎛
⎝1 −

∑
i j

ε
(kl )
i j

16

⎞
⎠U (kl )

C ρ U (kl )
C

+
3∑

i, j=0

ε
(kl )
i j

16
σ

(k)
i σ

(l )
j ρ σ

(k)
i σ

(l )
j , (2)

where U (kl )
C is the CNOT operation controlled on qubit k and

targeting qubit l , ε
(kl )
i j � 1 quantifies the amount of noise,

and σ
(k)
i , σ

(l )
i are the set of single-qubit Pauli gates acting on

qubits k and l , respectively. The noise on qubits other than k
and l is assumed to be negligible. Equation (2) can accommo-
date any quantum map, but the focus will be on depolarizing
noise, which is the most well studied and widely used (both in
simulations and in characterizing quantum hardware).

The depolarizing noise model corresponds to the case
where all noise parameters ε (kl ) ≡ ε

(kl )
i j are equal to one an-

other, in which case Eq. (2) becomes1

ρ �→ (1 − ε (kl ) )U (kl )
C ρ U (kl )

C + ε (kl )

(
I (kl )
4

4
⊗ ρ�kl

)
, (3)

where I (kl )
4 is the 4 × 4 identity matrix on qubits k and l ,

and ρ�kl is all of ρ aside from the kl qubits (partial trace
with respect to qubits k and l). Equation (3) has the clear
interpretation that with probability ε (kl ), ρ is equally likely
to be in any of the four possible states: |kl〉〈kl| ⊕ ρ�kl ∈
{|00〉〈00|, |01〉〈01|, |10〉〈10|, |11〉〈11|} ⊕ ρ�kl .

Suppose that two CNOT operations are applied sequentially
on the same two qubits k and l . The impact on the state is
given by

ρ �→ (1 − ε (kl ) )2ρ + [1 − (1 − ε (kl ) )2]

(
I (kl )
4

4
⊗ ρ�kl

)
. (4)

Note that in the noiseless limit ε (kl ) → 0, Eq. (4) correctly
reproduces the fact that the two CNOT gates form the identity,
such that the density matrix is unaffected. Adding a third CNOT

gate, one finds

ρ �→ (1 − ε (kl ) )3U (kl )
C ρ U (kl )

C

+ [
1 − (

1 − ε (kl )
)3]( I (kl )

4

4
⊗ ρ�kl

)
. (5)

Extending the pattern of Eqs. (3)–(5), applying the same
CNOT ri = 1 + 2ni times in a row has the same effect as

1One can also derive the depolarizing channel from a microscopoic
master equation formalism [23].

applying it once with the noise amplified by ri

ρ �→ (1 − εi )
riU i

C ρ U i
C

+ [1 − (1 − εi )
ri ]

(
I (kl )
4

4
⊗ ρ�kl

)
, (6)

where the ith CNOT gate connects qubits k and l and to
simplify notation, εi = ε (kl ). The Taylor expansion of Eq. (6)
around εi = 0 to O(εi ) is given by

ρ �→ (1 − riεi )U
(kl )
C ρ U (kl )

C + riεi

(
I (kl )
4

4
⊗ ρ�kl

)
. (7)

Thus, the action of ri CNOT gates in a row is the same as the
action of a single CNOT gate, but with the noise parameter
amplified by a factor of ri. In FIIM, all of the ri are set to
the same value r.

Let M be an observable and in a circuit containing i =
1 . . . Nc CNOT gates, and consider performing a measurement
of the expectation value of M: 〈M〉 = Tr(Mρ). Using Eq. (6)
results, the expectation value in the presence of depolarizing
noise is given by

〈M〉(r) =
(

1 − r
Nc∑

i=1

εi

)
〈M〉ex + r

Nc∑
i=1

εi〈M〉depi

+ O

((
r

Nc∑
i=1

εi

)2)
, (8)

where 〈M〉ex is the expectation value of the observable in
the absence of noise, 〈M〉depi

denotes the expectation value
of the noiseless observable if the CNOT i is replaced with the
depolarizing channel, and r = 1, 3, . . . is the same factor for
every CNOT gate in the circuit.

From Eq. (8), the noiseless value of the expectation value
is given by the measurement at r = 0

〈M〉ex = 〈M〉(0) . (9)

Of course, it is not possible to directly perform a measurement
at r = 0, since all circuits have noise. The idea of ZNE is to
extract the noiseless limit by measuring the result of 〈M〉(r)
for various values of r and extrapolating to the value at r =
0. By construction, a linear fit is effective when the O(ε2)
terms in Eq. (8) are subdominant (the “linear regime”). In this
regime, one expects to remove the dominant O(ε) terms with
a linear fit so that after linear FIIM

〈M〉FIIM = 〈M〉ex + O

⎛
⎝(

rmax

Nc∑
i=1

εi

)2
⎞
⎠ , (10)

where rmax is the maximum r value so that the circuit is still
in the linear regime.
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FIG. 1. An illustration of the the simple double-gate circuit de-
scribed in Sec. II.

To provide further insight, it is useful to consider an
explicit example where the density matrix is easy to compute
for arbitrary r. Consider the simple circuit presented in Fig. 1.
Because of the small number and simple orientation of gates,
this model can be solved completely analytically.

Letting r = r1 = r2 = 1 + 2n and ε = ε1 = ε2, applying
Eq. (6) to Fig. 1 results in the following mapping:

ρ → (1 − ε)NcrU (12)
C U (21)

C ρ U (21)
C U (12)

C

+ [1 − (1 − ε)Ncr]
I4

4
, (11)

where Nc = 2 denotes the total number of CNOT gates in the
circuit and one needs to remember that r is an odd integer,

r = 1 + 2n . (12)

Thus, starting from the initial state |00〉, one measures each
of the four possible states with probability

P(|00〉) = 1 − 3

4
x P(|i j〉 �= |00〉) = x

4
, (13)

where the second equation holds for all three possibilities and

xFIIM(ε, n) = 1 − (1 − ε)Nc (1+2n). (14)

Suppose that one wants to measure 〈q0 + q1〉, where qi is
the ith qubit in Fig. 1. The result of this measurement gives

〈q0 + q1〉 = xFIIM(ε, 0)

= 1 − (1 − ε)Nc

= Nc ε + O(ε2), (15)

and is therefore linear in Nc ε, as expected from Eq. (8). Using
CNOT noise mitigation, one can remove the linear term in Nc ε.
In the linear FIIM method, one performs the measurement
for various values of n = 0, ..., nmax and then extrapolates to
the value n = −1/2 (r = 0). A linear fit with these data is a
solution to the equation

Y = Xβ, (16)

where

Y =

⎛
⎜⎜⎝

xFIIM(ε, 0)
xFIIM(ε, 1)

...
xFIIM(ε, nmax)

⎞
⎟⎟⎠ X =

⎛
⎜⎜⎝

0 1
1 1
...

...
nmax 1

⎞
⎟⎟⎠ β =

(
β1

β0

)
.

(17)

The well-known least-squares solution to Eq. (17) is β =
(X T X )−1X T Y . This results in the fitted values β̂:

β̂1 =
∑n

i=1

(
i − n

2

)
xFIIM(ε, Nc(1 + 2i))

1
2 n(n + 1)

[
1
3 (2n + 1) − n

2

] , (18)

β̂0 =
∑n

i=1

[
1
6 n(2n + 1) − ni

2

]
xFIIM(ε, Nc(1 + 2i))

1
2 n(n + 1)

[
1
3 (2n + 1) − n

2

] . (19)

Taylor expanding Eqs. (18) and (19) to O(ε2) gives

β̂1 = 2(Ncε) + (−2n − 2 + N−1
c

)
(Ncε)2 + O(Ncε

3), (20)

β̂0 = Ncε +
[

n(n − 1)

3
− 1 − N−1

c

2

]
(Ncε)2 + O(Ncε

3) .

(21)

The resulting equation is then

〈q0 + q1〉FIIM[lin,nmax] = β̂0 + β̂1x, (22)

where the subscript FIIM[lin, nmax] denotes a linear fit per-
formed with the first nmax values of n. Inserting Eqs. (20) and
(21) into Eq. (22) and evaluating at x = −1/2 results in

〈q0 + q1〉FIIM[lin,nmax] =
(

2n2
max + 4nmax + 3

6

)
(Ncε)2

+ O(Ncε
3) . (23)

Using more data points makes the extrapolated result worse
rather than better. This can be understood by the fact that
using more data points requires more CNOT gates, pushing the
measurement into the nonlinear regime. One should therefore
expect that the error grows with the largest number of CNOT

gates used, which is given by rmaxNc. This can clearly be seen
by rewriting the result of Eq. (23):

〈q0 + q1〉FIIM[lin,nmax]
rmax→∞−−−−→ 1

12
(rmaxNcε)2 + O(Ncε

3) .

(24)

The best result is therefore obtained using a linear fit with two
points, giving

〈q0 + q1〉FIIM[lin,1] = 3
2 (Ncε)2 + O(Ncε

3) . (25)

A main drawback of linear FIIM is that it requires

rmax

Nc∑
i=1

εi ∼ rmaxNc ε � 1 . (26)

While this works well for circuits for which Nc ε is small
enough that even after multiplication with (1 + 2n) it is still
a valid expansion parameter, for moderately deep circuits this
condition can easily be invalid, in the sense that while one
might trust an expansion in Nc ε, the expansion breaks down
for 3Nc ε or 5Nc ε. This implies that a linear fit is no longer
adequate to extrapolate to the noiseless (r = 0) limit.

III. LINEAR FIT USING RIIM IN THE DEPOLARIZING
NOISE MODEL

The main challenge with the linear fit in the FIIM method
is that the extrapolated zero noise result is only accurate to
O((rmaxNCNOTε)2), with rmax having to be at least equal to
3. Thus, for sufficiently deep circuits where 3Nc ε ∼ 1, this
method fails to give an accurate result for the zero-noise
extrapolation.

Since the accuracy of the ZNE depends on the maximum
number of CNOT gates required, a method that uses fewer
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total CNOT gates should perform better. Instead of inserting
the same number of identity operators for every CNOT gate,
suppose instead that identities were randomly inserted. This
gives raise to the random identity insertion method (RIIM).
For this approach, one generalizes Eq. (8) such that each CNOT

gate gets an independent factor ri:

〈M〉(r1, ..., rNc ) =
(

1 −
Nc∑

i=1

ri εi

)
〈M〉ex +

Nc∑
i=1

ri εi〈M〉depi

+ O

⎛
⎝(

Nc∑
i=1

ri εi

)2
⎞
⎠ , (27)

Next, the ri = 1 + 2ni in Eq. (1) are promoted to random
variables. For example, one could choose ni ∼ Poisson(ν).
As ν → 0, a given circuit will have at most one CNOT gate
replaced. We will show that even in this case, one can still
perform a linear fit and thus remove the O(ε) term with only
Nc + 2 gates instead of 3Nc as in linear FIIM.

Using Eq. (6) similarly to Eq. (8), one can compute the
expectation value of M for RIIM over both the quantum and
classical (from sampling n) sources of stochasticity:

〈〈M〉〉(ν) =
∞∑

n1=0

· · ·
∞∑

nNc =0

Nc∏
i=1

Pr(ni|ν)

×
{[

1 −
∑

i

εi(1 + 2ni )

]
〈M〉ex

+
∑

i

εi(1 + 2ni )〈M〉depi

+O

⎛
⎝(∑

i

(1 + 2ni )εi

)2
⎞
⎠

⎫⎬
⎭ , (28)

where the 〈〈·〉〉 represents an expectation value over the quan-
tum fluctuations as well as the classical randomness from
sampling different circuits. Since each gate is independently
sampled, one can replace

∞∑
ni=0

Pr(ni|ν) ni = ν , (29)

which immediately reduces Eq. (28) to

〈〈M〉〉(ρ) =
[

1 − ρ
∑

i

εi

]
〈M〉ex + ρ

∑
i

εi〈M〉depi

+ O

⎛
⎝(

ρ
∑

i

εi

)2
⎞
⎠ , (30)

where ρ = 1 + 2ν. Thus, Eq. (30) has the same feature as
FIIM, only the integer n is now replaced by the noninteger
value ν � 0. By performing measurements at various values
of ν and extrapolating to ν = −1/2, one can extract the
noiseless value. However, since the value ν is not restricted
to be integer as in the FIIM case, the expansion does not have
to hold for 3Nc ε, 5Nc ε, etc., but only for ρNc ε, where one

can choose different values of ν to get a reasonable fit region
without making ρ too far from unity.

IV. NONLINEAR FITS IN THE DEPOLARIZING
NOISE MODEL

So far we have only discussed linear fits and showed that
they can eliminate the O(ε) noise contribution to a given
observable, leaving only quadratic dependence on the noise.
In this section, we will generalize this result and show that one
can in principle eliminate the depolarizing noise to all orders.
This can be done for both the FIIM and RIIM methods, which
we now discuss in turn.

A. FIIM method

We begin by revisiting the linear fit in the FIIM method, by
writing it in a different way. Starting again from Eq. (8) and
setting all ε ≡ εi to be equal to one another, we can write

〈M〉(1) = 〈M〉ex + NCNOTε

[∑
i

〈M〉depi
− 〈M〉ex

]

+ O(ε2)

〈M〉(3) = 〈M〉ex + 3NCNOTε

[∑
i

〈M〉depi
− 〈M〉ex

]

+ O(ε2) . (31)

One can immediately see that the linear combination

3
2 〈M〉(1) − 1

2 〈M〉(3) = 〈M〉ex + O(ε2) . (32)

This is exactly what the linear fit to r = 0 using the two points
at r = 1, 3 would give.

Generalizing these results, one can obtain linear combi-
nations that remove higher order terms in ε as well. This
fact has been observed before [21] and is an application of
the Richardson extrapolation [24,25]. We will still review the
results here, since they have not been used in ZNE using
CNOT multiplication as a way to increase noise, and will prove
useful later. Taking a particular linear combination of the
terms with r = 1, 3, . . . , rmax, one can eliminate all terms up
to O(εnmax+1) with

nmax = rmax − 1

2
. (33)

We begin by writing a general linear combination of measure-
ments 〈M〉(r) with different values of r and require that this
linear combination eliminates all terms up to O(εnmax+1):

nmax∑
n=0

a(n)〈M〉(1 + 2n) = 〈M〉ex + O(εnmax+1) . (34)

Ensuring that for any choices of a(r) the coefficient of 〈M〉ex

is equal to one gives the constraint

nmax∑
n=0

a(n) = 1 . (35)

The expression for 〈M〉(r) in the depolarizing noise model
to all orders in ε can be obtained from Eq. (6) and one
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finds

〈M〉(r) = (1 − ε)Ncr〈M〉ex + (1 − ε)(Nc−1)r[1 − (1 − ε)r]

×
∑

i

〈M〉depi + (1 − ε)(Nc−2)r[1 − (1 − ε)r]2

×
∑
i1,i2

〈M〉depi1i2
+ · · · + [1 − (1 − ε)r]Nc

×
∑

i1,...iNc

〈M〉depi1 ,...iNc
, (36)

where 〈M〉depi1 ,...in
is the exact result of a circuit in which the

CNOT gates i1 . . . in have been replaced by the depolarizing
channel. Then, one can write

(1 − ε)(Nc−i)r[1 − (1 − ε)r]i

= (1 − ε)(Nc−i)r
i∑

j=0

(
i

j

)
(1 − ε) jr (−1) j

=
i∑

j=0

(
i

j

)
(1 − ε)(Nc−i+ j)r (−1) j

=
i∑

j=0

(
i

j

)
[(1 − ε)(Nc−i+ j)r − 1](−1) j +

i∑
j=0

(
i

j

)
(−1) j

=
i∑

j=0

(
i

j

)
fNc−i+ j (r, ε)(−1) j+1, (37)

where

fn(r, ε) = 1 − (1 − ε)nr . (38)

Therefore, one can write Eq. (36) as

=〈M〉ex − fNc (r, ε)〈M〉ex

+ [ fNc (r, ε) − fNc−1(r, ε)]
∑

i

〈M〉depi

− [ fNc (r, ε) − 2 fNc−1(r, ε) + fNc−2(r, ε)]
∑
i1,i2

〈M〉depi1i2

+ · · · − (−1)Nc [ fNc (r, ε) − · · · + f0(r, ε)]〈M〉depi1 ,...iNc
.

(39)

It is important to remember that the values of 〈M〉ex, 〈M〉depi ,
〈M〉depi1 ...iNc

, etc. are the results of observables measured in
a noiseless circuit which one does not have access to. This
means that when taking linear superposition of the form
Eq. (34) the all terms up to O(εn

max) have to cancel for each
line separately.

This means that the requirement on the coefficients a(n)
must satisfy the general equation

nmax∑
n=0

a(n) fk (1 + 2n, ε) = 1 + O(εnmax+1) , (40)

for all values of k. After some lines of algebra, one can show
that this is indeed possible with the coefficients [21]

a(i) =
nmax∏

j=0, j �=i

(1 + 2 j)

2( j − i)

= 2−2nmax

i!

(−1)i

1 + 2i

(1 + 2nmax)!

nmax!(nmax − i)!
, (41)

for all i ∈ 1 . . . nmax. Note that the coefficient for i ∼ nmax/2
is the largest and satisfies the scaling

maxi[a(i)] ∼ a(nmax/2) ∼ 2nmax+1

nmax
. (42)

To summarize, by using values 〈M〉(r) with
r = 1, 3, . . . , rmax and taking the linear combination∑nmax

n=0 a(n)〈M〉(1 + 2n), one obtains the noiseless value
of the observable up to corrections given by O(εnmax+1).

One alternative approach with a natural interpretation is
performing a polynomial fit with degree nmax − 1 to mea-
surements of 〈M〉(r) with r = 1, 3, . . . , rmax. A polynomial
fit uses the same setup for the linear fit, with Eq. (16), only
now X and β are augmented:

X =

⎛
⎜⎜⎝

0nfit . . . 0 1
1nfit . . . 1 1

...
...

nnfit
max . . . nmax 1

⎞
⎟⎟⎠ β =

⎛
⎜⎜⎝

βnfit

...
β1

β0

⎞
⎟⎟⎠, (43)

where nfit is the order of the polynomial. One can show that
extrapolating the resulting fit

〈M〉FIIM[nfit,nmax] =
nfit∑
i=1

β̂ix
i , (44)

to x = − 1
2 removes the O(εnmax+1) component of the depolar-

izing error when nfit = nmax − 1. Both the polynomial fit and
the superposition from Eq. (41) give rise to the same linear
combinations of the values measured at various values of r.
One can show this with some symbolic manipulation

〈M〉FIIM[nfit,nmax] =
nfit∑
i=0

β̂i

(
−1

2

)i

=
nfit∑
i=0

nmax∑
j=0

((X T X )−1X T )i jYj

(
−1

2

)i

=
nmax∑
j=0

[
nfit∑
i=0

((X T X )−1X T )i j

(
−1

2

)i
]

Yj

=
nmax∑
n=0

[
nfit∑
i=0

((X T X )−1X T )in

(
−1

2

)i
]

× 〈M〉(1 + 2n)

≡
nmax∑
n=0

ã(n)〈M〉(1 + 2n) . (45)

We have verified that the ã(n) in Eq. (45) are equivalent to the
a(n) in Eq. (41).
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TABLE I. Table giving the coefficients for higher order RIIM fits.

nmax a{3} a{5} a{3,3} a{7} a{5,3} a{3,3,3} a{9} a{7,3} a{5,5} a{5,3,3} a{3,3,3,3}

1 − 1
2

2 − Nc+4
4

3
8

1
4

3 − N2
c +10Nc+24

16
3(Nc+6)

16
Nc+6

8 − 5
16 − 3

16 − 1
8

4 − N3
c +18N2

c +104Nc+192
96

3N2
c +32Nc+154

64
N2

c +14Nc+59
32 − 45

32 − 3Nc+29
32 − Nc+8

16
35
128 0 29

64
3

32
1
16

B. RIIM method

The RIIM method uses a different value of ri for each CNOT

gate. Applying Eq. (6) with the full ε dependence leads to the
analog of Eq. (39) from FIIM:

〈M〉(r1, . . . , rNc )

=
∏

j

(1 − ε)r j

[
〈M〉ex +

∑
i

f1(ri, ε)

(1 − ε)ri
〈M〉depi

+
∑
i1>i2

f1(ri1 , ε)

(1 − ε)ri1

f1(ri2 , ε)

(1 − ε)ri2
〈M〉depi1i2

+ · · ·

+
∑

i1>...>iNc

f1(ri1 , ε)

(1 − ε)ri1
· · · f1(riNc

, ε)

(1 − ε)riNc
〈M〉depi1 ...iNc

, (46)

where all of the multisums are over all sets of indices i j

from the original (1, ..., Nc ) that satisfy the ordering relation
given under the sum symbol. To eliminate all terms up to
order εnmax , one needs to include all possible combinations
of r1, . . . , rNc with

∑
i ri = Nc + 2nmax. To write a generic

solution we require a bit of notation. Denote by O({e1, . . . en})
the sum of all operators with the ri given by permutations of 1
and the various values of ei = 3, 5, 7, . . .. So

O({}) = O(1, . . . , 1),

O({e1}) = O(e1, 1, . . . , 1) + O(1, e1, . . . , 1) + · · · ,

O({e1, e2}) = O(e1, e2, 1, . . . , 1)+O(e1, 1, e2, . . . , 1) +· · · ,

(47)

and so on.
To eliminate all terms up to εnmax , one includes all operators

O({e1 . . . en}) with
∑

i ei � 2nmax + Nc, each with its own co-
efficient. One then determines the coefficients by demanding
that all terms up to εnmax vanish. So, for example, to eliminate
the linear term in ε, one includes the operator O({}) and
O({3}). Solving the equations yields

a{}O({}) + a{3}O({3}) = 0 + O(ε2) , (48)

with

a{} = 1 − a{3}Nc . (49)

Solving this equation, one finds

a{3} = − 1
2 , (50)

which again reproduces the result of the linear fit discussed in
Sec. III. To eliminate the linear and quadratic term in ε, one

includes the operators O({}), O({3}), O({5}), and O({3, 3})
and solves the equation

a{}O({}) + a{3}O({3}) + a{5}O({5}) + a{3,3}O({3, 3})

= 0 + O(ε3) , (51)

again with the constraint

a{} = 1 − a{3}Nc − a{5}Nc − a{3,3}

(
Nc

2

)
. (52)

In general, the coefficient for each term a in the constraint
expressions can be determined by(

Nc

|K|
) |K|!

K1!K2! . . . Kn!

where K is the set of extra CNOT gates to be randomly inserted
in the circuit, and Kn is the number of times each unique
element in K is repeated.

Solving the resulting set of equations gives

a{3} = −Nc + 4

4
, a{5} = 3

8
, a{3,3} = 1

4
. (53)

While we have not been able to derive a closed-form
expressions for the coefficients yet, we report valid choices
for the various coefficients with2 nmax = 1, 2, 3, 4 in Table I.
These results allow us to remove depolarizing noise with
corrections arising at εnmax+1 using Nc + 2nmax gates. This
should be compared with the FIIM method where the same
noise reduction requires (2nmax + 1)Nc gates.

For relatively shallow circuits, one could feasibly per-
form the measurements for all permutations required for
O({e1, . . . , en}). For example, to remove the O(ε) error, one
would need to perform Nc + 1 sets of measurements. How-
ever, this quickly becomes impractical. This can be circum-
vented by randomizing: For each measurement that goes into
O({e1, .., en}), randomly pick one of the N{e1,...,en} operations.

2There are enough equations so that solutions exist for all nmax and
these can be found numerically.

TABLE II. A comparison of the gate count needed for a given
order of depolarization error correction for FIIM and RIIM.

Method Remainder No. of CNOTs

FIIM O(εn) (2n − 1)Nc

RIIM O(εn) Nc + 2(n − 1)
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Table II provides an overview of the gate count required
for FIIM and RIIM in the removal of depolarization noise at a
given order in ε.

V. BEYOND THE DEPOLARIZING NOISE MODEL

Equation (2) introduced the full Kraus representation of
a noisy CNOT gate. Let εi j = ε + δi j . The depolarizing er-
ror model is the case where δi j = 0 and is what has been
considered thus far. In reality, there will be some nonzero
δi j , though the nondepolarizing error has been less studied
in the literature and less characterized on current hardware
platforms. While the methods studied in the previous sections
are able to suppress the depolarizing error to O(εnmax ), they do
not remove the O(δ) term. This means that it is not useful to
go beyond O(ε2), unless δ < ε2.

There are many other sources of noise, important examples
being amplitude damping and decoherence noise. The latter
can be well approximated as an exponential random variable
per operation, where the gate has some fidelity (time con-
stant) and requires some finite time to perform. We leave the
study of such noise to future investigations, but we anticipate
that methods similar to those studied here can be used to
remove noise other than depolarizing noise as well. In fact,
in Ref. [21] it was argued that similar methods also apply to
amplitude damping noise.

VI. STATISTICAL UNCERTAINTY

All results presented so far were in the limit where one can
measure the value of an observable with arbitrary precision.
This is, of course, not true, since any measurement on a
quantum computer is probabilistic in nature, such that most
measurements have a statistical uncertainty associated with
them, which depends inversely on the square root of the
number of runs used to perform the measurement.

Using the results of the previous sections, one can quantify
the impact of the statistical uncertainty. Recall that the noise-
less value 〈M〉ex is obtained by taking linear combinations
of measurements with different values of r, and that in the
limit of zero statistical uncertainty the final uncertainty on the
noiseless value is given by the maximum of δ and εnmax+1. In
the presence of statistical uncertainty, each measurement of
〈M〉(r) can only be determined up to a statistical uncertainty

�(r) ∼ 1√
nmeas

, (54)

where nmeas denotes the number of measurements that are
performed in the measurement of each value 〈M〉(r). The full
uncertainty is more complicated and depends on the exact
observable. This can be derived by writing the generic form
of the ZNE expectation value:

〈M〉ZNE =
∑

�r
a(�r) 〈M〉(�r)

=
∑

�r
a(�r)

⎛
⎝ 1

nmeas

2nqubits∑
i=1

βimi(�r)

⎞
⎠,

= 1

nmeas

∑
�r

2nqubits∑
i=1

(a(�r)βi ) mi(�r), (55)

where a(�r) is either of the form a(r) for FIIM or a{r1,...,rn} for
RIIM. Going from the first to the second line, we have used
that any observable is constructed from the measured counts
mi(�r) of the 2nqubit states, where the weighting of each count mi

by βi is observable dependent.
The mi are random variables with nmeas total draws

with probability vector �p ∈ [0, 1]nqubits with pi(�r) = pi,ex +
O(ε) p̃i(�r), i = 1, ..., 2nqubits . The probability vectors satisfy∑

i pi(�r) = 1. The exact result pi,ex is the probability of mea-
suring state i without any depolarizing error and the �r depen-
dence is in the O(ε) term, and the observable dependence is
now in the values of the pi(�r). Thus, the mi(�r) are drawn from
a multinomial random variables, with variances and covari-
ances given by Var(mi ) = nmeas pi(1 − pi ) and Cov(mi, mj ) =
−nmeas pi p j , respectively. Using this information, one can then
compute the total standard deviation for 〈M〉ZNE:

�stat = 1√
nmeas

√∑
�r

a(�r)2 M({βi, pi(�r)}) . (56)

with

M({βi, pi}) =
2nqubits∑

i=1

β2
i pi

⎛
⎝(1 − pi ) −

2nqubits∑
j=i+1

β2
j p j

⎞
⎠ . (57)

For observables for which only a single-qubit state con-
tributes, such that only a single βi is nonvanishing, the prob-
ability vector only has a single entry such that βk = 1 for
one k ∈ {1, ..., 2nqubits} and pi �=k,ex = 0. Choosing k = 1 and
β1 = 1, Eq. (56) for FIIM becomes

�stat = 1√
nmeas

√√√√nmax∑
n=0

a(n)2 p1(1 − p1)

≈ 1√
nmeas

√√√√nmax∑
n=0

O(ε) a(n)2

∼
√

ε√
nmeas

2nmax

nmax
, (58)

where the last line is only true in the limit of large nmax, since
we have used that the sum is dominated by its largest values,
given in Eq. (42).

Combining the statistical uncertainty with the uncertainties
discussed before, the final uncertainties in the FIIM and RIIM
methods are given by

�FIIM/RIIM[ε, δ; nmax, nmeas] ∼ max[δ, εnmax ,�stat] . (59)

In practice, randomizing over circuits for RIIM will intro-
duce a contribution to the statistical uncertainty. This may be
optimized by a clever allocation of experiments. With limited
resources, this summarizes RIIM versus FIIM as a tradeoff
between statistical uncertainty and gate depth. On NISQ com-
puters, gate depth is often the limiting factor and so this is a
desirable tradeoff. One may want to use multiple computers or
multiple sets of qubits on the same computer to perform RIIM
(or FIIM) order to further improve the statistical precision.
Such configurations will be studied in future work.
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FIG. 2. A simple circuit with four CNOT gates used in this section.

VII. NUMERICAL RESULTS

We use qiskit [26] to simulate the quantum circuits
described below and demonstrate FIIM and RIIM. Sec-
tion VII A studies the simple CNOT-only circuit from Fig. 1
and Sec. VII B examines a more complicated case of time
evolution for the quantum simple harmonic oscillator.

A. Simple circuit

The simple circuit shown in Fig. 1 was particularly useful
because of its analytical tractability. In particular, because one
can compute the expectation values analytically, it is possible
to consider the nmeas → ∞ limit. In this section, we use a
slight modification of this simple circuit shown in Fig. 2,
which uses four CNOT gates, which are started in the initial
state |10〉. In the noiseless limit, the final state is given by
|11〉. Four gates are used in order to demonstrate the potential
for removing depolarization errors up to ε5, and we use a
different initial state such that decoherence, discussed later
in the section, is not driving the result towards the final
expectation.

Figure 3 illustrates the scaling of the error and gate count
for RIIM and FIIM for this circuit. As desired, the error
decreases with the order of the error correction. The number of
qubits required for RIIM is much lower than FIIM for a fixed

FIG. 3. Numerical results based on the higher order fits described
in Sec. IV using the four-CNOT-gate circuit presented in Fig. 2. The
horizontal axis is the order of the depolarizing error that is being
removed. The left axis is the error on 〈∑Nc

i=0 qi〉 as ε is extrapolated
to zero. The right axis is the number of gates requires to make the
correction. Only depolarizing noise is considered and nmeas = ∞.

TABLE III. Device error parameters for ibmq-ourense qubits 0
and 1.

Qubit no. T1 (μs) T2 (μs) CNOT error rate

0 102.01 81.04 0.021
1 91.34 33.42 0.021

order of error correction. For example, correcting the O(ε4)
requires 8 total gates for RIIM but FIIM requires 36. In fact,
for a fixed correction order, the coefficient of the subleading
depolarizing error is also smaller for RIIM than for FIIM.
Note that one needs nfit = nmax + 1.

qiskit can be used to study the impact of other sources
of noise, such as thermal relaxation. A full noise model from
the IBMQ device is used, which includes depolarizing and
decoherence errors. Table III provides an overview of the
parameters used to generate a full noise model using qiskit
for the ibmq-ourense device.

In Fig. 4, we show the result where the measured observ-
able is the expected value of the output string, converting
from binary numbers to integers (00 → 0, 01 → 1, 10 →
2, 11 → 3). In the noiseless limit, the expectation value is
3, corresponding to |11〉. Fixed identity insertions (but no
corrections yet) are applied up to rmax = 31. The observable
decays at a quicker rate in the case with the full noise model
as expected, as the circuit feels the effect of thermal relaxation
(which drives the system toward the |00〉 state) as well as the
depolarizing noise, which drives the system to the completely
mixed state.

Figure 5 compares the extrapolation error obtained from
FIIM and RIIM under the action of full and purely depolariz-
ing noise models. The extrapolation error for both FIIM and

FIG. 4. Numerical results from simulating the four-CNOT circuit
in noiseless and noisy simulators using qiskit. The vertical axis
shows the expectation value of the measured observable. The hori-
zontal axis displays r, or 1 + 2n. Noisy simulations include both full
and purely depolarizing cases. The number of shots for each point is
107, with a standard deviation of 10−3.
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FIG. 5. Numerical results from simulating the four-CNOT circuit
and applying FIIM and RIIM extrapolation in a noisy simulator. The
lower plot displays a reduced range of the data in the upper plot for
detail. Extrapolation error is 0 for noiseless simulation. The number
of shots for each circuit is 107.

RIIM are higher in the case of a full noise model which has
nondepolarizing elements. RIIM performs as well or better
than FIIM in both noise models. The minimum extrapolation
error is achieved at nfit = 2. This can be understood in the
context of Eq. (59) in Sec. VI with the parameters of ε =
1% and nmeas = 107. The value for ε was chosen to be a
reasonable estimate of the device error rates seen in the
calibration data available on the IBMQ portal. At nfit = 1,
the dominant error �FIIM/RIIM is determined by ε rather than
the statistical uncertainty. However, as nfit = 2, the statistical
error �stat begins to exceed ε2, and by nfit = 3 the dominant
error becomes the statistical error, which prevents further
reduction of extrapolation error and leads the the exponential
scaling of the error as nfit is increased further. Note that RIIM
is only used to eliminate errors up to O(ε4), as the circuit only
contains four CNOTS.3

B. Hamiltonian evolution

Trotterized time evolution is a useful technique for the sim-
ulation of Hamiltonians on digital quantum computers. For
the one-dimensional simple harmonic oscillator Hamiltonian,

3In principle, one could go higher by modifying the method as there
are fewer terms on the right-hand side of Eq. (46) than need to be
eliminated.

FIG. 6. Circuit diagram for a single Trotter step of the time
evolution of the harmonic oscillator hamiltonian for two qubits. The
total number of CNOT operations for the quantum Fourier transform
UQFT on two qubits is 5, giving a total of 14 CNOT operations.
However, one CNOT operation from each of the UQFT is canceling a
CNOT from the rest of the circuit, giving a total of 10 CNOT operators
per Trotter step.

time evolution is given by

|ψ (t )〉 = e−iHt |ψ (0)〉 , (60)

where

H = 1
2 (x̂2 + p̂2) ≡ Hx + Hp . (61)

The Hamiltonian in Eq. (61) can be implemented on a
digital quantum computer by discretizing the possible values
of x to be −xmax,−xmax + δx, . . . , xmax − δx, xmax, where δx =
2xmax/(2nqubits − 1) and nqubits is the number of qubits. This
system has been recently studied in the context quantum field
theory as a benchmark (0 + 1)-dimensional noninteracting
scalar field theory [27–34]. As discussed in these studies,
the momentum operator p̂2 can be effectively implemented
with quantum Fourier transforms. Since [Hx, Hp] �= 0, one can
approximate the time evolution of the Hamiltonian by using
the first-order Suzuki-Trotter expansion [35–37]:

e−i(Hx+Hp)t ≈ [
e−iHx

t
n e−iHp

t
n
]n

≡ [
U (H )

n (t/n)
]n

. (62)

The approximation in Eq. (62) can be efficiently represented
as a quantum circuit block which is repeated n times to the
desired number of Trotter steps, as illustrated in Fig. 6.

Time evolution of the ground state of the Harmonic oscil-
lator gives

|ψ0(t )〉 = e−iHt |ψ0(0)〉 = e−iE0t |ψ0(0)〉, (63)

where E0 = 1/2. Thus, the time evolution produces a pure
phase and one finds

〈ψ0(0)|ψ0(t )〉 = 1 . (64)

The ground state of the harmonic oscillator is a Gaussian
distribution in the variable x, which can be generated through
the action of a unitary circuit (UState) on the state |0〉, which is
implemented with two CNOT gates:

|ψ0(0)〉 = UState|0〉 . (65)

Thus, the overlap can be written as

lim
n→∞〈0|U †

State

[
U (H )

n (t/n)
]n

UState|0〉 = 1 . (66)

For finite values of n, the deviation of the overlap from unity
will grow with time t/n and one achieves higher accuracy for
larger n

〈0|U †
State

[
U (H )

n (t/n)
]n

UState|0〉 = 1 + O(t2/n2) . (67)
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FIG. 7. The expectation value of the observable in Eq. (66)
as a function of time for various numbers of Trotter steps and
noise mitigation techniques. The purely depolarizing noise model is
used for this simulation. In the absence of Trotterization error, the
observable should be unity, independent of t .

On the other hand, more Trotter steps requires deeper circuits,
and therefore larger errors from the gate noise, in particular
the CNOT noise.

We choose to simulate the harmonic oscillator with a total
of two qubits, corresponding to four discrete values of x. In
this case the CNOT count is given by

Nc = 4 + 10 n . (68)

The accuracy of the approximation increases with the number
of Trotter steps n. FIIM has been used to increase the accuracy
of Trotterized simulation of the time evolution of Hamiltoni-
ans, but is less accurate when the depth of a single Trotter
step becomes too large, as introducing three or more times as
many CNOT operations as there are in the nominal circuit does
not allow for the accurate extrapolation of the observable [38].

Figure 7 presents the result of one and two Trotter steps,
corrected with RIIM and with FIIM up to O(ε2). For both
one and two steps, the RIIM extrapolations are closer to the
noiseless lines than the FIIM extrapolations, indicating that
the RIIM error is smaller than the FIIM one.

Figure 8 compares the error obtained from the FIIM and
RIIM extrapolations over different values of nfit. The extrap-
olated error from RIIM up to O(ε2) is lower than any of
the errors obtained through FIIM for all values of nfit in the
one-step case and in the two-step case.

VIII. CONCLUSIONS

We have performed a detailed study of zero-noise extrap-
olation for correcting gate errors in quantum circuits. The
first aspect of this study was the formalization of the fixed
identity insertion method (FIIM), which increases the circuit
error by inserting pairs of gates after each CNOT in the circuit.
This method has been studied in the past, but we derived
analytic results for removing higher order depolarizing noise.
These analytic results were previously known in the context
of Hamiltonian evolution and are connected with the identity
insertion formalism. We also made the observation that these

FIG. 8. The squared error of the observable value extrapolated
using FIIM plotted against nmax. The dashed lines indicate the error
using second-order RIIM.

extended fits are equivalent to higher order polynomial extrap-
olations.

A key challenge with FIIM is that it requires a significant
inflation in the gate count to achieve high precision. We
proposed a method whereby identities are randomly instead
of deterministically inserted. A careful choice of insertion
probabilities can result in the same formal accuracy as FIIM
but with far fewer gates [(2n − 1)Nc versus Nc + 2(n − 1)].
This method will provide access to moderately deep circuits
where FIIM is not applicable for near-term devices.

Finally, we have discussed the impact of other important
sources of noise. In particular, ZNE does not remove generic
nondepolarizing noise. Furthermore, large statistical noise can
spoil the high-order depolarizing noise cancellation. Other
techniques may be required to mitigate these sources of noise
within the ZNE framework, although it is likely that these
techniques can be used to mitigate amplitude damping and
decoherence noise.

In the era of NISQ hardware, zero-noise extrapolation
will continue to play an important role for enhancing the
precision of quantum algorithms. Identity insertions provide
a practical error-model agnostic and software-based approach
for enhancing errors in a controlled way. The RIIM method
has extended this methodology for finer control over the error
scaling and will extend the efficacy of zero-noise extrap-
olation to moderate-depth circuits. Combined with readout
error mitigation, these techniques will provide a complete
package for improving the accuracy of near-term calculations
on quantum devices.
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