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Quantum blackjack: Advantages offered by quantum strategies in communication-limited games
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We examine the advantages that quantum strategies afford in communication-limited games. Inspired by the
card game blackjack, we focus on cooperative, two-party sequential games in which a single classical bit of
communication is allowed from the player who moves first to the player who moves second. Within this setting,
we explore the usage of quantum entanglement between the players and find analytic and numerical conditions
for quantum advantage over classical strategies. Using these conditions, we study a family of blackjack-type
games with varying numbers of card types, and find a range of parameters where quantum advantage is achieved.
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I. INTRODUCTION

In quantum information, two-player games have provided
useful perspectives on the unique power of quantum entangle-
ment as a resource. For instance, the Clauser-Horne-Shimony-
Holt (CHSH) game is an example of an operational task where
quantum entanglement yields an advantage of all possible
classical strategies, and analysis of CHSH—as well as more
general nonlocal games—has not only provided insight into
foundational concepts such as Bell’s inequality [1], but has
also led to protocols for important tasks such as verifiable
randomness generation [2], key distribution [3], and delegated
computation [4]. Since entanglement with no communication
can generate correlations beyond what is possible classically,
it is worth exploring the extent to which this remains true
when communication is allowed. For computing functions
with distributed inputs, entanglement can reduce the com-
munication cost by up to an exponential factor [5] but not
more [6]. The form of the entanglement matters in some
settings but not others: when communication and a small
amount of error are allowed, Einstein-Podolsky-Rosen pairs
are at least as useful as any other state [7], while in the
zero-communication setting nonmaximally entangled states
can achieve significantly more [8,9].

While these results tell us about either zero communication
or an asymptotically growing amount of communication, less
is known about nonasymptotic amounts of communication for
specific protocols. One exception to this which we will build
on is the “hyperbit” protocol of Ref. [10], which characterizes
the power of protocols with unlimited entanglement, a single
bit of communication, and a single-bit output, obtaining an
answer reminiscent of Tsirelson’s characterization of XOR
games [11,12]. Other nonasymptotic results include specific
examples of communication reduction (e.g., from 3 bits to 2
bits using entanglement [13]), quantum advantage in random
access coding [14,15], the relation between the power of
quantum communication and Bell inequalities [16,17], local
hidden variable models supplemented with 1-bit communica-
tion [18], and a low-communication test for large entangled
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states with connections to the area-law conjecture in many-
body physics [19]. In Bell inequalities, communication can be
assumed to be completely forbidden by performing measure-
ments at spacelike-separated points. Our assumption of small
but nonzero amounts of communication has appeared in cryp-
tographic settings [20], or in games, as we will discuss below.

Inspired by the potential insight offered in studying limited
communication protocols—and also drawing inspiration from
our home institution’s fascination with casino games [21]—
we explore the question of whether quantum entanglement
can offer a strategic advantage to win at blackjack. In this
paper, we describe how quantum entanglement can be used
in blackjack, and how quantum advantages may arise. Our
treatment of quantum strategies in blackjack is a special case
of a communication setting that is somewhere between nonlo-
cal games with no classical communication and communica-
tion complexity problems where an asymptotically growing
amount of communication is used. This area has not been
heavily studied and we believe that it is a promising area for
finding future uses of entanglement. Our focus on the special
case of blackjack also shows the sort of concrete details that
need to be explored in order to find settings in which Bell
violations and nonlocality can be used. Another reason to use
blackjack is that we want to find out the power of quantum
nonlocality in a setting which was not chosen specifically
to benefit entangled strategies. A related paper has recently
used 2 — 1 quantum random access codes to find improved
bidding strategies in the card game bridge [22].

The main contributions of this paper are a formalism
for quantum strategies in communication-limited sequential
games, a description of how optimal quantum strategies can be
computed, a concrete analysis of advantages (or lack thereof)
in a small toy example, and calculations and results specific to
blackjack.

The paper is arranged as follows. In Sec. I, we describe the
class of games we consider, as well as specify the particular
assumptions and variations of blackjack used in this paper. In
Sec. III, we derive and analyze the optimal strategies for the
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types of games considered in this paper. In particular, we cate-
gorize the structure and properties of the optimal strategies for
three restrictions on communication: no restriction, single-bit
classical communication only, and hyperbit communication.
In Sec. IV, we present how the optimal quantum strategies
can actually be computed. In Sec. V we apply the algorithms
and strategies developed herein to determine potential quan-
tum advantage for limited communication games. We look
first at low-dimensional games, which can be treated in an
exact analytic manner, and then generalize these principles
to larger games. Finally, in Sec. VI, we describe our search
for quantum advantage in concrete games of blackjack. For
the interested reader, we also detail in Appendix B how the
optimal quantum strategies can be simulated experimentally
on quantum circuits.

II. BLACKJACK AND LIMITED
COMMUNICATION GAMES

In our analysis, we consider a modified ruleset to black-
jack. The purpose is to make computation and analysis sim-
pler (and, in some cases, more feasible). Despite the appar-
ently extreme nature of some modifications, there are specific
and realistic situations that justify them. For a more detailed
description of blackjack rules, see Appendix A.

We consider only two players, Alice and Bob, who play
cooperatively against the dealer, seeking to maximize their
combined expected payout. There is no minimum or maxi-
mum bet requirement. This allows us to consider strategies
in which Alice’s bet is essentially zero. We do so to enforce
Alice’s result to be inconsequential, and therefore her action
can be used simply to inform Bob’s strategy. In the case in
which the maximum bet far exceeds the minimum bet, this
assumption is justified.

The cards are dealt as follows. The two players and the
dealer each begin with a single face-up card. Each player—but
not the dealer—is dealt a face-down card from the shoe. The
face-up cards are public information, known to all parties,
while the face-down cards are private to each player. Fur-
thermore, the contents of the shoe prior to the deal are also
public, although the order is not known. With knowledge of
the public information, along with her face-down card, Alice
will either hit or stand. If she hits, no matter what happens,
she will stand immediately after and end her turn, since her
strategy is simply to send a single bit of communication to
Bob. Since her bet is taken to be inconsequential, the result of
her turn is as well.

Bob uses the information available to him (including the
communication from Alice) to decide whether to hit or stand.
After this move, we assume the shoe is reshuffled, to a
shoe containing infinitely many standard, 52-card decks. This
assumption is made to simplify the analysis of the rest of
the round. Bob’s strategy, after his first action, can be di-
rectly calculated independently of Alice’s action or private
information. Such a scenario arises when the shoe becomes
depleted and must be replaced. If the shoe is taken to contain
many standard, 52-card decks, the rest of the round can be
approximated as an infinitely many deck shoe.

Finally, as mentioned above, Bob plays out his turn via an
infinite deck strategy. The dealer then plays according to a
standard strategy of hitting on a soft 17.

The payouts are then considered as follows. If Bob wins,
his bet is returned to him and he wins an additional amount
equal to his bet. If he loses, his bet is lost. If he ties, the bet is
returned to him.

Note that, for all parties involved, the only allowed actions
are to hit or to stand. More advanced tactics, like doubling
down, splitting, or surrendering, are not considered in this
paper.

In the case that quantum entanglement is allowed, Alice
and Bob initially share an arbitrary entangled state. In addition
to Alice’s single bit of communication, she also decides on a
measurement on her half of the shared state. According to all
this information, then, Bob measures his half of the state prior
to the first action of his turn and uses the measurement result
to decide on his action.

A. Problem statement

Now that a particular ruleset has been described, we more
generally formalize the problem. Although the discussion
will be framed around our game of blackjack, more general
terms will be used here and throughout the paper to refer to
important concepts. In particular, the form used mirrors how
nonlocal games are typically described.

In this paper, we consider games and strategies with the
following properties. Two players, Alice and Bob, receive
private information s and ¢, respectively. In blackjack, this
corresponds to each player’s initial face-down card. Sequen-
tially, each player provides a single bit response: first, Alice
announces her answer a, followed by Bob responding his
answer b. This corresponds to the action of hit or stand in
blackjack. The sequential and public nature of the responses
means that Bob can base his action not only on his information
t, but also on Alice’s action a. The goal of this game is to
maximize the expected payoff function, which is constrained
to only depend on s, ¢, and b. Note that we have intentionally
excluded a, meaning Bob’s action alone determines the pair’s
payoff.

This formulation requires some restrictions to be placed on
our version of blackjack. First, the pair’s payoff cannot depend
on a. This means that only Bob’s action matters. An equivalent
condition is if Bob’s bet is chosen to be significantly larger
than that of Alice; in the extreme case, we can make Bob’s
bet 1, and Alice’s 0. Since the pair are cooperating, it is
their combined payoff that matters. Second, note that their
actions in any round of play are characterized only by a
single bit, a and b. For both, this means that they must play
a predetermined strategy after their first hit or stand choice.
In Alice’s case, we simply assume she hits at most once. In
this way, she only communicates one bit to Bob, and does not
otherwise affect the game. In Bob’s case, if he chooses b to be
hit, then he subsequently plays according to a predetermined
strategy (much like the dealer does), without regard to Alice’s
sent bit a.

The expected payoff function then depends on the contents
remaining in the shoe; this depends on s and ¢, as well as the
publicly available, face-up cards of all three participants.

Finally, the task is to construct the pair’s optimal strategy.
Since the pair’s payoff depends only on Bob’s action, Alice’s
role is to convey to Bob as much of the nature of her private
information s as she can. By example, this means Alice tries to
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FIG. 1. Illustrations of the information exchange and game play
considered for this paper. (a) General scenario: The dealer sends
private information (face-down cards) s and ¢ to Alice and Bob,
respectively. All parties also each have a face-up card. The contents
of a finite-sized shoe (four cards in the figure) are known to the
table, although the order of the cards is not. In the first round of
play shown here, Alice goes first and publicly conveys her action
a of hit or stand. Bob uses this information to choose his hit or
stand action, b. In the quantum scenario, they are both allowed to
make a measurement on a shared entangled state p to inform their
action. Subsequent rounds are played deterministically without co-
operation, and are not depicted here. (b) Hyperbit equivalent: When
the quantum entanglement is used, the optimal strategy for Alice and
Bob can be equivalently framed using hyperbits. Mathematically,
this is represented through Alice and Bob choosing vectors X; and
¥, respectively. The expected value of Bob’s action b then equals
X, - ;. Note that Alice’s public communication of a is not explicitly
shown, as it is instead implicitly within the hyperbit transfer and
measurement.

communicate information about her face-down card through
her action, and, if available, her measurement. Bob must
then utilize Alice’s communication, along with his private
information ¢, to optimally act.

An upper bound on the possible optimal expected payoff
can be calculated assuming communication is unrestrained.
Alice simply tells Bob s and he has perfect information about
the shoe’s remaining contents. This is useful for establishing
an absolute upper bound on the possible payoffs.

In blackjack and other games, however, it is sometimes
against the rules to openly communicate. Thus, rather than
that simple, unrestrained case, we will suppose the rules of the
game restrict communication between the players. In particu-
lar, we will disallow any additional classical communication
between Alice and Bob beyond those necessary for play.

However, as mentioned, Alice can communicate a single bit
to Bob via her public action a. Since the pair’s payoff does
not depend directly on a, Alice optimally uses her action to
help inform Bob of her private information.

We consider one final class of strategies, which adds the
use of shared quantum entanglement. In particular, we allow
Alice and Bob to prepare an arbitrary quantum state before
the round. Each player then receives a portion of that state,
and adheres to the following protocol. Alice makes a two-
outcome measurement of her state, depending on her private
information s. She uses that outcome as her response a; as that
response is public, Alice is able to convey her measurement
outcome to Bob. Bob then performs a two-outcome measure-
ment of his state based on both ¢ and a and, finally, gives
his response as a function of the information he has: ¢, a,
and his measurement. As described in Ref. [10], the use of
shared entanglement and a single bit of communication (i.e.,
a) can be equivalently framed by the transfer and measure-
ment of a hyperbit, a hypothetical generalization of bits and
qubits. In this model, Alice sends a hyperbit, mathematically
represented by a vector Xy, to Bob. Bob then measures this
hyperbit using a vector y;. The equivalence of the two models
is given by the expected value of his response b being equal
to X; - y;. We also note there is a correspondence between
the dimensionalities of the vectors and the shared entangled
state: the dimension of the vectors must be sufficiently large
to simulate all strategies which use shared entanglement of a
given dimension, and vice versa. We describe this model in
more depth in Sec. III.

By comparing the optimal strategies and corresponding
output of these classes of strategies, we can seek if and how
the addition of quantum entanglement can lead to advantages
in these limited-communication games.

Figure 1 provides a pictorial summary relating our notation
to an example blackjack round. Figure 1(a) represents the
general scenario with the actual actions and measurements
the parties would take, while Fig. 1(b) shows the equivalent
scenario within the hyperbit framework.

B. Mathematical game model and notation

In this section, we provide a mathematical description of
the types of games we previously outlined. We will chiefly
describe the problem in more general terms, rather than in
terms of blackjack; however, the parallels drawn in Sec. Il A
can be referred to for context and motivation.

Suppose that the pair’s expected payoff is characterized by
a function V (b|s, t). Furthermore, suppose that s and ¢ are
governed by the joint prior probability 7 (s, t), such that they
are given to Alice and Bob, respectively, with that probability.

Next, consider the players’ strategy, given a pair of private
information (s, t). The strategy can be characterized by the
probability distribution of Bob’s answer, b. Let that proba-
bility distribution be given by p(b|s, t).! Then, the expected

"We have labeled Bob’s two answer choices explicitly as 1, rather
than the more common choices of bits 0 and 1. This convention is
intentionally chosen to simplify calculations, but is done so without
loss of generality.
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payoff P is given by

P = ZZ Z 7 (s, )V (bls, 1)p(bls, 1). )

1 belxl}

If we let pf, = p(£l1]|s,t) and Vj = V(£l]s,t), we can
rearrange Eq. (1) to find

P=> m(s, )05V + 1= pive)
s,t

V= Voows, —po) Vi +Vy
= J : —— : : = .
;n(s )( 5 + >

2)

Given this payoff function, the problem of finding the
optimal solution then becomes an optimization problem over
the probability distributions p(b|s, t). Note in particular that
some terms in the right-hand side of Eq. (2) do not depend on
p(bls, t), and are thus irrelevant to the optimization problem.

To simplify the notation, let us define two matrices, C and
S, such that their entries are given by

Cy = m(s, )V = V), 3)

and
S = Pj—, - p;z (€]

Finally, we can use Eq. (2) to write the objective function we
wish to maximize as

IS)=) CuSy =(C,S), 5)

5.t

where (A, B) = tr(ATB) is the matrix inner product. Note
that we have removed terms that do not depend on p(b|s, t)
and scaled the resulting terms by 2; none of these changes
affect the optimal argument resulting from the optimization
problem.

The optimization problem can then be written as finding

S* = arg max 1(S), (6)

which achieves the objective function value I* = I(S*). In the
rest of this text, we will refer to I* as the value of the game.

Note the roles that the two matrices, C and S, serve in this
problem. The elements Cy; of C give an indication of how
likely the private information (s, ¢) is to be given to Alice and
Bob, combined with the “bias” in expected payoff given to
Bob answering b = +1 over — 1. The sign of C; indicates how
Bob would optimally answer, given perfect information, and
the magnitude indicates the relative importance of correctly
answering given this particular pair of private information.
This matrix is a constant, determined by the properties of the
game.

The elements S, of S give the expected value of Bob’s
answer, and are thus constrained by —1 < S;; < 1. Additional
constraints can be added, depending again on the rules of
the game. For the types of games we are interested in, the
constraints arise from the restrictions placed on communi-
cation between Alice and Bob. The structure of the optimal
strategies, as well as the optimal payoff that these strategies
can achieve, thus depend on these matrix constraints.

III. CLASSICAL AND QUANTUM STRATEGIES

In the unlimited communication (or perfect information)
case, Alice is able to provide Bob her private information s in
full. It is simple enough to optimize Eq. (6) by taking

Sy = sgn Cy (7N

so that the maximum possible game value is given by
I =Y ICl. ®)
5.t

While simple in nature, this result provides the upper bound to
the value of games with any level of communication restric-
tion. Notationally, we will designate all quantities related to
this class of strategies with subscript or superscript U.

In the case of classical communication, we are limited
to a single bit, conveyed by Alice’s action a. Most gener-
ally, for each s, Alice can act according to some probability
distribution. Suppose Alice answers a = %1 with probability
Pals> SO that pys + p_y;; = 1 for each s. Bob’s action b can
also be random and in general we can say it is drawn from
a distribution ¢gp,,. For calculations it is often easier to
work with «,; := E[bla, t] = qija,y — g—1jar» Which can take
on any values between —1 and 1. Together these determine S
according to

Sst = Z Pa|s%®a,t- (9)

a==%1

The objective function I(S) is linear in S and therefore linear
in p and «. Taking these maximizations one at a time, the
Karush—Kuhn—-Tucker conditions imply that the maximum is
achieved for p and « extreme points, i.e., taking values at the
boundaries of the allowed region. The extreme points corre-
spond to deterministic strategies, meaning that the optimal
value can be achieved with a = a(s) a deterministic function
of s and b = b(a,t) a deterministic function of a,r. This
is essentially the same reason why deterministic strategies
are optimal for nonlocal games [1] or for communication
complexity problems with random questions [23]. Notation-
ally, we will designate all quantities related to this class of
strategies with subscript or superscript C.

We now consider the case in which Alice and Bob are
still limited to a single bit of classical communication, but
are allowed measurements to a shared, bipartite quantum
state p of arbitrary dimension. In this way, Alice can convey
additional information about her private question s through
quantum entanglement. As portrayed in Fig. 1(a), Alice’s and
Bob’s actions are informed by their measurements A, and
]AS,,,I, respectively, on their portion of p. As implied by the
subscripts, Alice’s measurement can be chosen based on her
private information s, whereas Bob’s measurement, which can
be made after Alice’s action, can depend on both his private
information ¢ and Alice’s action a.

As previously mentioned, according to Ref. [10], this
physical scenario can be equivalently framed using hyperbits.
Within the hyperbit model, Alice can prepare a hyperbit
represented by a vector ¥; € R?, which Bob can subsequently
measure according to a vector 3, € R?. Note that the dimen-
sionality d does not have a limit (as the amount of shared
entanglement is arbitrary); however, as will be seen in Sec. IV,

012425-4



QUANTUM BLACKIJACK: ADVANTAGES OFFERED BY ...

PHYSICAL REVIEW A 102, 012425 (2020)

we are able to bound the d required to find an optimal solution,
thereby limiting the amount of shared entanglement necessary
while also providing computational benefits. The expected
value of Bob’s hyperbit measurement is determined by the
quantity X, - ;. However, Bob can choose, according to ¢, to
perform some postprocessing of the output of the hyperbit
protocol. As explained in Ref. [10], this postprocessing can
be assumed to take a standard form, in which Bob uses the
hyperbit protocol with some probability and otherwise outputs
a deterministic answer based on his own inputs. This amounts
to adding an offset y, to a scaled version of X - y,. Note the
scaling need not be made explicit, as it can be absorbed into
the choice of ;.

The mathematical description of this set of strategies can
thus be given as

Sg¢ = vi + X5 - Vi (10)

To fully categorize these strategies, restrictions need to be
placed on the parameters. The overall restriction that must be
satisfied is that |S;| < 1 for all s and ¢, and all valid choices
of parameters.

Suppose the space of Alice’s strategy is restricted such that
IXs]] < c for all s, for some fixed value ¢ > 0. We then note
that

1Sot| = 1y + X5 - Jel < vel + 1% - Yol < yel + eyl (1)

The above inequalities are tight; it is thus necessary for Bob’s
strategy to be restricted by

[yl +cllyell < 1. (12)

It turns out that it is most convenient to follow the conven-
tion used in Ref. [10], and choose ¢ = 1; this allows for the
hyperbit vectors to be directly interpretable as +1-outcome
measurement operators.

In summary, the sole restrictions that need to be followed
are that

1% <1 (13)
for all s, and

vl + 1Vl < 1 (14)

for all 7.

As with the classically restricted case, the problem can
now be rephrased as an optimization problem. In particular,
the strategy matrix given by the form in Eq. (10) allows the
objective function to be written as

I8) =) Culyi + % - 0). (15)

s,t

As was the case with the classical communication only analy-
sis above, we can determine that the aforementioned inequal-
ity constraints are saturated to be equalities in the optimal
solution.

First, suppose Bob’s actions are fixed. Regrouping the
objective function, we find that

IS) = Z(Zcﬂn + X - ZC@). (16)

It is thus optimal to choose

7?? = <Z CYZ?I)/‘ Zc.vz)_}t
t t

i.e., choose X; to be as long as possible and in the direction of
>, Cq¥:. The general condition is thus that ||X,|| = 1. Essen-
tially, Alice should “send as much information as possible,”
which is done by sending a unit vector.

Next, suppose Alice’s actions are fixed. Again, regrouping
the objective function gives

I8) = Z(m D Cut3i- ZCx> (18)

Before applying any restrictions, we consider independently
optimizing each of the two terms in the parentheses. Recall
that the y’s and y’s are only mutually constrained by their
magnitudes. In particular, we choose the sign of the y’s and
the direction of the y’s independently. For the left term, note
that we take

, a7

sen v, =sen (D) (19)

while, for the right term, we take y, to be in the direction of

> Cuk,. (20)
In this way, the objective function becomes
Z(m > Gy D Cuk, ) 1)
1 s s

There are then two cases to consider. If |} Cy| >

+ 1Vl

1", CyX;ll, then Bob should choose |y;| =1 (so that |3 || =

0); otherwise, Bob should choose ||j;]| = 1 (so that |y;| = 0).
Thus, taking note of all these properties, we can conclude
that for each (s, t) we have either

Sy = (22)
or
Sy =% Y. (23)

This result can be interpreted as follows. For particular values
of ¢, Bob can choose to ignore all communication and default
to a deterministic option; this corresponds to Eq. (22). In
the other case, given in Eq. (23), both Alice and Bob will
act according to a hyperbit model. For completeness, we
can then use the hyperbit equivalence to derive a set of
measurements for Alice and Bob that concretely specifies an
optimal strategy back in the original physical description. As
given by results from Tsirelson [11], there exist a bipartite
state p and measurement operators AS and l§, for Alice and
Bob,” respectively, such that

X -5 = Tr(A, ® B,p) = (AB). 24)

“Note that while in general Bob’s measurement can depend on a it
turns out not to be necessary in this specific construction, since an
arbitrary amount of shared entanglement is allowed. Therefore, here
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If Alice sends Bob her measurement result A, Bob can take
his measurement result B and respond with his answer as b =
AB. This, by construction, has the expected value given by
Eq. (24).

Our approach to calculating the optimal strategy matrix
S* will be to employ numerical strategies. The discussion in
this section greatly simplifies the problem and limits the cases
that need to be considered, making the optimization feasible.
Notationally, we will designate all quantities related to this
class of strategies with subscript or superscript Q.

IV. COMPUTING OPTIMAL QUANTUM STRATEGIES

To compute quantum strategies using the hyperbit model, it
is most straightforward to enumerate certain discrete choices,
and take the optimal result from considering the subcases.
First, we fix Bob’s default moves. Since y; is optimally
either zero or sgn (3, Cy,) [from Eq. (19)], we can explicitly
enumerate the finitely many vectors y of default strategies
to consider. Next, for every one of these y vectors, we can
perform the following procedure.

Numerically, for a fixed set of game parameters C, and
default Bob strategies 3, we attempt to compute the optimal
strategy matrix S. Recall then that, whenever y; = 0, then
optimally ||y, || = 1, and, whenever |y;| = 1, then ||¥,|| = 0 is
required. The objective function to maximize becomes

I8)= > D Cul+ Y > Cuki-5. (29

t
7 #0 =0

Only the second set of double summations needs to be
maximized. This can be done via a semidefinite program as
follows. Let C’ be some columns of C, such that column ¢ of
C is included if and only if y, = 0. Let X contain as columns
all the vectors X;, and let Y contain as columns all the nonzero
vectors y;. Let Z = (X Y) then be the concatenation of X
and Y. Now, consider the matrix given by G = Z'Z. As a
block schematic, it can be written as

o ) (26)
Vi Yj

XX | X7y XX

G = T T = = =
Y'X Y'Y Yi+ Xj

where the dot products indicate the elements at row i and
column j within the block in which they reside. Note that,
by definition, this is a Gramian matrix and thus is positive
semidefinite. Therefore, our optimization problem can be

written as a semidefinite program, and the matrix G can be
solved for numerically. The primal problem can be written as

maxémize (D, G)
subject to  diag(G) = e, (27)
G>0

and in Appendix B, we drop the a subscript from Bob’s measurement
operators when deriving a concrete, physical-model strategy.

where
170 (04
D= 3 <C/T 0 ) (28)

ande=(1 1 l)T. Efficient numerical methods to
solve semidefinite programs are known [24], along with pop-
ular computational tools and interfaces like PICOS [25], our
tool of choice.

With this known, the calculated values in G can be substi-
tuted into Eq. (25). By solving the corresponding semidefinite
program for every possible vector of values y, the optimal
strategy that maximizes Eq. (25) can be established.

Once the optimal G is found, the optimal hyperbit vectors
X; and y; can be determined. First, suppose that the X; vectors
are indexed by s € {1,2, ..., m} and the nonzero y, vectors
are indexed by 7 € {1, 2, ..., n}. G will then have dimensions
(m + n) x (m + n). Next, note that G can be factorized via
the Cholesky decomposition to give

G=U"U 29)

for some upper triangular matrix U. While we could naively
take the first m columns of U to be the X’s and the rest to
be ’s, there is a strategy that can be used to reduce the
dimensionality of these (m + n)-component vectors. This is
due to two facts. First is that the lower n components in each
of the first m columns of U is zero. Second is the fact that,
from our discussion in Sec. III, for y; = 0, a fixed choice for
the X; vectors uniquely determines the optimal set of y; vectors
(and vice versa).

Suppose m < n. Recall from Sec. III that if the X, vectors
are optimally fixed and y; = O for all ¢ then we can choose

)_;I = (Z Cst£s>/‘ cht)_és

Rather than Cholesky factorizing the entire Gramian matrix
G, then, it suffices to Cholesky factorize only the X” X block
of G [recall the block form in Eq. (26)]. The columns of
the resulting triangular matrix, then, are only m-component
vectors, which can be taken directly to be X;. Equation (30)
can be used to calculate ;.

If instead we had n < m, a similar procedure can be
performed. However, first the y; vectors are determined by
Cholesky factorizing the Y'Y block, to get n-component
vectors. Then, X; can be determined using Eq. (17).

This procedure thus reduces the dimension of the vectors
from m + n to

. (30)

d = min(m, n). (€2))

As seen in Appendix B, this allows for the size of the shared
state to be reduced as well.

It should be pointed out that in arbitrary quantum strate-
gies, which may be nonoptimal, the dimensionality of the
vectors can only be generally reduced to min(m, n) + 2 [11].
Our analysis of the optimal quantum strategies, however,
allows us to use the fact that the y, vectors can be written as
a sum of the X, vectors, and vice versa, to further reduce the
dimensionality.

Finally, we will make mention that these calculated vectors
can be converted into the equivalent measurements operators
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that Alice and Bob could make on a shared entangled state,
which in turn can be simplified into simple single- and two-
qubit gates. We explore this further in Appendix B.

V. QUANTUM ADVANTAGE FOR LIMITED
COMMUNICATION GAMES

In this section, we consider games of varying dimension-
ality, i.e., the dimensions of the coefficient matrix C. We
will look specifically at low-dimensional games, which can
be treated in an exact, analytical manner. We then generalize
principles to larger games.

Let the dimensionality of C be M x N. The interpretation
of this is that Alice’s private information, s, takes on one of M
distinct values, and Bob’s private information, #, takes on one
of N.

A. Trivially small or simple games

When M or N are small, or the structure of C is especially
simple, the classical strategies may be sufficient to satisfy the
maximal possible payout, i.e., the payout in the unlimited
information case. It is then of no use to consider quantum
strategies, since they cannot possibly perform better.

We know, by virtue of the restrictions on communication,
that It < I < I;. Consequently, if Iz = Ijj, then quantum
strategies can afford no advantage over classical strategies. In
particular, note that the optimal classical strategy essentially
amounts to Bob having two possible deterministic strategies,
selected by Alice’s communicated bit a. This corresponds to
a strategy matrix S with at most two distinct rows, filled with
entries equal to =1. The rows for which p; = 1 are given by
the a, values, and the rows for which p; = 0 correspond to
the ov_; , values.

Let sgn C be the matrix with each element replaced with
its sign; we will refer to this matrix as the sign matrix.
Recall from Eq. (7) that the best possible strategy, with no
communication restrictions, is given by the sign matrix itself.
Thus, if the sign matrix has two or fewer distinct rows, the
condition I = Ij; will be achieved.

In terms of the dimensions of C, then, quantum advantage
can only arise when M > 2 and N > 1. The former condition
is because for there to be more than two distinct rows there
must obviously be more than two total rows; the latter is due
to the fact that there can be 2" possible row patterns.

B. Reduction and transformation of games

The analysis of a given game can be reduced and trans-
formed into others, reducing the space of possible games
that must be analyzed. In particular, the sign matrix again
affords utility in determining valid and useful reductions or
transformations.

In this context, reduction refers to the reduction of di-
mensionality, in particular the number of relevant columns. If
column ¢ of C is all the same sign, it can be altogether ignored
in the analysis. This is because o4, and y; can all be taken to
be that sign value, independently of the other parameters. This
allows both the classical and quantum strategies to optimize
over that specific column in a trivial manner, and match the
optimal unrestricted communication strategy.

Thus, when considering games with particular sign matri-
ces, only those with sign matrices containing inhomogeneous
columns need to be considered.

Another strategy that can be employed is transformations
of games, which is especially useful in converting games
with a particular sign matrix into another. Two trivial trans-
formations are permuting the rows and columns of C; the
problem can be solved for the permuted matrix, and then the
optimal strategy for the original matrix can be determined by
(un)permuting the solved S matrix. In terms of the problem
statement, this simply refers to a relabeling of the private
information.

One less trivial operation is the negation (i.e., sign flip) of
an entire column of C. The corresponding strategy matrix can
be found by negating all of Bob’s parameters (i.e., o, y, and
y) for that column. This corresponds to Bob remapping his
response for a given choice of private information (e.g., Bob
flips his hyperbit measurement outcome).

C. 3 x 2 dimensional games

The smallest possible nontrivial game one can consider is
one where (M, N) = (3, 2). Using the transformation strate-
gies outlined in Sec. V B, it suffices to only consider games

with the sign matrix
1 1

sgnC=] 1 —1 (32)
-1 -1

as all others can be transformed to this one.

Before considering quantum = strategies, we first
characterize the optimal classical strategies. All possible
classical strategies can be enumerated, and it can be
confirmed that at least one of five possible strategies
must be optimal. These five strategies match the
optimal unrestricted communication strategy in all
entries except for (1) Si2, (2) S21,(3) S2,(4) S3;, and
(5) both S;; and S3;. These strategies then give Ic(S)
that is less than I} by an amount 2§, for § equal to
(1) |C12l, 2) 1Catl, (3) |Ca2l, (4) |Ca1l, and (5) [Cri| + |C3al,
respectively. The optimal classical strategy is determined by
which of these values is the smallest; if the number is §*, then
the classical strategy game value is given by I = Ij; — 25*.

With a sense of the classical strategies, we shift our atten-
tion to quantum strategies. To start, we will only explore the
quantum strategies for which y, = 0 for all 7; if this were not
the case, then there would be a classical strategy that could
perform just as well. (To see this, note that @y;, = y;, can be
chosen for the columns in which y; # 0. Since there is at most
one column left, that column can be specified in the classical
strategy to match the quantum strategy).

Next, suppose the optimal strategy for Bob is given by the
unit vectors ¥; and y,. Recall then the optimal strategy for
Alice is determined in Eq. (17) such that the objective function
becomes

18) = Y ICa31 + Coal

= Z \/Cv21 +Ch +2CaCad - 2. (33)
s
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We see then that Bob’s strategy is rotationally invariant, i.e.,
only the value cos 6 = ¥, - ¥, affects the objective function. It
suffices, then, to characterize the angle 6 € [0, ], or the value
z=cosH € [—1,1].

This problem is now an optimization problem, seeking to
maximize

f(Z) = \/Clzl + C122 + 2C|1C122 + \/C221 + C222 + ZCQICQQZ

+ C321 + C%z + 2C31C32Z. (34)

The concavity of this function with respect to z means that the
optimal solution occurs at z = z*, according to the following
cases.

(D) If f'(—=1) <0, then f'(z) <0 Vze[-1,1]=>z"=
—1.

Q) If f'(1) > 0,then f'(z) >0 Vze [-1,1] = z" = 1.

(3) Otherwise, z* € (—1, 1) such that f'(z*) = 0.

Note that in the first two cases the objective function value
is given by

f(=1) =|Ci1 = Ci2] + |Co1 — C2| + |C31 — C3o| (35)
= |C11 — Cia| + |Gy + [Coz| +1C31 — C32|  (36)
and

(1) = |Ci1 + Cra| + |Co1 + Caa| + |C31 + Caa 37
= |Cy1| + |Cr2| +|Co1 + Co2| + 1C1| + |Cx2|,  (38)

respectively. Note the simplifications come from the sign
matrix we are considering [Eq. (32)].

If the classical strategies (labeled previously as) 2 and 3 are
optimal, then z = 1 gives a quantum strategy with the same
objective function value. When classical strategy 5 is optimal,
then z = —1 gives a quantum strategy with the same objective
function value. Thus, if any of these three classical strategies
are optimal, but z* is found to be in the range (—1, 1), there
will exist a quantum advantage.

Note one final analytical feature that is only true in this
small case is that the equation f'(z*) =0 can actually be
solved analytically. The exact form is omitted here, but the
equation can be written in terms of a quartic polynomial in z*,
for which there happens to be a closed-form formula for the
roots.

D. Larger games

For larger games, the analysis can proceed in a similar
vein as in Sec. V C; however, the mathematical elegance and
existence of closed-form solutions may drop off to the point
that numerical methods would be preferred or required. For
M x 2 games, with M > 3, Eq. (33) can still be used. The
analysis which found quantum advantages in certain regimes
that correspond to certain optimal classical strategies can also
be repeated.

For M x N games, with N > 2, the analysis is less ex-
tensible. With more y vectors to consider, we can no longer
independently parametrize each inner product. At that point,
the restrictions essentially become those of a semidefinite
program, which again suggests the use of numerical methods
instead.

E. Visualization of game values and advantages

To aid in understanding the conditions under which ad-
vantages can arise, a visual plot would be beneficial. The
challenge with plots, however, is that each game is specified
by many parameters, in the form of the full C matrix. Even
the simplest, nontrivial game we considered has 3 x 2 =6
degrees of freedom.

Nevertheless, interesting one-parameter slices over the
space of possible games can be considered through a
parametrization:

C=A+Br. (39)

Here, A and B are fixed matrices of the same dimension
as C, and ¢ is a numerical parameter to be varied. Sweeps
over a range of ¢ can traverse various regimes in which the
unlimited, classical, and hyperbit communication cases may
categorically vary.

For concreteness, we consider a specific family of games,
given by

A=|10 =2, (40)

B=|0 -1]. A1)

Note the parametrization has been selected carefully, with
several properties. First, the sign matrix of A is the same as
that considered in Eq. (32). Second, the entry with smallest
absolute value in A is A, which means the smallest absolute
value entry for C is Cjp when ¢ = 0. As ¢ increases, both
C)» and Cy;, increase in absolute value; however, the former
increases faster, meaning the latter will at some point be the
smallest in absolute value. As ¢ increases even more, however,
the other four values with absolute value 10 will become the
smallest; for our purposes, it is useful to note that Cy; is one
of these values. The sparsity of B was also intentional, to
simplify analysis to considering only a sweep varying two
parameters of C.

The corresponding sweep for ¢t € [—10, 40] is given in
Fig. 2. It is given with several vertical partitions and labeled
regions, the significance of which we will describe.

First, remark that the locations of the vertical lines demar-
cating the regions are at

= -2, (42)
t, = —0.5, (43)
=1, (44)

97 + 1
ty = ‘/_T+ ~2.7122, (45)
ts =8, (46)

3./601 + 65

te = TJr ~ 34.6365. (47)
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FIG. 2. A sweep of the game value for the various strategies
considered, with the game parametrized by C = A + Bt. Note that
seven regions are labeled for categorically different regimes; see the
main text for details.

Their significance is as follows. As ¢ decreases from zero,
the sign matrix of C undergoes two transitions, at #; and
t;, when the signs of Cy and Cy, flip, respectively. As ¢
increases from zero, |Cj| eventually overtakes |Cyy|; this
occurs atf = t3, when both absolute values are 3. For #4 and 7,
recall the definition of f(z) given in Eq. (34) and the optimal
solution z* conditions described in Sec. V C. As ¢ continues
to increase, there comes a point when f’(1) < 0; this occurs
for t € (t4,1¢). For all t > t,, we have f'(—1) > 0. These
two conditions amount to the fact that the hyperbit value is
maximized for z* € (—1, 1) when ¢ € (14, tc). Lastly s is the
point when |Cy;| = 10; for larger ¢ values, it can be considered
that C,; is (tied for) the smallest absolute value.

With this understanding, we can now consider the various
labeled regimes, and when advantages appear and disappear.

It is most convenient to start with region III. In this region,
we have Ic = Iy < Iy. The lack of hyperbit advantage is
because f'(1) > O in this region. The presence of the unre-
stricted communication advantage is due to the nature of the
sign matrix of C.

Next, consider region IV. The analysis for region III still
holds; the only difference is that there is a categorical shift in
the optimal classical strategy, due to C,, replacing Ci, as the
smallest absolute value element.

In region V, the presence of a hyperbit advantage appears.
This is due both to the fact that now f'(1) <0 = z* ¢
(—1, 1) and also to the fact that C», is the smallest absolute
value element.

In region VI, the classical strategy again shifts as Cy is
replaced as the smallest absolute value element. Because C;;
is (tied for) the smallest absolute value element, and still z* €
(—1, 1), the hyperbit advantage still exists.

Then, at last in region VII, the hyperbit advantage disap-
pears due to f’(1) again exceeding zero.

For the regions less than #,, consider how the changes to the
sign matrix of C affect the game strategies and game values.
In region II, the sign matrix becomes

sgnC=1]1 —-1]. 48)

But now that there are only two distinct rows, the optimal clas-

sical strategy matches the optimal unlimited communication

strategy. Thus, all advantages disappear and Ic = Iy = Ij.
Finally, in region I, the sign matrix changes to

1 -1
sgnC=1 1 1 ]. 49)
-1 -1

The first two rows can be swapped (as a valid transformation
mentioned in Sec. V B) to restore the sign matrix at ¢ = 0, and
the same analysis for region III holds.

The important, high level takeaway is that a one-parameter
sweep, as we have plotted here, can quickly show the various
regimes one must consider when analyzing games. In some
regimes (I, I1I, IV, VII), there is no hyperbit advantage, despite
a difference in classical and unlimited communication game
values. In other regimes (II), there is no advantage between
any of the three. And, lastly, in some regimes (V, VI) there are
advantages between all three; this is the regime of guaranteed
quantum advantage. Additionally, the changes in the sign ma-
trix and transitions to different smallest element are apparent
from the sweep as well.

VI. BLACKJACK-SPECIFIC RESULTS

Our games are parametrized based on Bob’s initial face-up
card, as well as the cards left in the shoe after only face-up
cards have been dealt. This fully specifies the probability
distribution of the face-down cards s and ¢ to be dealt to Alice
and Bob, as well as the probability distribution of the first
cards Bob would be dealt if his action was “hit.”

In cases when the shoe is large, e.g., when a full 52-card
deck is left to be dealt, no quantum advantage was found.
This does not necessarily rule out advantage, as our search
was not exhaustive. Nevertheless, our analyses have shown
a negative result thus far. This makes sense: when there are
many cards left in the shoe, the amount of private information
Alice has is minimal. That is to say, Alice’s face-down card
does not significantly affect the probability distribution of the
shoe, and therefore will not affect Bob’s strategy. In the limit
when infinitely many cards are in the deck, Alice’s face-down
card has no affect at all on Bob’s potential strategy. Thus, it
is more likely to find quantum advantages in configurations
which have only a few cards left in the shoe. The face-down
card that Alice receives then has a much greater impact on
Bob’s prospective outcomes and strategy.

Indeed, when the shoe is reduced to just a few cards,
advantages do arise. We exhaustively enumerated cases in
which, after only the face-up cards were dealt, the remaining
shoe had between three and eight cards left. There were
definitively no advantages found for the case of three cards,
but advantages were found and enumerated for the cases of
four- to eight-card shoes.

In our search for quantum advantages in small shoe games,
a couple of general trends arose. Advantageous configurations
tend to have aces left over in the shoe, as they are the lowest
risk, highest reward card (they can serve as the highest value
of 11, while defaulting to the lowest value of 1 to avoid
busting). Furthermore, Bob often starts with a high face-up
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FIG. 3. The expected advantage amount plotted as a function of
the shoe size. Note that the expected advantage seems to fall off and
then plateau for larger deck sizes.

card, leading to scenarios where Bob must weigh the risk of
busting. In these cases, Alice’s private information would be
of great help to Bob, as it would help him weigh the risk and
reward of hitting.

Finally, we also see that advantages tend to be larger and
more frequent when fewer cards are left in the deck. This
can be seen from Fig. 3, which plots the expected advantage
amount across shoe sizes 4 through 8. Note when we take
expectations over shoes of size k (for k =4,5,6,7,8) we
sample the k cards from an infinite number of full 52-card
decks. Text files containing all advantageous configurations
for these shoe sizes can be found on our Github repository,
which is provided in Appendix C.

VII. CONCLUSIONS

We have provided a broad analysis framework to search for
quantum advantages in communication-limited games, using
the hyperbit model as our major theoretical tool and semidef-
inite programming as our major computational tool. This
framework was concretely applied to the game of blackjack,
and was able to successfully find quantum advantages in cer-
tain, small-shoe configurations. Because of the generality of
our framework, a future direction would be to apply it to other
games. Any cooperative, multiplayer game in which private
information can be conveyed in a classical communication-
limited way can be analyzed using our results. Another direc-
tion to continue is to search for more general, yet still compu-
tationally tractable, quantum strategies. In this paper, we made
assumptions and simplifications to both the rules of blackjack
and the play of Alice and Bob following the first round of
play. This allowed us to make use of the hyperbit equivalence
to make computation and analysis tractable. Relaxing these
restrictions and allowing quantum strategies beyond the use
of hyperbits could yield more interesting results for quantum
advantage within blackjack (or related) games. Finally, we
hope to see experimental data using our hyperbits algorithm,
applied on a small system. As explored in Appendix B, each
player’s strategy can be made so that multiqubit operations
only act on consecutive qubits, making the resulting circuit
ready for noisy intermediate-scale quantum devices with lim-
ited qubit connectivity. While such an experiment would sacri-
fice the long-range entanglements of, for example, a quantum

optics experiment, we nevertheless hope these results provide
an avenue for experimental followups in the near term.
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APPENDIX A: GENERAL BLACKJACK RULES

As mentioned in Ref. [26], most casinos play blackjack
with the same, high level rules, but differ in the specifics.
The authors of that paper set out a standardized ruleset, from
which we deviate slightly for clarity and ease of analysis.
The particular set of rules and conditions we have chosen is
described as follows.

Blackjack is played with a set of standard playing cards,
with each card being either an ace, a number 2 through 10
inclusive, or a face card (jack, queen, or king). All cards begin
face down and unused; this set of unused cards is referred to
as the shoe.

Among the actors in this game is a single dealer and some
number of players. For our purposes, we will consider just two
players, who are named Alice and Bob.

The game begins with the deal. Cards are dealt sequen-
tially, without replacement, from the top of the shoe to an actor
either face up, for all actors to see, or face down, private to the
individual actor. The dealer receives a card face up from the
shoe, while each player receives two cards, one face up and
one face down.

At any point, the players and dealer have a particular hand
value equal to the sum of the values of the cards in their hand.
Each numbered card, from 2 to 10, is worth its numerical
value. Each face card (i.e., jack, queen, or king) is worth
ten points. Lastly, an ace can be worth either 1 or 11 points,
depending on the situation.

(1) If the ace can be chosen as 11 points without the
player’s hand value exceeding 21, then it is chosen to be so.

(2) Otherwise, the ace is chosen to be worth one point.

The former kinds of hands are known as soft hands. The
latter kinds of hands, and hands which do not contain any aces,
are known as hard hands.

For each player, the goal of the game is to have a hand
value greater than that of the dealer, without exceeding 21. If,
at any point, a card holder’s hand value exceeds a hard 21 (in
particular, the value cannot be made lower by converting any
ace values from 11 to 1), the individual automatically loses.
Note that the players only compete with the dealer, and not
each other.

Before beginning play, both Alice and Bob make bets. If
a player wins the round, the player’s payoff equals that of
their bet (i.e., they get their bet back, and an additional amount
equaling their bet). If they lose the round, their payoff equals
the negative of their bet (i.e., they lose their bet). Finally, in
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the case of a tie, the player simply receives their bet back and
their payoff is zero.

Following the bets, play begins with Alice. She has one
of two choices: hit or stand. In the former action, Alice will
receive another card, face down, from the top of the shoe;
in the latter, Alice will voluntarily end her turn. Alice can
choose to hit as many times as she wishes, unless she busts;
this happens when her hand value exceeds a hard 21, at which
point she automatically loses and is forced to end her turn.
Play then proceeds with Bob, who has the same rules as Alice.

If at least one player stands before busting, the round
completes with the dealer. The dealer always plays a fixed
strategy, depending on if they have a hard or soft hand. The
dealer will hit until their hand value reaches or exceeds a hard
17 or a soft 18, at which point they stand.’

The player (1) wins if their hand value exceeds that of the
dealer, or the dealer busts; (2) ties if their hand value equals
that of the dealer; and (3) loses if their hand value is less than
that of the dealer, or if the player busted. Note that, even if the
dealer busts, a player that busted first still loses.

While these rules and conditions are consistent with the
overall nature of any typical game of blackjack, it should be
noted that the rules chosen have been simplified for the sake
of clarity and tractability of analysis (for example, advanced
actions like doubling down and splitting are not considered).
We do not claim these exact rules necessarily match any
standard ruleset or ruleset played in a casino. Nevertheless,
the most important rules that typically identify the game as a
blackjack game are present in our simplified ruleset.

APPENDIX B: IMPLEMENTING THE HYPERBITS
ALGORITHM ON QUANTUM HARDWARE

Here, we consider how the results of the theoretical and
computational analyses in the main text can be used in an
experimental setting. In particular, we consider how to derive
the exact quantum operations (gates) and measurements con-
sistent with the theoretical quantum strategies. We achieve this
goal in several steps, with each step transitioning to a lower
level of abstraction from the previous.

1. Deriving state and measurements from hyperbit vectors

After determining the optimal hyperbit vectors (Sec. IV)
%, ¥ € RY, we must specify the actual state and unitary
measurements that are made. Following the Tsirelson char-
acterization of two-player XOR games [12], let

L= d B1
= 5] ®1)

where L represents the number of qubits each player receives;
the dimension of the shared state is therefore 22-. Then, let
o = |W) (¥, for the maximally entangled state

21

1
) =25 ZO li)]i). (B2)

3Note that this is a rule that most commonly differs from casino to
casino. For concreteness, this is the convention we adhere to.

Note that each state |i) is a L-qubit register.
Next, for 1 < i < L, we define the operators

i—1

T =X[]2 (B3)
j=1
i—1

T =Y [ ]2 (B4)
j=1

such that X;, Y, and Z; indicate the action of the X, Y,
and Z Pauli matrices, respectively, on qubit k of a register,
and identity matrices on all other qubits. These operators are
chosen to fulfill the anticommutation relation

(T3, T} = 28,,1. (B5)

This property allows us to define our measurement operators,
in terms of these T operators, as

A, = i@am, (B6)
i:l
B, =) G)T" (B7)
i=1
such that
(WIA; @ B,|W) = %, - 3. (B8)
Additionally,
Al =|%I’T and B} = |51 (BY)

Equation (B9) implies that A; and B, can be realized by
+1-valued measurements as long as ||X|| < 1 and ||y < 1;
as discussed in Sec. III, X; and y; are unit vectors in cases
relevant to us. If Alice and Bob measure their part of the
state according to As and ﬁf, respectively, Alice sends her
measurement result to Bob, and Bob acts according to the
product of their two measurements, then his expected value
action is given by X; - ¥,, consistent with the hyperbit protocol.

2. Hyperbit measurements as single- and two-qubit gates

In the previous section, we were able to explicitly write the
unitary matrices corresponding to the measurement operators.
In this section, we present one possible implementation of
those measurements on a quantum device, using single- and
two-qubit gates.

As written, operators have dimension 2 x 2L and are
L-qubit gates. Arbitrary L-qubit operations are in general
difficult to implement; however, the particular structure of
the measurement operators suggests a decomposition to more
feasible operations, such as single- and two-qubit gates.

First, note that the form of each operator can be written as

caXi+e + a3 XoZi Yo Zy + o5 X3 20 Z e Y32 Zy + - - - .
(B10)

This is immediately obvious from the form of Ax given
in Eq. (B6); we may simply take c; = (¥;);. As a special
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computational note, it is useful to see that

T2{—1 = Di-1, (B11)

Ty = —Ty (B12)
since XT =X, YT = —Y,and ZT = Z. Given this fact, we see
that the form of B, given in Eq. (B7) can also be written in
the form of Eq. (B10) by taking czi—1 = (Js)2i—1 and cz; =
—Gs)ai-

Next, we seek to use single-qubit Z rotations on the state,
so that the measurement operator no longer contains Y Paulis.
For example, suppose a rotation of the form ¢#%/2 were
applied to the state. The measurement operator then becomes

Ye 7112

(B13)
Aside from the first two terms of the measurement string, all
other terms commute with the rotation. Thus, we can focus on
the effect on the first two terms:

eielz‘/z(chl + oY1+ e XoZ) + 3oz + - -

A2 X, + o) )e 072
= cy(cos 01 X; — sin6,Y)
+ ¢(cos 0,Y; 4 sin 6, X)
= (¢ cos 0 + ¢ sin 01)X;

+ (—cy sinf; 4+ ¢ cos 6)Y]. (B14)

To eliminate Y;, we choose
0, = arctan(cy/c1) (B15)

so that Eq. (B14) becomes
Vel +aX. (B16)
Thus, if we apply the rotations e%%/2, with 6; =

arctan(cy;/czj—1), for all 1 <
ment becomes

j <L, the resultmg measure-

X+ X Zy + X3 D7y A - -

: /o 2 2
with ;= /CZj—l +Czj~

Now, using two-qubit rotations, we seek to reduce the mea-
surement to just an X measurement on qubit 1. To motivate
this, consider the last two terms in the sum. Suppose we
applied the rotation ¢'#4:/2, where A, = —X;Y;_;. Because
this two-qubit rotation only acts on qubits L — 1 and L, only
the final two terms are affected. We can note its effect by
isolating the terms affecting those qubits:

+ levXLZLfl s Zl (B17)

VM2 (c) Xy 4 X Zyp oy )e A
=c;_(cos¢ X1 —sing X, Z; 1)
+cp(cos ¢ X1 Z; 1 + singp X 1)

= (¢ _, cos ¢ + ¢} sin )Xy

+ (=}, singy + ¢} cos ¢ )X1.Z; . (B18)

To eliminate the XyZy_; term, we choose
¢y = arctan(cy/cy_;)

_ 2 2 2 2
= arctan (\'/cz,\,,1 + CzN/\/Cszs +y_a)

(B19)

so that Eq. (B18) becomes

\/ X = \/C§L—3 + 63 o+ G g X
(B20)
two-qubit  rotations  of

Aj:Xij_l and ¢j =

L .
arctan[\/zkzj(c%k_l + cgk)/\/cg(j_l)_1 + C%(j_l)], in
descending order from j = L to 2, the resulting measurement
becomes

Thus, if we  apply
the form %42, for

L
> (S + )X, (B21)
k=1

which is a trivial single-qubit measurement. Because the
vectors X; and y; are unit vectors, the measurement is exactly
just Xj.

Note that the form of two-qubit rotations still appears
nontrivial. To explicitly show its decomposition into simpler
gates, we note that

Aj=XY;1 =UZU" (B22)

for U = S;CNOT|;_1)H;. Note here that S; is not related to
the strategy matrix, but rather is the phase gate ((1) ?) applied
to qubit j; CNOT|(;_1) is the controlled-NOT gate, with control
qubit j and target qubit j — 1; and H; is the Hadamard gate
%2({ _11), applied to qubit ;.

The rotation itself can then be written as

02 = UetZiltyT, (B23)
To summarize, the steps are as follows. '
(1) For all 1 < j < L, apply single-qubit rotation ¢?%%i/2 to
qubit j with
0; = arctan (cz;/c2j—1). (B24)

TABLEI. For the example when Bob and the dealer have face-up
cards 9 and 10, respectively, and the shoe contains [A, A, 8, 10],
the tables below specify Alice and Bob’s strategy. Note that the
measurements Alice and Bob make depend on the face-down cards
each player is dealt, and that the angles specified correspond to the
description from Sec. IV.

Face-down card Alice 6, Alice ¢, Bob 6, Bob ¢,
A 0 0 —2.90 1.11x10*
8 2.99 0 2.45 3.95x10*
10 —1.35 6.04x10* -3.07 0

012425-12
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FIG. 4. Quantum circuit for the optimal quantum strategy when Bob and the dealer have face-up cards 9 and 10, respectively, and the shoe
contains cards [A, A, 8, 10]. The 6 and ¢ rotation angles for both Alice and Bob are specified in Table I and depend on which face-down card
each player is dealt. It is important to note that Alice and Bob’s measurements, which are conventionally O or 1, must be converted to —1 or
+1, and that Bob’s action is based on the product of the two measurements.

(2) In descending order from j = L to 2, apply two-qubit
rotation ¢®/4i/2 to qubits j — 1 and j with

Aj = Xij_],

\/Zi:j (C%k—l + C%k)

2 2
\/Czu—n—l T -1

(B25)

¢; = arctan (B26)

Use the decomposition given in Eq. (B23) to further simplify
gates.

(3) Measure the X; expectation value of the rotated state.

Through these steps, we have provided a method for de-
composing each player’s measurement into a series of elemen-
tary single-qubit gates and CNOT’S. It should be noted that this
is not the only gate decomposition for these measurements,
nor should it be considered the optimal or most efficient one.
Such considerations will depend on the specifics of the device
or qubits used and the gateset available. The advantage of the
decomposition given here is that they are in terms of simple,
single-, and two-qubit gates. Furthermore, the two-qubit gates
are only applied between adjacently labeled qubits, allowing
for this specific gate decomposition to be applied on linear or
ring architectures with nearest-neighbor connectivity.

3. A concrete example

Many concrete cases correspond to 3 x 3 dimensional
games. Such an example is given as follows. Note first that
Alice’s face-up card can be anything, as it does not affect
any players’ strategy. We consider a configuration where Bob
and the dealer are dealt a 9 and 10 face up, respectively, and
the remaining shoe contains two aces, an 8§, and a 10. The
advantage amount, calculated from the difference between
objective values I(S), is 0.0087.

Using the algorithm specified in Sec. IV, we note that
the strategy involves each player getting two qubits. We can
then specify Alice and Bob’s strategy in terms of the rotation
angles 61, 6, and ¢, for both players, depending on their
face-down card. Note that 6, = 0 in all cases for both players,
since we only have a 3 x 3 game. The calculated values for 6,
and ¢, are given in Table I, and the corresponding circuit is
presented in Fig. 4.

APPENDIX C: SOFTWARE TOOLS

The code that was used in the computational analysis
of this paper can be found at the GitHub repository [27].
The files contain scripts for computing and comparing the
optimal strategies for arbitrary games in all three studied com-
munication regimes, as well as scripts specific to blackjack
calculations.
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