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Quantum low-density generator matrix (QLDGM) codes based on Calderbank-Steane-Shor (CSS) con-
structions have shown unprecedented error correction capabilities, displaying much improved performance in
comparison to other sparse-graph codes. However, the nature of CSS designs and the manner in which they must
be decoded limit the performance that is attainable with codes that are based on this construction. This motivates
the search for quantum code design strategies capable of avoiding the drawbacks associated with CSS codes. In
this article, we introduce non-CSS quantum code constructions based on classical LDGM codes. The proposed
codes are derived from CSS QLDGM designs by performing specific row operations on their quantum parity
check matrices to modify the associated decoding graphs. The application of this method results in performance
improvements in comparison to CSS QLDGM codes, while also allowing for greater flexibility in the design
process. The proposed non-CSS QLDGM scheme outperforms the best quantum low-density parity check codes
that have appeared in the literature.
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I. INTRODUCTION

In the realm of classical communications, turbo codes [1]
and low-density parity check (LDPC) codes [2–4] are known
to exhibit capacity-approaching performance at a reasonable
decoding computational complexity. Turbo codes offer great
flexibility in terms of their block length and rate. The first
quantum codes based on turbo codes appeared in [5,6], and
have since been modified and improved [7–11]. Aside from
their block length and rate flexibility being on par with that
of turbo codes, the sparse nature of LDPC codes guarantees
that their quantum equivalents will require small numbers
of quantum interactions per qubit during the error correc-
tion procedure [12], avoiding additional quantum gate errors
and facilitating fault-tolerant decoding. These traits make
quantum LDPC (QLDPC) codes especially well suited for
quantum error correction.

Out of the existing types of LDPC codes, low-density
generator matrix (LDGM) codes [13] provide a seamless
manner for code design in the quantum domain. LDGM codes
are a specific subset of LDPC codes whose generator matrices
are also sparse, and thus their encoding complexity is similar
to that of turbo codes, and much smaller than for standard
LDPC codes. Given that LDGM codes form a special subclass
of the LDPC code family, they can be decoded in the same
manner and with the same complexity as any other LDPC
code. LDGM codes have been extensively studied [3,13–15]
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and used in classical communications [16,17]. In [3], regular
LDGM codes, which are a specific type of LDGM code
whose parity check matrices have the same number of nonzero
entries per row and the same number of nonzero entries per
column, were shown to be asymptotically bad, displaying
error floors that do not decrease with the block length. In
[14,15], a concatenated LDGM scheme was shown to achieve
performance similar to irregular LDPC codes at a very low
encoding and decoding complexity.

Quantum LDPC codes are built by casting classical LDPC
codes in the framework of stabilizer codes [18], which enables
the design of quantum codes from any arbitrary classical
binary and quaternary codes. In [19], the authors docu-
ment the design of QLDPC codes based on their classical
counterparts, detailing numerous construction and decoding
techniques along with their flaws and merits. Among the
discussed methods, the construction of QLDPC codes based
on LDGM codes is shown to yield performance and code
construction improvements, albeit at an increase in decoding
complexity. This method was originally proposed in [20,21],
where Calderbank-Steane-Shor (CSS) quantum codes based
on regular LDGM classical codes were shown to surpass the
best quantum coding schemes of the time, and performance
was significantly improved in [22,23] by utilizing a parallel
concatenation of two regular LDGM codes.

Quantum LDGM (QLDGM)–based quantum code imple-
mentations, as well as most QLDPC designs, are based on
CSS constructions. CSS codes, simultaneously proposed by
Calderbank, Shor, and Steane in [24,25], are a particular
subset of the family of stabilizer codes. They provide a
straightforward method to design quantum codes via exist-
ing classical codes. In general, decoding of quantum codes
based on CSS designs is performed separately for bit- and
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phase-flip errors, which negatively impacts their performance.
In fact, CSS constructions decoded separately are limited
by an unsurpassable bound, referred to as the CSS lower
bound [26]. Joint decoding of bit- and phase-flip errors using
modified CSS decoders capable of exploiting the correlation
between the aforementioned errors has been considered in the
literature [27–33], and performance improvements associated
with these modified CSS decoders have been shown in these
articles. Nonetheless, the improvements provided by these
modified CSS decoders come at the expense of an increased
decoding complexity, which, along with the performance lim-
itations of conventional CSS decoding, inspires the search for
non-CSS constructions, as they should theoretically be able
to outperform CSS codes and avoid complex decoding strate-
gies. Non-CSS LDPC-based codes were proposed in [34].
However, despite showing promise, they fail to outperform
existing CSS QLDPC codes for comparable block lengths.

In this paper, we propose a non-CSS scheme based on
LDGM codes and compare its performance to existing CSS
QLDGM codes. We explain how existing CSS QLDGM codes
can be modified to create non-CSS quantum codes, and pro-
vide insight regarding how this construction can be optimized.
We also show how the performance of the resulting non-CSS
codes is similar to that of the CSS schemes they are derived
from, despite the fact that their quantum rate is higher. When
their rate is the same, the non-CSS scheme outperforms the
original CSS design over the depolarizing channel. Finally,
we compare the non-CSS structures proposed here with other
existing QLDPC codes in the literature, illustrating that our
method surpasses such error correction schemes.

The remainder of this paper is structured as follows. We
commence with an overview of some important preliminary
topics in Sec. II. We proceed by presenting the non-CSS
LDGM-based quantum codes in Sec. III. In Sec. IV, we
compare the performance of the proposed scheme to existing
CSS quantum codes. Section V concludes the paper.

II. PRELIMINARIES

In this section, a brief review of the concepts, definitions,
and notation used in this paper is provided.

A. Basic concepts

1. Quantum information

The simplest quantum mechanical system and the basic
unit in quantum information is known as the qubit. In the state
vector formulation, it is denoted by |ψ〉 = α |0〉 + β |1〉 ∈
H2, where α, β ∈ C, |α|2 + |β|2 = 1, and H2 refers to the
complex Hilbert space of dimension 2. Another formulation
of quantum mechanics can be given in terms of the so-called
density matrices ρ, which is useful in order to describe
systems whose state is not completely known in state vector
terms.

2. The Pauli group and the effective Pauli group

The Pauli group is a mathematical group of significant
interest for stabilizer codes. Let � be the set of Pauli operators
{I, X,Y, Z}, and �⊗N = {I, X,Y, Z}⊗N denote the set of N-
fold tensor products of single-qubit Pauli operators. Then,

�⊗N together with the possible overall factors ±1,±i forms
an Abelian group known as the N-fold Pauli group GN , defined
as GN = {β1I, β2X, β3Y, β4Z}⊗N , where βk = {±1,±i}.

Now let [A] = {βA|β ∈ C, |β| = 1} be the equivalence
class of matrices equal to A up to a phase factor. Then the
set [ḠN ] = [�⊗N ] = {[I], [X ], [Y ], [Z]}⊗N forms an Abelian
group under the multiplication operation defined by [A][B] =
[AB]. This group is called the effective N-fold Pauli group.

3. Quantum channels

The effects quantum decoherence has on quantum informa-
tion are usually described by means of quantum channels, N .
A widely applied quantum channel model used to represent
the decoherence effects suffered by quantum information de-
scribed by a density matrix ρ is the generic Pauli channel NP.
The effect of the Pauli channel NP on an arbitrary quantum
state is described by

NP(ρ) = (1− px − py − pz )ρ + pxXρX +pyY ρY + pzZρZ.

A qubit then experiences a bit flip (X operator) with
probability px, a phase flip (Z operator) with probability pz,
or a combination of both (a Y operator) with probability py.

In most of the work conducted on quantum error correc-
tion, the independent depolarizing channel model is consid-
ered [5,7,34,35]. This model is a specific instance of the Pauli
channel in which the individual depolarizing probabilities are
all equal, i.e., px = pz = py, and the channel is characterized
by the depolarizing probability p. When quantum states of
N qubits are considered, the errors that take place belong to
the N-fold Pauli group GN .1 Because we are considering the
independent instance of the Pauli channel, these errors will act
independently on each qubit causing an X , Z , or Y error with
probability p/3 and leaving it unchanged with probability
(1 − p).

A simpler model for a quantum channel, known as the iid
X/Z channel, is introduced in [12], where Z and X errors are
modeled as independent events identically distributed accord-
ing to the flip probability fm. This quantum channel model
is analogous to two independent binary symmetric channels
(BSCs) with marginal bit-flip probability fm = 2p/3, where
the separate BSCs can be seen as Z and X error channels,
respectively. Given that Y errors occur when both a phase and
a bit flip happen to the same qubit, the simplified notion of the
iid X/Z channel ignores any correlation that exists between X
and Z errors in the depolarizing channel.

4. The hashing bound

The quantum capacity of a quantum channel is defined as
the highest possible asymptotically achievable rate at which
quantum information can be asymptotically transmitted in an
error-free manner. The hashing bound defines a lower bound
on the achievable quantum capacity of the depolarizing chan-
nel and is computed as Chash(p) = 1 − H2(p) − plog23, where
H2(p) is the binary entropy function and p represents the
depolarizing probability [6,36]. This means that for a given

1Given that the global phase has no observable consequence, the
instances of considered errors will be the elements of ḠN .
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value of p, the hashing bound represents a lower bound on
the highest possible coding rate at which asymptotically error-
free quantum communication is possible. Alternatively, for a
specific quantum rate RQ, where we have RQ = Chash(p∗), p∗
represents a bound on the channel’s depolarizing probability
[37]. Analogously to the classical domain, we can refer to p∗
as the noise limit.

Ideally, quantum codes that are properly designed should
ensure error-free communications close to the noise limit p∗.
We can efficiently characterize the quality of quantum codes
built for the depolarizing channel in terms of their quantum
coding rate RQ and how far away they are from the hashing
bound. The distance from the hashing bound can be computed
based on the expression

δ = 10log10

(
p∗

p

)
, (1)

where we use δ to represent the distance to the hashing bound
in decibels (dB), p∗ is the noise limit of the depolarizing
channel for a specific quantum coding rate RQ, and p is the
highest depolarizing probability at which the code in question
can operate in an error-free manner.

B. Stabilizer codes

Stabilizer codes are a class of quantum error correction
codes that can be efficiently designed based on existing clas-
sical codes. A stabilizer code C(S) is defined by a set of
operators S that generate an Abelian subgroup of the N-fold
Pauli group GN under multiplication. The code space defined
by the stabilizer group is

C(S) = {|ψ〉 ∈ H⊗N
2 : Si|ψ〉 = |ψ〉,∀i

}
,

i.e., the simultaneous +1 eigenspace defined by the elements
of the stabilizer group S.

A generator of a stabilizer code, or more generally any
Pauli operator on N qubits, can be described in terms of
its symplectic representation [38]. Using this representation,
each element of the N-fold Pauli group can be written as a
unique binary string of length 2N , which is built by joining
two separate binary strings2 of length N . Individually, each of
the length-N binary strings will represent the presence of a
Z or X operator on each of the N qubits. Considered jointly,
the strings also represent I and Y operators. More explicitly,
given an element of GN represented by the length-2N string
U = (Uz|Ux ), where Uz and Ux are length-N strings, zero
entries in the same position of both length-N strings represent
a single-qubit I operator, a nonzero entry in Uz and a zero
entry in the same position of Ux will represent a single-qubit
Z operator, a zero entry in Uz and a nonzero entry in the same
position of Ux will represent a single-qubit X operator, and
nonzero entries in the same position of both strings represent
a single-qubit Y operator. Applying this representation to the
generators Si of a stabilizer code enables the definition of the

2Note that by doing so, the global phase is lost, and so the map
is between the effective Pauli group and the binary field. Global
phase has no observable consequences, so neglecting it makes good
physical sense.

quantum parity check matrix (QPCM) for the code. The parity
check matrix (PCM) of a stabilizer code will be in the form
HQ = (Hz|Hx ), where row i of matrix HQ is the symplectic
representation of stabilizer generator Si.

1. The symplectic criterion

It was mentioned earlier that the set of generators S of a
stabilizer code forms an Abelian subgroup of GN . Therefore,
for a given set Ŝ of N-qubit Pauli operators to define a
generator of a stabilizer code, the operators Ŝi must com-
mute among themselves. This commutation constraint of the
stabilizer generators is translated into binary representation
by means of the symplectic product. Given any two N-qubit
Pauli operators described by their binary representation P1 =
(Pz1|Px1) and P2 = (Pz2|Px2), they will commute if (Pz1PT

x2 +
Pz2PT

x1) mod 2 = 0. If we now introduce the quantum parity
check matrix notation mentioned earlier, this constraint can
be reexpressed for the entire stabilizer code, as each of the
rows must fulfill it. This is shown in (2), where the � operator,
known as the symplectic product, represents the operation
itself. We will refer to this expression as the symplectic
criterion:

Hz � Hx = (
HzH

T
x + HxHT

z

)
mod 2 = 0. (2)

The symplectic criterion is of significant importance be-
cause it determines which existing classical codes can be
used to design stabilizer codes. For instance, given two
parity check matrices of any two classical codes, H1 and
H2, the parity check matrix obtained as HQ = (H1|H2) will
only define a stabilizer code if it satisfies (2). Essentially,
for two classical codes to be applicable in the construction
of a stabilizer code, their parity check matrices must fulfill
(H1HT

2 + H2HT
1 ) mod 2 = 0.

2. Quantum syndrome detection

Since the channels considered in this article (Sec. II A 3)
model decoherence by means of errors that belong to the N-
fold Pauli group, such quantum errors will either commute
or anticommute with each of the stabilizer generators Si of a
given stabilizer code C(S) [38]. An error operator E can be
described using the symplectic representation as the length-
2N binary string e. If we write e as (ez|ex ), when multiplying
e in terms of the symplectic product (mod 2) by a row of the
parity check matrix of a stabilizer code, 0 will be obtained if E
and the generator associated with that row commute, whereas
1 will be obtained if they anticommute.

As is shown in (3), multiplying this symplectic represen-
tation of the error operators by the quantum parity check
matrix of a stabilizer code will yield the quantum syndrome
s. We will later use this syndrome in the decoding process to
estimate the error pattern e:

s = HQ � e = (Hzex + Hxez ) mod 2, (3)

where e = (ez|ex ) is the symplectic representation of the error
pattern, HQ = (Hz|Hx ) is the quantum parity check matrix of
a stabilizer code, and s represents the quantum syndrome.
Physically, the calculation of the error syndrome is performed
by measuring the commutation status of the error operator
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with each generator of the stabilizer group (0 if they commute
and 1 if they do not).

C. CSS codes

Two binary classical LDPC codes can only be used to con-
struct a stabilizer code if they satisfy the symplectic criterion
(2). The first design strategy one could devise to construct
stabilizer codes would be the random selection of pairs of
classical LDPC codes. However, finding two LDPC codes
of reasonable block size that satisfy (2) is highly unlikely.
Calderbank-Shor-Steane codes [24,25], provide a more effi-
cient design strategy than random selection of classical codes.
The quantum parity check matrix of these codes is written as

HQ = (Hz|Hx ) =
(

H ′
z 0

0 H ′
x

)
, (4)

where Hz = (H ′
z

0 ) and Hx = ( 0
H ′

x
).

In this construction, H ′
z and H ′

x are the parity check ma-
trices of two classical LDPC codes C1 and C2, respectively,
where each matrix is used to correct either bit flips (H ′

z)
or phase flips (H ′

x). The classical codes are chosen so that
C⊥

2 ⊆ C1, where C⊥
2 is the dual of the classical LDPC code

C2. This design constraint, generally referred to as the CSS
condition, reduces (2) to (H ′

zH ′T
x ) mod 2 = 0.

D. Systematic classical LDGM codes

Systematic LDGM codes are useful, in both classical and
quantum environments, because of the particular structure
of their generator and parity check matrices. Let C be a
systematic LDGM code. Then, its generator matrix G̃ and its
parity check matrix H̃ can be written as

G̃ = (I P), H̃ = (PT I), (5)

where I denotes the identity matrix, and P = [plm] is a sparse
matrix.

Because LDGM codes belong to the family of linear
block codes, these matrices will satisfy (G̃H̃T ) mod 2 = 0 and
(H̃G̃T ) mod 2 = 0. Those systematic LDGM codes in which
the rows and columns of the PCM have degrees3 X and Y ,
respectively, will be denoted as (X,Y ) regular LDGM codes.
Regular LDGM codes are known to be asymptotically bad
[3], displaying error floors that do not decrease with the
block length. However, in [39], codes built via the parallel
concatenation of two regular LDGM codes4 were shown to
yield significant reduction in these error floors. The parallel
concatenation of two regular LDGM codes with generator
matrices G1 = [I P1] and G2 = [I P2], where P1 and P2

have degree distributions (y1, y1) and (y2, z2), is the irregular
LDGM code with generator matrix G = [I P1P2]. Generally,

3The degree of the columns is the number of nonzero entries per
column of the PCM. The degree of the rows is given by the number
of nonzero entries per row of the PCM. An LDGM code is said to
be regular when all the rows of its PCM have the same number of
nonzero entries, X , and so do its columns, Y .

4The parallel concatenation of regular LDGM codes is equivalent
to an LDGM code with an irregular degree distribution.

this concatenation is accomplished by using a high-rate code
G2 that is able to reduce the error floor of G1, while also
causing negligible degradation of the original convergence
threshold.

Classical LDPC decoding is performed by solving the
equation s = Hce, where s represents the received syndrome,
Hc is the PCM of the code, and e is the error pattern we
wish to recover. Given that LDGM codes are a specific
subset of LDPC codes, they are decoded in exactly the same
manner as generic LDPC codes. However, LDGM decoding
can also be interpreted as a method to solve equation c = Pu,
where c is the vector of parity bits generated at the encoder,
P is the constituent sparse matrix of the LDGM generator
matrix, and u is the information message we want to obtain.
Expressions such as s = Hce and c = Pu can be described
using bipartite graphs such as Tanner graphs [40,41] or the
more general factor graphs [42]. Based on these depictions,
the procedure of solving these equations can be understood as
the operation of a decoding algorithm over the corresponding
graph. Tanner graphs were designed as a tool to represent
families of codes that are generalizations of classical LDPC
codes. Given the PCM of an [n, k] classical linear block
code, H = [hi, j](n−k)×n, the corresponding Tanner graph can
be built using two types of interconnected nodes: each of the
n columns of the PCM is associated with a variable node and
every row out of the (n − k) rows of the PCM is associated
with a parity check node. An edge will connect parity check
node i to variable node j if and only if hi, j 
= 0.

Tanner graphs are a specific instance of a well-known
generalization of bipartite graphs called factor graphs, which,
given their generality, have been applied to many fields out-
side of communications and error correction. Factor graphs
were developed to represent algorithms that deal with com-
plicated “global” functions of many variables and that de-
rive their computational efficiency by exploiting the way in
which the global function factors into a product of simpler
“local” functions, each of which depends on a subset of the
variables. Factor graphs are bipartite graphs that portray these
algorithms by expressing which variables are arguments of
which local functions [42]. This representation also allows the
description of a generic message-passing algorithm, known
as the sum-product algorithm (SPA), which operates over
a factor graph and attempts to compute various marginal
functions associated with the global function. Algorithms
used to decode classical LDPC codes (solving s = Hce), such
as applying belief propagation (BP) [43] over the Tanner
graph defined by Hc, were shown to be specific instances
of the SPA operating over the corresponding factor graph in
[44]. Therefore, decoding of classical LDGM codes can be
understood as the application of the SPA over the factor graph
defined by equation c = Pu.

E. Quantum LDGM CSS codes

The first intuition to derive the QPCM of a QLDGM
CSS code would be to select any classical LDGM code with
parity check and generator matrices H̃ and G̃, and set H ′

z =
H̃ and H ′

x = G̃ in (4), since the property (G̃H̃T ) mod 2 = 0
and (H̃G̃T ) mod 2 = 0 would ensure the fulfillment of the
symplectic criterion. However, this results in a QPCM HQ of
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size N × 2N , which cannot be used for encoding purposes.
This is easy to see based on the following discussion.

Consider an [N, k] stabilizer code that has (N − k) stabi-
lizers and is described by means of a QPCM of size (N −
k) × 2N . Such a quantum code encodes k qubits into N qubits,
which implies that the code has a quantum rate RQ = k

N . Thus,
the quantum rate of a code with QPCM HQ of size N × 2N is
RQ = 0. Therefore, to build a valid quantum code the number
of rows in HQ must be reduced, while ensuring that the CSS
condition is fulfilled. In [20], the authors successfully reduce
the number of rows of the generator and parity check matrices
of a classical LDGM code via linear row operations while
showing that the CSS condition is kept. This is reflected in
the following theorem.

Theorem 1. Given the generator and parity check ma-
trices of a systematic LDGM code (5), define Hm1×N =
[M1]m1×n1 [H̃]n1×N and Gm2×N = [M2]m2×n2 [G̃]n2×N , where
n1 + n2 = N and M1 and M2 are low-density full-rank bi-
nary matrices whose numbers of rows satisfy m1 < n1 and
m2 < n2, respectively. Then, the quantum PCM shown in (6),
obtained by setting H ′

z = H and H ′
x = G in (4), is the quantum

PCM of an LDGM-based CSS code with rate RQ = N−m1−m2
N :

HQ = (Hz|Hx ) =
(

H 0
0 G

)
=

(
M1H̃ 0

0 M2G̃

)
. (6)

Quantum CSS LDGM codes are decoded by applying the
SPA over the factor graph defined by the QPCM in (6). The
derivation of this factor graph is performed as in [20], by
splitting the symplectic representation of the error pattern
into two parts, e = (ez|ex ), and relating it to the syndrome
via a two-step process.5 In the following, we illustrate this
derivation for ex, the part of the symplectic representation of
the error sequence related to the X operators. The procedure
for ez is identical but using G instead of H in (7):

s = Hex = M1H̃ex = M1[PT I]ex. (7)

If we now split ex into ex = (ex1 ex2 )T , we can write

dx = [PT I]ex = [PT I]n1×N

(
ex1

ex2

)
N×1

= PT
n1×n2

[
ex1

]
n2×1 + [

ex2

]
n1×1. (8)

We then relate dx to the syndrome as

sm1×1 = M1m1×n1
dn1×1. (9)

The factor graph shown in Fig. 1 is obtained based on
expressions (8) and (9), as well as their equivalents when
using ez and G in (7).

Upon closer examination of the QPCM in (6), it is easy
to see that decoding for the H and G matrices can be done
separately. This is also visible in Fig. 1, where the leftmost
subgraph is associated with the decoding of matrix H (ex or X
containing operators) and the rightmost subgraph is associated
with the decoding of matrix G (ez or Z containing operators).
Separate decoding of these matrices is made possible by the
nature of CSS constructions, which results in syndrome nodes

5The syndrome is obtained as shown in (3).

PT

M1 M2

ex

cx

dx dz

cz

ez

s

P

m1 = m m2 = m

N
2

N
2

ex
N
2

ez
N
2

FIG. 1. Generalized factor graph for a QLDGM CSS scheme.
The dotted line is included to emphasize the separation of the two
constituent subgraphs. The leftmost subgraph decodes the X errors,
while the one on the right decodes the Z errors. We have assumed
that m1 = m2 = m and n1 = n2 = N

2 .

containing information only of either X or Z operators. This is
reflected on the factor graph by the fact that a specific s node
connects to either a dx or a dz node.

The matrix multiplications used to perform the linear row
operations on H̃ and G̃ generate a middle layer, represented
by the c and d nodes, in both decoding subgraphs of Fig. 1.
This new layer hampers the decoding algorithm, especially
during the initial decoding iterations, since a priori informa-
tion regarding the aforementioned middle layer nodes is not
available. This can be seen in Fig. 2, where a generic quantum
communication system is shown. The LDGM decoder block
of this figure, which runs the SPA over the graph shown in
Fig. 1, has the syndrome s and the a priori probability of
the error pattern Pch as its inputs. However, it receives no
information pertaining to the c and d nodes.

In [20], the authors circumvent this lack of information
by using the so-called doping technique of [45]. This method
introduces degree-1 syndrome nodes into the decoding graph.
These degree-1 nodes, which we will refer to as sA nodes,
send exact6 information to the d nodes they are connected to.
The transmission of correct syndrome information from the
sA nodes to the d nodes represents a passing down of accurate
knowledge to lower layers of the factor graph that should
make up for the lack of information regarding c and d nodes
during initial decoding iterations. This should have a positive
impact on decoding performance and ultimately push the
entire process in the right direction. The degree-1 syndrome
vertices are embodied within the M1 and M2 matrices as
rows with a single nonzero entry, which corresponds to the
edge that connects a given sA node to a d node. The other
rows of matrices M1 and M2, which correspond to the rest
of the s nodes, have as many nonzero entries as required to

6These messages are exact because, as required by the SPA update
rule and the fact that sA nodes are degree-1 nodes, the messages they
send are strictly dependent on the syndrome information available at
each sA node.
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Encoder Quantum Channel Syndrome
Computation

ˆ|ψ〉 LDGM
Syndrome-based

Iterative
Decoder

Channel
Information

RInverse
Encoder

|ψ〉

|0〉
|ψ〉 s

ˆ|ψ〉

˜|ψ〉 ˜|ψ〉

Transmitter Decoder

Receiver

P̃

Pch

|0〉

FIG. 2. Schematic of a quantum communication system using QLDGM codes. At the transmitter, a QLDGM code with QPCM HQ maps
the quantum state (information qubits) |ψ〉 ∈ H⊗k

2 onto the code word (physical qubits) |ψ〉 ∈ H⊗N
2 by using (N − k) ancilla qubits. At the

receiver, the noisy code word |ψ̂〉 = P |ψ〉 is received, where P ∈ GN is the error inflicted by the quantum channel. The quantum state |ψ̂〉 is
processed by the syndrome computation block at the decoder to compute its error syndrome s. The ancilla qubits at the input of the syndrome
computation block are necessary to physically implement the syndrome calculation. Together with the a priori channel information Pch, s is
provided to the syndrome-based LDGM decoder, which yields an estimate of the original error pattern P̃ . The recovery operator R uses P̃ to

correct the noisy code word. Finally, the inverse encoder yields an estimate of the information qubits ˜|ψ〉 from the corrected code word ˜|ψ〉.

guarantee the regularity7 of the d nodes and the necessary
number of sA nodes. This results in matrices M1 and M2 having
a special degree distribution which is described by means of
the notation (y; 1, x) and the parameter t , where y represents
the degree of the d nodes, t is the number of syndrome nodes
that are forced to have degree 1 (they become sA nodes), and
x represents the degree of the remaining syndrome nodes,
referred to as sB nodes.

Given the particular structure of the M1 and M2 matrices,
and the number of different types of nodes that are present
in the factor graph shown in Fig. 1, the sum-product decod-
ing of these quantum LDGM CSS codes becomes relatively
nuanced. In [23], a technique known as discretized density
evolution (DDE) [46] is applied to optimize quantum LDGM
CSS codes, which also provides a complete description of how
the decoding process unfolds over the graph shown in Fig. 1.

III. DESIGN OF LDGM-BASED NON-CSS CODES

As mentioned in the previous section, LDGM-based CSS
codes can be decoded over two separate (sub)graphs like the
ones shown in Fig. 1. One graph will be used to decode the
X errors and the other to decode the Z errors. This is made
possible by the specific nature of the quantum PCMs of CSS
codes (4), and is visible on a CSS decoding graph by the fact

7Regularity in this context implies that all the d nodes have the
same degree, i.e., that they are all connected to the same number of s
nodes.

that any given s node can only be connected to either dx or dz

nodes: a subset of s nodes is used to decode the X operators
and another subset is used to decode the Z operators.

The main appeal of non-CSS codes is their ability to
exploit redundancy more efficiently than CSS schemes. In our
proposed non-CSS construction, we achieve this by allowing
edges from a given s node to go to both dx and dz nodes. The
first method that comes to mind to implement this idea is to
randomly distribute the edges of the upper layer of the graph
in a manner that ensures that s nodes are connected to both
dx and dz nodes. However, attempting to decode the X and Z
parts over a decoding graph with s nodes whose edges have
been haphazardly assigned to both dx and dz nodes will cause
numerous decoding problems. For instance, not defining a
specific distribution for these edges inadvertently causes a re-
duction in the number of sA nodes, and not limiting their total
number causes a reduction in the values of the log-likelihood
messages exchanged in the decoding process, which severely
degrades the decoding performance. Therefore, it is important
to optimally design the upper layer of the decoding graph
when constructing a non-CSS QLDGM-based code. Devising
a proper way of distributing the connections among s, dx, and
dz nodes in the decoding graph is paramount to construct good
non-CSS LDGM-based quantum codes.

A. Proposed procedure for the construction of non-CSS
QLDGM codes

We begin the non-CSS design process by using a CSS
quantum code based on classical LDGM codes [21–23] as
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FIG. 3. Generation of an sC node. The upper nodes represent the
syndrome nodes while the bottom nodes represent the d nodes (dx

and dz denote the d nodes associated with each of the separate CSS
decoding subgraphs). The sA nodes are represented in yellow, the dA

nodes are shown in red, and the sC node is pictured in green.

the starting point. For the sake of simplicity and comparison
continuity, we maintain the requirements enforced in [21–23]:
the matrices used to perform linear row operations are equal
to each other M1 = M2 = M, and the degree distribution of
PT and P are the same.

The CSS QLDGM code used as a starting point will be as-
sociated with two separate decoding subgraphs, one for H and
the other for G. The upper layers of these subgraphs (the num-
ber and degree distribution of the d , sA, and sB nodes) will be
defined by two identical matrices M of size m × N

2 described
by (y; 1, x) which have t rows with a single nonzero entry.

We can build our non-CSS scheme using two different
strategies. Given that both of them involve very similar pro-
cedures, we begin by explaining the simplest construction
method. Then, we will present the second proposed design
technique.

1. Method 1: Syndrome node combination

Non-CSS codes based on the first strategy are constructed
as follows:

(1) First, generate a new matrix, Md , as

Md =
(

Mm× N
2

0m× N
2

0m× N
2

Mm× N
2

)
2m×N

. (10)

(2) Select q nodes out of the 2t sA nodes of matrix Md ,8

which we will refer to as sC nodes, and add an edge from these
nodes to the d nodes on the side of the decoding graph they
are not connected to. We apply a criterion to ensure that these
new connections are not made randomly: the edges added to
the q selected sA nodes can only be made to a d node (dx or
dz) that is a dA node. We define dA nodes as any d nodes that
are connected to an sA node. Of the q sC nodes, half of them
proceed from sA nodes in the CSS subgraph used to decode
the X operators, while the other half come from sA nodes in
the CSS subgraph used to decode the Z operators. Figure 3
illustrates how an sC node is generated.

The reasoning behind adding edges that traverse the X
and Z sides of the graph only to sA nodes is based on the
following considerations: First, transforming an sA node into
an sC node implies that the new node no longer provides
perfect syndrome information, given that it is now connected

8Note that Md , as defined in (10), is a simple algebraic representa-
tion of the upper layer of the graph in Fig. 1.

to two d nodes. However, the fact that an sC node only has
two edges implies that its syndrome information, although
not transferred exactly, still has high impact when computing
messages for associated nodes. At the same time, the edge
that traverses from the sC node to the other side of the factor
graph (either dx or dz) reaches a dA node. Considering that
messages from dA nodes are more likely to be correct (they
are connected to an sA node), coupled with the fact that sC

node syndrome information still plays an important role in the
messages that the node computes, it is reasonable to assume
that sC nodes relay accurate information and that they behave
in a similar manner to sA nodes. Therefore, sC nodes provide
a way in which reliable messages can be exchanged between
both sides of the factor graph, which should have a positive
impact on decoding and improve the code performance.

It is important to note that if we were to add a cross-graph
edge to an sB node, because of its high degree, the messages
received over this new edge would play a limited role in the
computations made by the node. By association, the cross-
graph messages transmitted over the new edge would also
have a very limited effect on the computation of messages ex-
changed on the other side of the graph and little performance
improvement, if any, would be obtained.

Notice that at this stage we have transformed Md into a
new matrix M ′

d , modifying the upper layer of the original CSS
decoding graph of Fig. 1 in the following manner:

(i) There are q sC nodes that are connected to both sides of
the graph.

(ii) Some d nodes are connected to both sA and sC nodes.
These modifications force the s and d nodes of the non-

CSS decoding graph to have a somewhat irregular edge distri-
bution. Indeed, the “regularity” of the d nodes has been broken
in order to connect the separate CSS decoding subgraphs,
resulting in q

2 dx nodes and q
2 dz nodes having an additional

edge. Furthermore, q s nodes now have two edges, one of them
directed toward a dx node and the other toward a dz node.

It is intuitive that the performance of this novel non-CSS
structure should at least be as good, if not better, than that
of the CSS scheme utilized as a starting point, provided
that the parameter q is chosen properly. If we select q �
m, the decrease in the number of s nodes providing perfect
information will be small and should have negligible impact in
the decoding process.9 On the contrary, the degree-2 sC nodes
allow the exchange of information between both sides of the
graph as the iterative decoding process progresses, potentially
improving the decoding performance. Therefore, we expect
this scheme to present its best performance for a specific range
of small values of q, with deterioration occurring when q is
increased beyond this range.

2. Method 2: Syndrome node combination + removal of sA nodes

The second design technique removes q syndrome nodes
from the decoding graph generated by the first method,

9A total of q sA nodes get converted into sC nodes, which do not
provide perfect information.
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FIG. 4. Removal of an sA (yellow) node that was previously used
to generate an sC (green) node.

specifically the q sA nodes connected to a dA node that is
linked to an sC node. The process is shown in Fig. 4. Notice
that with this construction the regularity of the d nodes
is maintained and the data rate of the code is increased.10

Moreover, as long as the number of removed sA nodes is not
too large, the impact on decoding should be minimal: although
sC nodes do not provide “perfect” information, much of the
reliability of the messages they transmit to the corresponding
d (previously dA) nodes will be kept, as they only have
two edges. This should mitigate any impact on performance.
Because method 2 requires the removal of some sA nodes,
compared with the CSS code used as a starting point, a
larger number of sA nodes may be necessary in the non-CSS
structure to ensure acceptable performance as the value of q
grows. This hints toward an increased importance of applying
doping (i.e., increasing the value of t) to the constituent
matrices M.

Once the specific sA nodes are removed, we obtain a new
matrix M ′

d of size (2m − q) × N , which has the following
characteristics:

(i) It has 2(t − q) rows with a single nonzero entry. In
terms of the decoding graph, this means that there are 2(t −
q) sA nodes.

(ii) There are q rows with two nonzero entries. The first
entry must be placed in any of the first N

2 columns of the
matrix while the second one must be placed in any of the last
N
2 columns. This ensures that sC nodes connect both sides of
the decoding graph.

(iii) The other 2(m − t ) rows have x nonzero entries. In the
decoding graph, these rows correspond to the sB nodes, which
remain the same as in the CSS structure used as a starting
point.

3. Non-CSS QPCM

The quantum PCM of the proposed non-CSS code obtained
using either of the aforementioned methods is calculated as

HQnonCSS = M ′
d HCSS = M ′

d (Hz|Hx )

= M ′
d

(
H̃ 0
0 G̃

)
= (H ′′

z |H ′′
x ), (11)

where HCSSN×2N is defined as in (4), H̃ and G̃ are the parity
check and generator matrices of a classical LDGM code, and
M ′

d is obtained using any of the construction methods.
As shown below, the construction in (11) satisfies the sym-

plectic criterion given in (2). We assume that M ′
d is obtained

10By eliminating syndrome nodes we are decoding the same num-
ber of information qubits using less syndrome information.

based on the second construction method presented above.
With the goal of simplifying the proof, we write [M ′

d ]mr×N

as the concatenation of two sub-matrices, i.e., [M ′
d ]mr×N =

[M ′
α

mr × N
2

M ′
γ

mr × N
2

]. Substituting this expression into (11), we

obtain

HQnonCSS = (H ′′
z |H ′′

x )

= [M ′
d ]mr×N HCSSN×2N

= [
M ′

α
mr × N

2

M ′
γ

mr × N
2

](H̃ N
2 ×N 0 N

2 ×N

0 N
2 ×N G̃ N

2 ×N

)

= ([
M ′

α
mr × N

2

H̃ N
2 ×N

]
mr×N

∣∣ [
M ′

γ
mr × N

2

G̃ N
2 ×N

]
mr×N

)
,

where mr = 2m − q is the total number of rows of M ′
d .

Since for an LDGM code G̃H̃T = H̃G̃T = 0, we obtain

H ′′
z � H ′′

x = (
H ′′

z H ′′T
x + H ′′

x H ′′T
z

)
mod 2

= ([
M ′

α
mr × N

2

H̃ N
2 ×N

][
M ′

γ
mr × N

2

G̃ N
2 ×N

]T

+ [
M ′

γ
mr × N

2

G̃ N
2 ×N

][
M ′

α
mr × N

2

H̃ N
2 ×N

]T )
mod 2

=
(

M ′
α

mr × N
2

H̃ N
2 ×N G̃T

N× N
2︸ ︷︷ ︸

0 N
2 × N

2

M ′T
γ N

2 ×mr

+ M ′
γ

mr × N
2

G̃ N
2 ×N H̃T

N× N
2︸ ︷︷ ︸

0 N
2 × N

2

M ′T
α N

2 ×mr

)
mod 2

= 0mr×mr ,

proving that HQnon-CSS satisfies the symplectic criterion.

4. Mixture of both methods

Another possibility to design non-CSS codes is to remove
only a fraction of the sA nodes that are used to generate
sC nodes in the first construction method. This procedure is
identical to the second technique, with the sole exception that
instead of removing the entire subset of q sA syndrome nodes
involved in the generation of the sC nodes, only l < q sA

nodes are removed. In the following section, we focus on
codes obtained using the first two methods. Optimizing the
performance of codes derived using this third approach may
be of interest in our future work.

B. Decoding non-CSS QLDGM codes

Independently of the design method, decoding of the non-
CSS quantum codes is performed utilizing the sum-product
algorithm over the factor graph defined by the product M ′

d ×
HCSS. Message passing will differ from that performed at a
CSS QLDGM decoder, in the sense that both sides of the
graph interact during the decoding process (messages are
exchanged between nodes on the left and right subsections of
the graph). This occurs because of the modified upper layer in
the decoding graph of the non-CSS code, as shown in Fig. 5
for a non-CSS code derived using the first design method.
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dx dz

FIG. 5. Upper layer of the decoding graph associated with a
non-CSS code obtained using method 1. The upper nodes represent
the syndrome nodes, while the bottom nodes represent the d nodes
(dx and dz denote the d nodes associated with each of the original
separated CSS decoding subgraphs). The sA nodes are represented in
yellow and the sC nodes are pictured in green.

C. Rate considerations

Both design methods allow a high degree of flexibility in
terms of selecting the rate of the non-CSS quantum code.
In fact, different non-CSS codes of the same rate can be
obtained depending on the selected design method. Consider
an arbitrary non-CSS code of quantum rate RQ obtained based
on the first design method taking as a starting point a CSS
code of the same rate. A different non-CSS code of rate RQ

can be obtained by using the second design method, taking as
a starting point a CSS code of lower rate. In fact, the second
construction technique allows the construction of multiple
matrices M ′

d of equal size (which will lead to codes of equal
quantum rate) by starting from different matrices M (and thus
from CSS codes of different rates) and varying the number of
sA nodes that are removed, q. For instance, we could design
a matrix M ′

d1
of size (2m1 − q1) × N using two matrices M1

of size m1 × N
2 , and construct a second matrix M ′

d2
of size

(2m2 − q2) × N using two matrices M2 of size m2 × N
2 . If

2m1 − q1 = 2m2 − q2, then both codes will have the same
rate. Therefore, when the second method is utilized, code
optimization depends on the choice of matrix Md , as well as
parameters m and q.

Notice that for a fixed m × N matrix M, by using the
second design method and varying the value of q, we obtain
different matrices M ′

d of size (2m − q) × 2N . This will result
in non-CSS codes that encode N − (2m − q) qubits into N
qubits, and thus their rate will be

RQ−non-CSS = N − (2m − q)

N
, (12)

which, since q > 0, is always higher than the rate of the CSS
QLDGM code used as a starting point, given by

RQ−CSS = N − 2m

N
. (13)

Notice that if the non-CSS code obtained from method 2
maintains the same performance as the original CSS code,
this will be achieved with a higher rate. We introduce the
parameter RI , defined as

RI = RQ−non-CSS − RQ−CSS = q

N − 2m
, (14)

to quantify the rate increase provided by the non-CSS scheme
derived using the second construction method when compared

to the original CSS scheme. This rate increase is determined
by the value of q, which for the second design method repre-
sents the number of sC nodes in the non-CSS decoding graph,
as well as the number of nodes sA removed from the decoding
graph of the CSS code used as a starting point. The value of q
will influence the performance of the resulting non-CSS code:
intuitively, large increases in its value should lead to worsened
performance, as the doping effect is reduced, but q > 0 allows
for information exchange between the left and the right sides
of the decoding graph, which should have a positive effect
on performance. The impact of q on the proposed schemes is
studied in the following section.

IV. SIMULATION RESULTS

In this section we compare the performance of the pro-
posed non-CSS codes to that of the CSS codes of [22,23]
when they are used over the X/Z channel and the depolarizing
channel. The CSS codes in [22,23] have rate RQ ≈ 1

4 and
block length N = 19014, encoding k = 4752 qubits into N
qubits. Matrix P, of size 9507 × 9507, has the same degree
distribution as its transpose PT , and corresponds to a rate 1

2
classical LDGM code. Hence, both G̃ and H̃ have size 9507 ×
19014. Matrix M, which is used to transform G̃ and H̃ into G
and H , is full rank, low density, and has size 7131 × 9507.
Results are depicted in terms of either the qubit error rate
(QBER) or the word error rate (WER). QBER represents the
fraction of qubits that experience an error, while WER is the
fraction of transmitted blocks that have at least one qubit error.
We use the QBER metric for some of our simulations because
it can be estimated with high confidence faster than the WER,
which is helpful in shortening the required simulation time of
some of our codes.

First, the codes are simulated over the iid X/Z channel
model of [12], where Z and X errors are modeled as inde-
pendent events identically distributed according to the flip
probability fm. We begin by using as a starting point the family
of CSS codes of the first proposed structure in [22,23], which
are individual regular LDGM codes. The simplicity of the
channel model and of the code structure allows us to assess, in
a rapid and efficient manner, the values of q that optimize the
performance of the non-CSS construction. Using these values
of q, we will repeat the simulations when the CSS codes used
as the starting point consist of the parallel concatenation of
regular LDGM codes, as described in [22,23]. Both design
methods are utilized to obtain the resulting non-CSS codes.
Finally, we repeat the same process for the depolarizing
channel.

A. The iid X/Z channel: Non-CSS codes based on individual
regular LDGM codes

For these simulations, the CSS code utilized as a starting
point is an individual regular LDGM code. Matrix P is gen-
erated pseudorandomly and corresponds to a regular (X, X )
LDGM code. M is characterized by the parameter values11

11The fractional number 8.72 represents the fact that 72% of the sB

nodes will have degree 9 while 28% of them will have degree 8.
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FIG. 6. Simulated WER for non-CSS QLDGM codes based on
individual regular LDGM codes obtained using the first design
method when they are applied over the flipping channel. fm is the
probability of error (iid) in the binary representation of the X and Z
containing operators.

M(3; 1, 8.72) and t = 4361. The degrees12 of P (and PT ) are
varied between (9,9) and (13,13). In the figures that follow,
fm is the probability of error (iid) in the binary representation
of the X and Z containing operators and the analytical error
floors of the LDGM codes have been obtained as shown in
[47].

1. Non-CSS codes derived using method 1

As explained before, non-CSS codes based on this method
are obtained by transforming q sA nodes of the CSS decoding
graph into degree-2 sC nodes. All the non-CSS codes ob-
tained in this manner have the same quantum rate (RQ = 1

4 ).
Matrix Md is built from M as shown in (10). The rest of
the underlying components of the non-CSS configuration are
identical to those of the CSS designs.13 We test three different
configurations, q = [100, 750, 1500], for different degrees of
the P matrices. The results are shown in Fig. 6. The simulation
results displayed in this figure show how for q = 100 and
q = 750, regardless of the degree of the pseudorandom matrix
P, the performance of the proposed non-CSS codes is slightly
better than that of the CSS schemes used as a starting point.
This performance improvement is most notable for the case
of P(13, 13), where, as fm increases, the non-CSS schemes
operate closer than the original CSS code to the analytical
error floor. However, for q = 1500, the performance of the
non-CSS code is worse than that of the CSS scheme. The best
results are observed when the non-CSS code is designed using
q = 750.

12Given that the degree distribution of PT and P is the same, we
refer to them indistinctly throughout this paper.

13The only difference between the CSS and non-CSS codes lies in
matrix M ′

d . The rate- 1
2 classical LDGM code and, therefore, matrices

P, G̃, and H̃ are identical.
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FIG. 7. Simulated WER for non-CSS QLDGM codes based on
individual regular LDGM codes obtained using the second design
method when they are applied over the flipping channel. fm is the
probability of error (iid) in the binary representation of the X and Z
containing operators.

2. Non-CSS codes derived using method 2

As explained before, non-CSS codes based on this method
are obtained by removing q syndrome nodes from the de-
coding graph generated by the first method, specifically the
q sA nodes connected to a dA node that is linked to an sC

node. Note that removing syndrome nodes will result in codes
with different quantum rates. As previously, we test the values
q = [100, 750, 1500] for different degrees of the P matrices.
The results are shown in Fig. 7.

The results displayed in Fig. 7 are once again consistent
regardless of the degree of P. They show how for the two
smaller q values, 100 and 750, the non-CSS codes yield the
same performance as the CSS schemes of [22]. For q = 1500,
the performance of the non-CSS codes is significantly worse.
For instance, at a value of fm = 0.04, the word error rate for
the q = 1500 schemes is around an order of magnitude higher
than for the q � 750 non-CSS schemes. This corroborates
our intuition that there is an optimum range of values for q,
and that utilizing values outside of that range degrades the
code performance. Based on the results in Fig. 7, the optimal
value of q should be a small percentage of the total number of
syndrome nodes m, q < 0.1 × m ( 1500

14262 ≈ 0.1).
Table I presents the WER performance for the codes con-

sidered in Fig. 7 when matrix P has degrees (13,13) and fm =
0.03. The CSS scheme has rate RQ−CSS = 19014−2×7131

19014 =
0.2499. Results for the q = 1500 non-CSS scheme have not
been included, since the performance of original CSS scheme

TABLE I. Comparison between the codes shown in Fig. 7. The
WER data included in the table correspond to the codes whose P
matrix has degrees (13,13).

Code Type RQ q WER at fm = 0.03

CSS 0.2499 7.12 × 10−3

non-CSS 0.2551 100 7.26 × 10−3

non-CSS 0.2893 750 7.13 × 10−3
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is better. As with the first method, the best result here is
obtained for the q = 750 non-CSS scheme, since it achieves a
performance similar to that of the CSS code with a 15% higher
rate.

Overall, the results obtained for both design methods
illustrate that our proposed non-CSS codes, regardless of
the design method, outperform QLDGM CSS codes when
individual regular LDGM codes are utilized. The first de-
sign method provides a way to obtain non-CSS codes that
outperform CSS codes of the same rate. The second method
enables us to construct non-CSS codes with error correcting
capabilities comparable to those of lower-rate CSS schemes.
Therefore, to design non-CSS codes of a fixed rate, we could
apply the first design method to a CSS code of the same rate,
or we could start with a CSS code of lower rate and apply the
second method. In this case, we should carefully choose the
rate of the original CSS code to obtain the desired rate in the
designed non-CSS code.

B. The iid X/Z channel: Non-CSS codes based on the parallel
concatenation of LDGM codes

As mentioned in Sec. II D, regular LDGM codes used in
classical channels present error floors. Fortunately, these error
floors can be substantially lowered if we use the parallel
concatenation of two regular LDGM codes. In [20,21] CSS
quantum codes based on the use of single regular LDGM
codes were shown to also lead to error floors. Inspired by the
good performance displayed by parallel LDGM codes in the
classical domain, a scheme based on the parallel concatena-
tion of LDGM codes was designed and applied to the iid X/Z
channel in [22,23]. Similarly to the classical scenario, CSS
codes built based on the parallel structure display lower error
floors and better performance overall.

We now repeat the study carried out in the previous
subsection, but using the parallel concatenation of regu-
lar LDGM codes as the starting point to derive our pro-
posed non-CSS codes. In [23], the parallel LDGM structure
P[(y1, y1); (y2, z2)]14 was optimized for various configura-
tions of matrices M. For our analysis we use the structure
with the lowest degrees in [23]: P[(8, 8); (3, 60)]. Although
performance is better for larger degrees (y2, z2), codes with
smaller degrees require less processing and simulation time.
To ease simulation requirements even further, results in this
subsection are presented in terms of the QBER. The best
configuration for P[(y1, y1); (y2, z2)] in [23] will be used later
for the simulations over the depolarizing channel.

As we did for individual regular LDGM codes in the
previous subsection, we analyze the performance of the non-
CSS codes obtained using the two design methods pro-
posed in Sec. III. The CSS code used as a starting point
is the same for both methods, and utilizes the same M
as in the scenario for individual regular LDGM codes:
M7131×9507(3; 1, 8.72) and t = 4361. We consider the values

14The notation P[(y1, y1); (y2, z2)] indicates the degree distributions
of the constituent regular LDGM codes utilized in the parallel
concatenation. The parameters of the second code were typically
chosen as z2 = 20y2.
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FIG. 8. Simulated QBER for a RQ = 1
4 CSS code and RQ = 1

4
non-CSS codes derived using the first design methodology. The
underlying classical LDGM code is the same for all the codes and
has degree distribution P[(8, 8); (3, 60)]. fm is the probability of error
(iid) in the binary representation of the X and Z containing operators.

of q = {100, 500, 1000, 1500}. As before, fm is the probabil-
ity of error (iid) in the binary representation of the X and
Z containing operators and the analytical error floors of the
LDGM codes have been obtained as shown in [47].

Figure 8 presents the performance of the R = 1
4 original

CSS code and of the R = 1
4 non-CSS codes obtained by

applying the first design method. As shown in the figure, the
non-CSS codes derived by selecting q = 100 and q = 500
outperform the original CSS structure. For q > 500, perfor-
mance of the non-CSS codes gradually deteriorates, with the
result for q = 1500 being substantially worse than that of the
original CSS code.

Figure 9 shows the results for the non-CSS codes derived
using the second proposed design method. The curves shown
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FIG. 9. Simulated QBER for a RQ = 1
4 CSS code and non-CSS

codes of different rate derived using the second design methodology.
The underlying classical LDGM code is the same for all the codes
and has degree distribution P[(8, 8); (3, 60)]. fm is the probability
of error (iid) in the binary representation of the X and Z containing
operators.
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FIG. 10. Simulated QBER for a RQ = 1
4 CSS code and RQ = 1

4
non-CSS codes constructed using the two proposed design methods.
q denotes how many sA nodes have become sC nodes in the upper
layer of the decoding graph when method 1 is applied. q′ denotes
how many sA nodes have become sC nodes and how many sA nodes
have been removed from the upper layer of the decoding graph when
method 2 is used. The underlying classical LDGM code is the same
for all the codes and has degree distribution P[(8, 8); (3, 60)]. fm is
the probability of error (iid) in the binary representation of the X and
Z containing operators.

in this figure portray how the performance of the non-CSS
codes is drastically degraded as we increase the value of q.
This effect is much more noticeable than for codes based on a
single regular LDGM code. In fact, the only value for which
the non-CSS configuration based on parallel concatenation
matches the performance of the original CSS scheme is q =
100, whereas in Fig. 7 we could see that schemes based on
individual regular LDGM codes matched the performance of
the original CSS code at least up to q = 750. In essence,
although the sA node elimination step explained in Sec. III A
still yields a small benefit, this is much lower than for the case
of single regular LDGM codes.

Earlier in this paper we mentioned that the second non-
CSS code design methodology could be used not only to
obtain higher-rate non-CSS codes with performance similar
to that of lower-rate CSS codes, but also to generate different
non-CSS codes of a fixed rate by varying the CSS codes
used as starting points and selecting the appropriate value
of q. Analyzing the performance of RQ = 1

4 non-CSS codes
obtained in this manner, and comparing the results to those
obtained using the first design method, will allow us to
determine which design technique yields codes with better
performance.

This comparison is shown in Fig. 10, where various RQ =
1
4 non-CSS codes obtained using the second design method
are compared to the best RQ = 1

4 code generated by the first
design method (q = 500 in Fig. 8) and to the original RQ = 1

4
CSS structure. The non-CSS codes generated by method 2 are
derived by building matrices M ′

d using matrices M of different
size, which are designed according to the analysis conducted
in [23]. We introduce parameter q′ to refer to the values of q
used to derive these codes and to distinguish them from the
code built using the first method.
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FIG. 11. Simulated QBER for three quantum codes: An RQ = 1
4

CSS QLDGM code, an RQ = 1
4 non-CSS QLDGM code obtained

using the first proposed method and q = 500, and an RQ = 0.255
non-CSS QLDGM code derived via the second design technique
with q = 100. All three codes have been simulated for two different
degree distributions of the underlying parallel concatenated LDGM
scheme: P[(8, 8); (3, 60)] and P[(8, 8); (5, 100)]. p is the depolariz-
ing probability.

The q′ = 100 code uses M = M7181×9507(3; 1, 8.56) with
t = 4361 (using this M for a CSS QLDGM scheme would
yield a code of rate RQ = 0.244). The q′ = 500 code uses
M = M7381×9507(3; 1, 8.36) with t = 4561 (using this M for
a CSS QLDGM scheme would yield a code of rate RQ =
0.2236). The q′ = 1000 code uses M = M7631×9507(3; 1, 8.27)
with t = 4761 (using this M for a CSS QLDGM scheme
would yield a code of rate RQ = 0.1973).

Figure 10 shows that the non-CSS codes designed using
the second method outperform the CSS scheme for all values
of q′. However, the q = 500 non-CSS code designed using
the first method is still better than any of the aforementioned
codes, although the performance of the q′ = 100 non-CSS
code is only slightly worse.

In this subsection, we have discussed results for the iid
X/Z channel, where the X and Z operators are modeled
independently. Our analysis has allowed us to determine the
design methodologies and the values of q that lead to the
best performance. Making use of this knowledge, we will
now consider a more realistic quantum channel model, the
depolarizing channel.

C. Depolarizing channel

We now focus on the depolarizing channel introduced in
Sec. II A 3. We consider the best non-CSS codes obtained
before for the iid X/Z channel: the q = 500, RQ = 1

4 non-CSS
code obtained using the first design method and the q =
100, RQ = 0.255 non-CSS code obtained using the second
method. Figure 11 shows the QBER of the aforementioned
codes for two different degree distributions of the parallel
concatenated LDGM scheme. The curves associated with the
original CSS codes are also included.

Similarly to the results for the iid X/Z channel, Fig. 11
portrays how the RQ = 0.255 non-CSS codes display perfor-
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FIG. 12. Simulated QBER for the best R = 1
4 CSS QLDGM in

[23] and the best non-CSS QLDGM designed in this paper. The
hashing bound is also shown. The codes are based on the paral-
lel concatenation of regular LDGM codes with degree distribution
P[(8, 8); (8, 160)]. p is the depolarizing probability.

mance very close to that of the RQ = 1
4 CSS schemes. This

phenomenon can be explained for both the depolarizing and
the iid X/Z channels by the nature of the non-CSS construc-
tion, which adds a very small number of edges and removes
very few syndrome nodes from the original CSS factor graph.
As in the case of the X/Z channel model, the q = 500, RQ = 1

4
non-CSS codes designed utilizing method 1 also outperform
the CSS code.

An important observation, which is reflected in Fig. 11, is
that the results are consistent regardless of the degrees (y2, z2)
that are chosen. This is significant, since increasing y2 and z2

enables us to lower the error floor of the QLDGM code. As
shown in [22,23] for CSS codes, we can see from Fig. 11 that
selecting P2 with larger degrees lowers the error floor at the
expense of a worse decoding threshold.

1. Distance to the theoretical limit

The most effective way to characterize the performance
improvement of our proposed non-CSS codes is to measure
their gap with respect to the hashing bound. For this compari-
son, we will employ the design parameters that yield the best
possible code. Such a scheme is obtained by using the first
construction method with t = 5000, q = 500, M(3; 1, 11.04),
and a parallel concatenated LDGM code of degree distribution
P[(8, 8); (8, 160)].

Figure 12 depicts the performance of this non-CSS scheme
as well as that of the CSS code used as a starting point for
the design, which is the best CSS code proposed in [23]. The
hashing bound for RQ = 1

4 is also shown. We compute the
distance to the hashing bound δ as defined in (1), knowing
that the noise limit for RQ = 1

4 is p∗ ≈ 0.127, and taking
pCSS = 0.0825 and pnon-CSS = 0.0865 as the depolarizing
probabilities at which the CSS and non-CSS codes enter the
waterfall region, respectively. This yields δCSS = 1.873 dB
and δnon-CSS = 1.668 dB. In other words, the non-CSS scheme
is about 0.2 dB closer to the hashing bound. Thus, in terms of
overall performance over the depolarizing quantum channel,
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FIG. 13. Word error rate for various quantum codes when they
are applied over the depolarizing channel. The hashing bound is also
included. p is the depolarizing probability.

the non-CSS codes proposed in this article outperform exist-
ing CSS techniques.

2. Comparison with existing QLDPC schemes

We close out this section by studying how the proposed
non-CSS codes measure up against other QLDPC schemes
in the literature. For this purpose, we conduct two different
comparisons. We begin by comparing the codes in Fig. 12
to other quantum codes of rate 1

4 . Then, we study how
nonconventional CSS decoders capable of exploiting the cor-
relation between X and Z operators match up to our non-CSS
construction. The first comparison is shown in Fig. 13, which
includes the performance for the following codes:

(i) The CSS QLDGM code based on a single regular
LDGM code from [21]. The degree distribution of the under-
lying classical LDGM code is P(13, 13). The block length of
the code is 19 014.

(ii) The K = 32 bicycle code of block length 19 014 intro-
duced by MacKay et al. in [12].

(iii) The quantum serial turbo code of [5], with block
length 4000.

(iv) The non-CSS concatenated code (code C) from [34],
with block length 138 240.

Figure 13 shows that our proposed non-CSS QLDGM
codes outperform existing quantum turbo codes and previ-
ously proposed quantum LDPC codes.

As explained in the introduction, CSS decoders capable
of improving performance by exploiting the correlation that
exists between X and Z operators over the depolarizing chan-
nel have been proposed in the literature. Some of the earliest
work on this topic was conducted in [29], where a set of
modified BP decoders for CSS codes that reintroduce X/Z
correlations are proposed. The most notable of these decoding
schemes is known as the random perturbation decoder. In
[48], further work on the topic of modified BP decoders for
CSS codes is conducted and two novel CSS decoders are
presented: the adjusted decoder and the augmented decoder.
The adjusted decoder attempts to reintroduce the correlations
between X and Z operators, neglected by a standard binary
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FIG. 14. Simulated QBER for different types of modified CSS
BP decoders over the depolarizing channel. Results for the separate
decoding of X and Z errors and for our proposed non-CSS scheme
are also included. p is the depolarizing probability of the depolarizing
channel.

BP decoder, by adjusting prior probabilities. The augmented
decoder operates by appending a specific subset of rows Hδ

from the original PCM H into an exact copy of that matrix,
resulting in an augmented PCM HA = ( H

Hδ
) which is associated

with a larger factor graph over which the decoding algorithm
is run. Also in [48], the adjusted and augmentation techniques
are combined to form a new CSS decoder, which is called the
combined decoder.

In Fig. 14, we compare the performance of the random per-
turbation decoder, as well as that of the adjusted, augmented,
and combined decoders, to that of our proposed non-CSS
codes when they are applied over the depolarizing channel.
The underlying LDGM code and CSS configuration is the
same as in most of our previous simulations: the classical
code is defined by the parallel concatenation P[(8, 8); (3, 60)]
and the CSS construction is achieved using M(3; 1, 8.72) and
t = 4361. Performance of a typical CSS decoder (separate
decoding of X and Z operators) is also included in Fig. 14.
The non-CSS scheme is obtained from the CSS code by
using the first design method and setting q = 500, which is
the parameter configuration that produced the best results in
our earlier simulations. Both the CSS code and the non-CSS
configuration have rate RQ = 1

4 .
As shown in Fig. 14, all of the modified CSS BP de-

coders yield performance improvements when compared to
the generic CSS decoding scheme. Nonetheless, they are all
outperformed by our proposed non-CSS construction, despite
the close proximity between the QBER curves of the com-

bined decoder and the non-CSS scheme. Importantly, we must
note that although these modified decoders achieve perfor-
mance close to that of our proposed scheme, they require
specific modifications to the decoding algorithm that result
in a higher decoding complexity. This increase in decoding
complexity arises from the fact that the modified CSS schemes
require the execution of a standard decoder prior to their
application. Specifically, they rely on the failure of a standard
decoder to find the correct estimate of the syndrome, to then
apply modifications to the factor graph according to the chan-
nel error estimate produced by the failed standard decoder.
Once these modifications have been made (either to the a
priori probabilities or to the factor graph itself) decoding is
reattempted. In some instances, decoding must be reattempted
multiple times before the correct syndrome estimate is found.
Moreover, the augmented decoder and the combined decoder
operate over larger factor graphs, which further increases the
decoding complexity.

Given the nature of our proposed construction, decoding
never has to be reattempted, and so the complexity of our
decoder is essentially the same as that of a standard CSS de-
coder. Therefore, the proposed non-CSS scheme outperforms
the aforementioned nonconventional CSS decoders while dis-
playing a lower decoding complexity.

V. CONCLUSION

We have introduced a technique to design non-CSS quan-
tum codes based on the use of the generator and parity
check matrices of LDGM codes. The proposed methods are
based on modifying the upper layer of the decoding graph in
CSS QLDGM constructions. The simplicity of the proposed
scheme ensures that the high degree of flexibility in the
choice of the quantum rate and the block length for the CSS
code utilized as a starting point is translated to the non-CSS
design. Compared with quantum CSS codes based on the use
of LDGM codes, the proposed non-CSS scheme is 0.2 dB
closer to the hashing bound in the depolarizing channel, and
outperforms all other existing quantum codes of comparable
complexity.
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