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Correlations obtained from sequences of measurements have been employed to distinguish among different
physical theories or to witness the dimension of a system. In this work, we show that they can also be used
to establish semi-device-independent lower bounds on the purity of the initial quantum state or even on one
of the postmeasurement states. For single systems, this provides information on the quality of the preparation
procedures of pure states or the implementation of measurements with anticipated pure postmeasurement states.
For joint systems, one can combine our bound with results from entanglement theory to infer an upper bound on
the concurrence based on the temporal correlations observed on a subsystem.
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I. INTRODUCTION

Many applications in quantum information theory such as
teleportation [1] and measurement-based quantum computa-
tion [2] use as a resource pure entangled states. That is, ide-
ally, the corresponding protocols are applied to the respective
pure resource state and deviations from this resource may
result in errors [1,3] and lead to the need of entanglement
purification [4–6] or fault-tolerant implementations (see, e.g.,
[3,7,8]) if one also takes into account imperfections after the
preparation procedure. Due to interactions with the environ-
ment, in experiments often mixed states are prepared instead
of the desired pure state. By knowing how much the prepared
state differs from a pure state, one obtains some intuition
on the quality of the preparation process without using full
tomography. However, it should be noted that the purity
only provides information about how much the prepared state
deviates from a pure one (which might not necessarily be the
desired one).

The purity of a quantum state can be quantified via

P (�) = tr[(�)2]. (1)

The purity attains its maximal value of 1 for pure states
and its minimal value of 1/d for the maximally mixed state
for d-dimensional systems. It is related to the linear en-
tropy SL(�) = 1 − P (�) and the Renyi-2 entropy [9] H2(�) =
− log2[P (�)]. The purity (or nonuniformity) of quantum
states has been also studied from a resource-theoretic point of
view [10–12]. Moreover, the task of distilling local pure states
via a subclass of local operations and classical communication
has been considered [13,14].

It is well known that the purity (of subsystems) of bipartite
systems and their entanglement are connected. States for
which the purity of the whole system is sufficiently small have
to be separable, as there exists a set containing only separable
states around the maximally mixed state which has a finite
volume [15,16]. For two-qubit pure states, any entanglement
measure can be written as a function of the purity of one of its
subsystems, as in this case the purity uniquely determines the

set of Schmidt coefficients and any entanglement measure for
bipartite pure states is a function of the Schmidt coefficients
[17]. The optimal strategy to estimate the entanglement of an
unknown two-qubit pure state from n copies of this state has
been shown to correspond to the estimation of the purity of
the single-qubit reduced state and an explicit optimal protocol
to do so has been proposed [18]. Therefore, this scheme
only requires local measurements of one of the parties (but
which act nonlocally on the different copies). Moreover, in
the asymptotic regime, separable measurements of one of the
parties assisted by classical communication among the copies
can be shown to perform optimally [19].

For mixed (or higher-dimensional) states, the relation
among entanglement and subsystem purity is no longer a
one-to-one correspondence; however, for example, lower [20]
and upper [21] bounds based on the purity of a subsystem
and total system have been shown for the concurrence C(�)
[22,23], which is an entanglement measure. In particular, it
has been shown that [20]

max
X∈{A,B}

2{tr[(�)2] − tr[(�X )2]} � [C(�)]2 (2)

and [21]

[C(�)]2 � min
X∈{A,B}

2{1 − tr[(�X )2]}, (3)

where �X is the reduced state of subsystem X . The first bound
captures quantitatively the observation that only for entangled
states, the reduced states can be more mixed than the state
of the whole system [24]. The upper and lower bound on the
concurrence given above can be determined in an experiment
by measuring local observables using two identical copies of
the state � [20,21]. The purity (or Renyi-n entropies) of a
system can also be experimentally measured by employing
two copies of the state (see, e.g., [25–29] and references
therein) or by performing randomized measurements [30–33].
It has been shown that if one uses two copies, a nonlocal
unitary among them, and a local two-outcome measurement
on only one of the copies but no ancilla or randomized

2469-9926/2020/102(1)/012420(9) 012420-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2483-307X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.012420&domain=pdf&date_stamp=2020-07-17
https://doi.org/10.1103/PhysRevA.102.012420


CORNELIA SPEE PHYSICAL REVIEW A 102, 012420 (2020)

measurements, it is only possible to extract the purity in case
the dimension is odd [34]. The task of discriminating pure and
mixed states has been considered [35,36], which also leads
to schemes to estimate the purity. These are either based on
maximum confidence discrimination [35] or an uncertainty
relation [36] and require nonlocal measurements among the
copies or control over the measured observable. Moreover,
measurement schemes that allow one to determine the purity
of single-mode Gaussian states have been proposed [37] and
the relation among the (global and local) purities and entan-
glement of Gaussian states has been studied [38].

By performing tomography on the system, one could re-
construct the state and calculate the purity of the system. In
particular, there exist adaptive schemes which do not rely on
any assumption on the states [39,40] or which are designed
for pure states and in which the assumption of purity can be
certified from the observed data [41,42]. However, it should be
noted that as in any tomographic approach, the measurements
are required to be characterized (at least to some extent). The
relation of the scaling of the accuracy in device-dependent
adaptive process tomography and the purity of the measured
state has been studied [43].

Device-independent bounds on the linear entropy (of the
total system) or the concurrence can also be obtained from
the value of violation of a Bell inequality [44,45]. Moreover,
device-independent entropy witnesses based on dimension
witnesses have been proposed in the context of prepare-and-
measure scenarios [46] and sector lengths which are related
to the average purity of reduced states have been studied
(see, e.g., [47–49] and references therein).

Here we propose to use the temporal correlations obtained
from sequences of measurements on a single copy to deduce
a semi-device-independent lower bound on the purity. This
approach relies only on the assumption of the dimension
of the measured (sub)system and that measurements can be
repeated (see below for more details). Note that even though,
for a single-qubit system, less measurements are required in
a tomographic approach than in our approach, such schemes
require knowledge about the measurements that are imple-
mented. Moreover, our approach does not require one to
prepare two identical copies of the state at the same time and
to act nonlocally on the subsystems of different copies [50]. It
is straightforward to see from the equations above that a lower
bound on the purity of a (sub)system provides an upper bound
on the linear entropy or the concurrence. Moreover, it has been
shown that a lower bound on the purity implies a lower bound
on the accessible information [51].

Our approach uses sequential measurements and is concep-
tually different from the ones previously studied. In particular,
we can also give a lower bound on the maximal purity of the
postmeasurement state at the second time step for one of the
outcomes provided the purity of the initial state is known.

II. USING TEMPORAL CORRELATIONS TO OBTAIN
A LOWER BOUND ON THE PURITY

We will consider, in the following, sequences of general
measurements acting on a single (sub)system whose (reduced)
state is �in (see Fig. 1). To be more precise, we will examine
the correlations p(ab|xy) which correspond to the probability
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FIG. 1. This figure shows schematically the scenario considered
here. Sequences of measurements are performed on the qubit state
�in, which may correspond to the reduced density matrix of �AB,
which in turn describes a composite system. One observes temporal
correlations p(ab|xy) with measurement outcomes denoted by a, b
and measurement settings by x, y.

for obtaining outcome a in a first time step if one performs
measurement x, and then observing outcome b in a second
time step if measurement y is performed.

We will assume that one can use the same measurement ap-
paratus at different time steps and the labeling of measurement
settings does not change, e.g., in case x = y, one performs
the same measurement twice, however, the outcomes do not
need to be the same. The only further assumption will be
that in the following, the (sub)system that is measured is a
two-dimensional system. In particular, we will not restrict
the type of measurements, i.e., arbitrary instruments [52] are
allowed. This scenario has also been considered in [53–55].

We consider the following quantity:

B1 = p(++|00) + p(++|11) + p(+−|01) + p(+−|10).

It has been shown in [53] that one can provide a (nontrivial)
upper bound on B1 for general measurements on a qubit,
which allows one to employ B1 as a dimension witness. As
we show here, it can also be used to witness the purity.

It can be proven that for any choice of measurements, the
maximum will be attained for pure initial and postmeasure-
ment states and that the maximum attainable value for fixed
purity of the initial state will be monotonically increasing with
increasing purity (see Appendix B). These relations are the
key to use temporal correlations for obtaining lower bounds
on the purity. In particular, it implies that in order to observe a
certain value, the system has to have at least a certain amount
of purity. In Appendix A, we will show that this key idea
can, in principle, also be used to obtain lower bounds on the
purity of the initial state for higher-dimensional systems and
that it is essentially possible to employ B1 for this purpose.
More precisely, we show for arbitrary finite dimension that the
maximal attainable value of any linear function of correlations
of two time steps is a monotonically increasing function
of the initial purity and that the maximal value of B1 for
arbitrary measurements is not constant as a function of the
purity.

For a qubit, here we provide the explicit (analytic) relation
between the maximal attainable value of B1 and the purity. In
order to ease the notation (and as it appears naturally in the
derivations), we will from here on mainly refer to the length
of the Bloch vector instead of the purity. That is, we will use
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the Bloch decomposition for

�in = 1
2 (1 + p �αin · �σ ), (4)

with �σ = (σx, σy, σz ), σi being the Pauli matrices, 0 � p � 1,
�αin ∈ R3, and |�αin| = 1. With this, p is the length of the Bloch
vector and the purity of the initial state is given by P (�in ) =
1/2(1 + p2). Note that the purity P is monotonically increas-
ing as a function of p (and vice versa). Let us then denote by
B1(p) the maximal attainable value of B1 for a given length
of the Bloch vector, p = √

2P − 1, of the initial state �in and
arbitrary choice of measurements. Then it holds that

B1(p) = 1/2(5 + p). (5)

This relation follows from Theorem 1 and we will discuss
below how to derive it from this theorem.

The measurements that attain the maximum of B1 are the
same, independent of the purity. In particular, the following
protocol allows one to attain B1(p). One of the measure-
ments announces deterministically the outcome “+” and then
prepares the state 1/2(1 − �αin · �σ ). The other measurement
measures the observable �αin · �σ .

If one obtains in an experiment a value for B1, denoted
here and in the following by Bexp

1 , one can straightforwardly
deduce a lower bound on the purity of the measured initial
state. This is due to the fact that B1(p) is a monotonically
increasing function of P [see Eq. (5)] and B1(p) � Bexp

1 if the
purity of the initial state that is measured in the experiment
is given by P = 1/2(1 + p2). The last relation captures that
in an experiment, the measurements that are implemented
do not need to be the optimal ones that allow one to attain
B1(p). With this, one obtains that in order to observe Bexp

1 , a
certain amount of purity is required. In particular, we obtain
the following observation:

Observation 1. Let Bexp
1 be the value for B1 obtained in an

experiment by performing sequences of measurements on the
state �in. Then it holds, for the purity P of �in, that

P � (2Bexp
1 −5)2 + 1

2
. (6)

Hence, temporal correlations allow one to witness the initial
purity.

Knowing the purity of the initial state, it is also possible to
deduce a lower bound on the maximal purity of the postmea-
surement state occurring at the second time step for outcome
“+”. To be more precise, one can provide a lower bound on
the state measured in the second time step, which here and in
the following we will refer to as the postmeasurement state.
Let p be the length of the Bloch vector of the initial state �in

and w+|i the one of the postmeasurement state that is obtained
after performing measurement i ∈ {0, 1} on �in and observ-
ing outcome “+.” Then, one can determine the maximum
B1(p,w+|0,w+|1) that is attainable with all measurements and
states that respect the imposed purities. One can show that
B1(p,w+|0,w+|1) is monotonically increasing as a function
of W+|i = 1/2(1 + w2

+|i ) (assuming the other purities fixed
but arbitrary). Moreover, in an experiment leading to Bexp

1 in
which the states occur with the respective purities, it might be
that one deviates from the optimal protocol. Hence, it holds

p

w

B1(p, w)

FIG. 2. This figure shows the maximal attainable value of B1 as
function of a given Bloch vector length of the initial state [i.e., purity
P = 1/2(1 + p2)] and given Bloch vector length of the postmeasure-
ment states for both measurements corresponding to outcome “+”
[i.e., purity W = 1/2(1 + w2)]; see Theorem 1.

for wmax = maxi∈{0,1} w+|i that

B1(p,wmax,wmax) � B1(p,w+|0,w+|1) � Bexp
1 .

It only remains to determine B1(p,w) ≡ B1(p,w,w) to pro-
vide an explicit lower bound on the maximal purity of the
postmeasurement states of outcome “+” depending on the
purity of the input state. In the following theorem, we provide
a closed formula for B1(p,w) (see, also, Fig. 2).

Theorem 1. Let P be the purity of the initial state and
W the purity of the postmeasurement states that occur for
measurement i ∈ {0, 1} observing outcome “+.” Then, for a
two-dimensional system, the maximal value of B1, B1(p,w),
that can be obtained for arbitrary initial states and measure-
ments that respect these constraints on the purities, is given
by

B1(p,w) =
{

2, 0 � w � 1−p
3+p

1 + 1+w
2 + (1+p)(1+w)

4 ,
1−p
3+p < w � 1,

where w = √
2W − 1 and p = √

2P − 1 are the length of the
Bloch vector for the respective purity.

The proof of this theorem can be found in Appendix B.
This theorem allows one to deduce a lower bound on

the maximal purity of the postmeasurement states provided
that the purity of the initial state is known. In particular, we
have that for Bexp

1 � 2, we cannot deduce a lower bound;
however, if Bexp

1 > 2, it follows from the theorem above and
B1(p,wmax) � Bexp

1 that

Wmax � 14 + 4(Bexp
1 )2 + P + 5

√
2P − 1

4 + P + 3
√

2P − 1

− 2Bexp
1 (7 + √

2P − 1)

4 + P + 3
√

2P − 1
. (7)

Moreover, note that as B1(p,w) is monotonically increasing
as a function of W , we also have that

B1(p) = max
0�w�1

B1(p,w)

= B1(p, 1) = B1(p) = 5 + p

2
, (8)
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which allows one to bound the purity of the initial state as
argued above [see Eq. (5) and Observation 1].

In an experiment, one may not be able to perfectly imple-
ment the measurements that realize the tight bound in Eq. (5),
but one may have postmeasurement states which are not
perfectly pure. Theorem 1 allows one to deduce how robust
the estimation of the initial purity is with respect to not per-
fectly pure postmeasurement states as it also specifies for this
case the maximal attainable value. Consider the case that the
maximal length of the Bloch vectors of the postmeasurement
state is given by 1 − ε. Then, it holds that B1(p, 1 − ε) =
B1(p) − 3+p

4 ε, i.e., the deviation is, at most, ε and also linear
in this parameter. Note further that in case one can estimate
a lower bound on the purity of the postmeasurement state,
one can also use Theorem 1 to improve the lower bound on
the purity of the initial state (by using the lower bound for
the respective w in Theorem 1). As this requires information
about the measurement, the so-obtained bound is no longer
semi-device independent.

III. UPPER BOUND ON THE CONCURRENCE
BASED ON THE PURITY

As mentioned before, it is well known that for bipartite
pure states, there is a close connection between entanglement
and the purity of the reduced state of a single party. In partic-
ular, the reduced state is pure only for product states, whereas
for maximally entangled states, it is maximally mixed. For
mixed states and on a more quantitative level, entanglement
measures such as the concurrence are defined as the convex
roof extension of a function of the local purity. More precisely,
the concurrence [22,23] is given by

C(ρ) = inf
∑

i

qiC(|ψi〉), (9)

where the infimum is taken over all pure state decompo-

sitions, ρ = ∑
i qi|ψi〉〈ψi|, and C(|ψi〉) =

√
2{1 − tr[(ρ i

A)2]}
with ρ i

A = trB(|ψi〉〈ψi|). It seems therefore natural to consider
the relation among the concurrence and the purity of the
reduced state more closely in order to obtain a bound on the
concurrence. The following result will allow us to provide
an upper bound on the concurrence based on the observed
temporal correlations. For two-qubit states �AB with ρA =
trB(�AB) and ρB = trA(�AB), it holds that [21]

C(�) � min
X∈{A,B}

√
2{1 − tr[(�X )2]}. (10)

This bound has already been observed for arbitrary bipartite
d-dimensional states in [21]. For completeness, we will nev-
ertheless present in Appendix C an (alternative, but similar)
proof for two-qubit states. Combining this with the lower
bound on the purity based on temporal correlations (see
Observation 1), we can state the following observation:

Observation 2. Let �AB be a two-qubit state and Bexp
1 the

experimental value for B1 obtained for sequences of mea-
surements on one of the subsystems. Then it holds for the
concurrence C(�AB) that

C(�AB) �
√

1 − (
2Bexp

1 −5
)2

. (11)

Moreover, it has also been shown in [21] that for multipar-
tite states, C(�) � 21−n/2

√
2n − 2 − ∑

i tr[(�i)2]}. Here, C(�)
is a generalization of the concurrence to the multipartite case
defined by C(ψ ) = 21−n/2

√
2n − 2 − ∑

i tr[(�i)2]} [56,57],
where n is the number of parties, �i are the single-party
density matrices, and C(�) is obtained via the convex roof
extension from C(ψ ) [see Eq. (9)].

Hence, for a multipartite system also, one can first obtain,
from the correlations that arise from sequences of local mea-
surements on subsystems, a semi-device-independent lower
bound on the purity of the subsystems and, with this, then an
upper bound on the concurrence of the joint system.

IV. SUMMARY AND OUTLOOK

In this work, we considered sequential measurements on
a qubit. We showed that one can deduce from the observed
correlations a lower bound on the purity of the initial state
of the qubit. In case the qubit is part of a two-qubit system,
this provides an upper bound on the concurrence. Moreover,
provided that the purity of the initial state is known, our
approach allows one to obtain a lower bound on the maximal
purity of the postmeasurement states occurring at the second
time step for one of the outcomes. Our result shows that it is
possible to use temporal correlations for bounds on the purity
and the concurrence by explicitly considering the example of
a qubit. Moreover, we proved that also for higher-dimensional
systems, it is essentially possible to employ temporal correla-
tions in order to establish bounds on the initial purity. It would
be relevant to pursue our investigation of higher-dimensional
systems and provide explicit purity witnesses. Moreover, it
would be interesting to see whether longer sequences allow,
in principle, for a better performance as has been observed for
the case of dimension witnesses [55].
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APPENDIX A: TEMPORAL CORRELATIONS ALLOW TO
WITNESS THE PURITY FOR d-DIMENSIONAL SYSTEMS

In this Appendix, we show that it is essentially possible
to use temporal correlations for providing lower bounds on
the purity for d-dimensional systems. In particular, we will
prove that one can construct functions of the correlations
whose maximum for arbitrary measurements is monotonically
increasing as a function of the purity of the initial state. Hence,
in order to observe a certain value of this function, one has
to have a certain amount of purity and, therefore, these can
be used to provide lower bounds on the purity. Moreover,
we will show that in principle, the quantity B1 could also be
used to gain information about the purity for d-dimensional
systems.
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Proof. In order to do so, we consider a quantity R =∑
αabxy p(ab|xy), which is linear in the correlations and

therefore also in the initial state. More precisely, it holds
that p(ab|xy) = p(a|x)p(b|axy) = tr(Ea|x�in )p(b|axy), with
Ea|x being the effect for the measurement in the first time step.
As we will here and in the following restrict to two time steps
and furthermore be interested in the optimal measurements, it
is possible to use as a description of the measurements their
effects and postmeasurement states (instead of describing
them via instruments). The effects Ea|x are positive semidef-
inite matrices with the property that

∑
a Ea|x = 1. They allow

one to calculate the probability for obtaining outcome “a”
by implementing measurement x on a state ρ via tr(ρEa|x ).
Note that for any combination of effects and postmeasurement
states, there exists a valid instrument that realizes them when
being applied to an arbitrary �in. This can be achieved by
first applying an instrument with the desired effects and then
preparing the system in the desired postmeasurement state.
Note that in case more time steps are considered, not any se-
quence of postmeasurement states is possible. However, note
that by considering the description in terms of instruments and
the Heisenberg picture, the following argumentation can be
straightforwardly generalized to longer sequences.

Now let us assume that for a given purity of the initial
state P , one knows the optimal protocol that maximizes R.
We then have P = ∑

i q2
i , with qi being the eigenvalues of

the optimal �in. Let us denote the eigenbasis for �in by {|i〉},
the corresponding optimal effects by Ẽa|x, and the maximal
attainable value by R(P ). Then, one obtains

R(P ) =
∑

i,a,x,b,y

qiαabxytr(Ẽa|x|i〉〈i|)p(b|axy). (A1)

Note that there always exists a state |k〉 in the eigenbasis for
which ∑

a,x,b,y

αabxytr(Ẽa|x|k〉〈k|)p(b|axy)

�
∑

a,x,b,y

αabxytr(Ẽa|x| j〉〈 j|)p(b|axy) (A2)

for all | j〉. Note further that as we assume the optimal strategy,
one can choose, without loss of generality, that qk � q j . This
is due to the fact that if qk < q j for some | j〉 for which the
inequality in Eq. (A2) is strict, one could apply a unitary
exchanging |k〉 and | j〉 before and after the supposedly opti-
mal measurements, and obtain a higher value for R, which
contradicts our assumption that we are implementing the
optimal protocol. In case the inequality is an equality, we can
simply relabel |k〉 to obtain qk � q j .

It then remains to show that by increasing the purity,
it is possible to increase the maximal value of R. Let us
first consider the case that the inequality in Eq. (A2) is
strict for at least one | j〉 with q j �= 0, which we will denote
by |l〉. Then, for any purity Q > P , one can find a value
ε > 0 such that Q = (qk + ε)2 + (ql − ε)2 + ∑

i �=k,l q2
i , i.e.,

ε = ql −qk+
√

2(Q−P )+(qk−ql )2

2 . We will then use the notation
q̃i = qi for i �∈ {k, l}, q̃k = qk + ε, and q̃l = ql − ε. It is then
straightforward to see that choosing the same effects and
imposing the same postmeasurement states as before (e.g., by

considering some measure-and-prepare channel), one obtains∑
a,x,b,y,i

q̃iαabxytr(Ẽa|x|i〉〈i|)p(b|axy) > R(P ). (A3)

Hence, we have shown that for any purity Q > P , there
exists a strategy (measurements) that allows one to exceed the
maximal attainable value R(P ) in case inequality (A2) is strict
for at least one | j〉 for which qj �= 0.

Note that in case the inequality (A2) is an equality, for
some set j ∈ J = { j1, . . . , jn} and qi = 0 for i �∈ J , it can
be easily seen that this implies that for any purity which can
be realized with a density matrix of rank n or smaller, the
value R(P ) can be attained. Note further that this implies that
for any purity Q which corresponds to a density matrix ρn

of rank n and Q < P , the optimal strategy has the property
that for the whole eigenbasis (with nonzero eigenvalue) of ρn,
one obtains an equality as otherwise the maximal attainable
value of R has to strictly increase with increasing purity, as we
just have shown. However, this implies that also with higher
purity, this value is attainable and therefore it has to hold that
in this case, we have that R(Q) = R(P ). Increasing now P ,
one obtains that the maximal attainable value is at least R(P )
and either remains constant or increases by the argumentation
given before.

In summary, we have that for both cases, the maximal
attainable value of R is monotonically increasing as a function
of the purity. Hence, in case it is not constant, for all purities,
R can be used to obtain some information on the purity. It is
obvious that for any dimension d , there exists some quantity
R whose maximum for given purity does not remain constant
for all purities.

As an example, consider B1 for which one can show
that for the maximally mixed state, the maximum is upper
bounded by max[3, 4(1 − 1/d )] but the maximal value for a
pure state corresponds to 4 for d � 3. This implies that also
for higher dimensions, the maximal attainable value of B1 is
not constant as a function of the purity. In order to see the
upper bound on B1 for the maximally mixed state, note first
that one can use an analogous argumentation as before to show
that for fixed purity of the initial state, the maximal attainable
value of B1 is monotonically increasing as a function of
the purity of the postmeasurement states. Hence, the optimal
postmeasurement states are either pure or can be chosen to
be pure. As then, there are only two pure postmeasurement
states appearing in the quantity; this implies that only a two-
dimensional subspace is relevant for the measurements in the
second time step. Moreover, considering the first time step,
it is then straightforward to see that in order to obtain the
maximum, the diagonal terms in the effects for outcome “+”
should be one in the orthogonal complement to this subspace
and terms mixing the qubit subspace and its complement are
chosen to be zero (in order to not introduce further constraints
on the two-dimensional subspace due to positivity). We then
use that one can parametrize the restriction of the effects to
the two-dimensional subspace and the states as in [53]. That
is, one can use, for such effects, the parametrization E+|i =
ai(12 + bi �σ · �ci ) + 1d−2, where �ci ∈ R3, |�ci| = 1, 0 � ai �
1/(1 + bi ), 0 � bi � 1, 1x denotes the x-dimensional identity
and �σ (12) the vector of Pauli matrices (the identity) in the

012420-5



CORNELIA SPEE PHYSICAL REVIEW A 102, 012420 (2020)

qubit subspace, respectively. Using then that the initial state is
maximally mixed, one can show, analogously to [53], that the
maximum of B1 is smaller or equal to max[3, 4(1 − 1/d )] or
it is attained when the effects are projective. More precisely,
consider first the points where the derivative with respect to
a0 (assuming all other parameters to be fixed but arbitrary)
vanishes, i.e.,

a0
d B1

da0
=

[
p(+|0) − d − 2

d

]
[p(+| + 00) + p(−| + 01)]

+ p(+|1)[p(−| + 10) − 1]

+ p(+|0)p(+| + 00) = 0,

where we used p(+b|xy) = p(+|x)p(b| + xy). Hence, at the
points where the derivative vanishes, it holds that

p(+|0)[p(+| + 00) + p(−| + 01)] + p(+|1)[p(−| + 10)

= p(+|1) + d − 2

d
[p(+| + 00) + p(−| + 01)]

− p(+|1)p(+| + 00) � 3 − 4

d
, (A4)

and, therefore, B1 � 4(1 − 1/d ) at these points. It remains
to consider the boundary a0 = 0 and a0 = 1/(1 + b0). It is
easy to see that for a0 = 0, it holds that B1 � 2. Before
considering the case a0 = 1/(1 + b0), note that the quantity
B1 is symmetric with respect to the exchange of measurement
setting 0 and 1. Hence, in order to possibly achieve a value for
B1 that is greater than 4(1 − 1/d ), measurements with a1 =
1/(1 + b1) have to be used. As can be easily seen, the choice
ai = 1/(1 + bi ) corresponds to measurements for which the
effect corresponding to the outcome “−” is proportional to a
projector, i.e.,

E−|i = ui

2
(12 − �σ · �ci ), (A5)

with 0 � ui � 1. One can then use exactly the same argumen-
tation as in Appendix C1 of [53] to show that either B1 � 3
or the effects have to be projective, i.e., one shows that at
the points where the derivative with respect to ui vanishes,
it holds that B1 � 3 and that the same holds true for the
boundary point ui = 0. Considering then projective effects
and the optimal choice of postmeasurement states for such
effects as in Appendix C1 of [53], the quantity depends on
one remaining parameter, i.e., the angle between the Bloch
vectors in the restriction to the two-dimensional subspace of
the two measurements. It is then straightforward to see that
the maximum attainable value with projective effects is given
by 4(1 − 1/d ), which is obtained for �c0 = −�c1. In summary,
we have shown that for the maximally mixed state, it is
not possible to exceed max[3, 4(1 − 1/d )]. In particular, for
d � 4, we have that 4(1 − 1/d ) � 3 and, in this case, the
bound can be reached. For pure initial states, one can attain
a value of 4 in case d � 3 (see [53]). Hence, we have that
the maximal attainable value B1 is not constant but, due to
the argumentation above, at least on some interval(s), strictly
increasing with increasing purity. This concludes the proof
that temporal correlations can be used to build witnesses for
the purity of d-dimensional states. �

APPENDIX B: PROOF OF THEOREM 1

In this Appendix, we will first show that B1(p,w+|0,w+|1)
(as defined in the main text and below) is monotonically
increasing as a function of w+|1 (and, therefore, also W+|i).
Moreover, we will prove Theorem 1.

Recall first that B1(p,w+|0,w+|1) is the maximal value
for B1 that is attainable with arbitrary (time-independent)
measurements for a given purity P = 1/2(1 + p2) of the
initial state and fixed purity of the states that are measured
at the second time step W+|i = 1/2(1 + w2

+|i ) if, in the first
time step measurement, i is performed and outcome “+” is
obtained. Analogously to the proof in Appendix A, one can
show in general that for two time steps, the maximum (with
respect to all other parameters but the purities of the states
which are assumed to be fixed apart from the purity of one
postmeasurement state) of any linear function of temporal
correlations is also a monotonically increasing function of the
purity for the postmeasurement states. This implies that, in
particular, B1(p,w+|0,w+|1) is monotonically increasing as a
function of W+|i (assuming that all other parameters are fixed
but arbitrary).

Alternatively, one can also show that B1(p,w+|0,w+|1) is
monotonically increasing as a function of W+|i by considering
the derivative with respect to w+|i.

In order to do so, we parametrize the effects via E+|x =
rx1 + qx�vx · �σ and E−|x = 1 − E+|x for x ∈ {0, 1} with 0 �
qx � rx � 1 − qx, �vx ∈ R3, |�vx| = 1, and �σ is a vector con-
taining the Pauli matrices. As mentioned in the main text, one
can use the Bloch decomposition to parametrize states with
fixed purity, i.e.,

� = 1/2(1 + w�α · �σ ), (B1)

with |�α| = 1 and 0 � w � 1. The purity W is then related to
the length of the Bloch vector w via

W = 1
2 (1 + w2). (B2)

Using this parametrization for the states, one can analogously,
as in Appendix C of [53], determine the initial and post-
measurement states that maximize B1 for given effects and
purities. More precisely, the Bloch vectors for the postmea-
surement states of measurement i ∈ {0, 1} are proportional
to (−1)i(q0�v0 − q1�v1) and the Bloch vector for the initial
state has to be chosen proportional to q0X0�v0 + q1X1�v1, with
X0 = 1 + r0 − r1 + w+|0

√
q2

0 + q2
1 − 2q0q1�v0 · �v1 and X1 =

1 + r1 − r0 + w+|1
√

q2
0 + q2

1 − 2q0q1�v0 · �v1 . This is due to
the fact that the choice of �α which maximizes �α · �β under the
constraint that the length of �α is fixed is given by �α = c�β,
with c � 0 and c ensuring the correct length of the vector.
For the optimal choice of states (and arbitrary effects), one
observes that B1 is a linear function of p and one can show
that d B1 /dw+|i � 0. Hence, B1 is monotonically increasing
as a function of w+|i, which implies that it is also a mono-
tonically increasing function of W+|i. In particular, we have
that

B1(p,wmax,wmax) � B1(p,w+|0,w+|1),

where wmax = maxi∈{0,1} w+|i.
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In the following, we will use the notation B1(p,w) ≡
B1(p,w,w). We will next show Theorem 1. In order to
improve readability, we repeat the theorem here.

Theorem 1. Let P be the purity of the initial state and
W the purity of the postmeasurement states that occur for
measurement i ∈ {0, 1} observing outcome “+.” Then, for a
two-dimensional system, the maximal value of B1, B1(p,w),
that can be obtained for arbitrary initial states and measure-
ments that respect these constraints on the purities, is given
by

B1(p,w) =
{

2, 0 � w � 1−p
3+p

1 + 1+w
2 + (1+p)(1+w)

4 ,
1−p
3+p < w � 1,

where w = √
2W − 1 and p = √

2P − 1 are the length of the
Bloch vector for the respective purity.

Proof. Note first that by deterministically assigning out-
come “+” for both measurements independent of the state
that is measured, one obtains that B1 = 2. Moreover, by
using the following protocol, one can obtain B1 = 1 + 1+w

2 +
(1+p)(1+w)

4 . Let the initial state have a Bloch vector of length
p pointing in the z direction, i.e., in Eq. (B1), we have that
�α = (0, 0, 1). One of the measurements is chosen to be of the
form that one deterministically announces “+” and prepares
the state with Bloch vector pointing in the −z direction,
i.e., �α = (0, 0,−1), and of length w. The other measurement
performs a projective measurement in the computational basis
1/2(1 ± σz ) with associated outcome “±” and then prepares
the state with �α = (0, 0, 1) and length w. Hence, the values
for B1 given in the theorem above are attainable. Moreover,
note that 2 � 1 + 1+w

2 + (1+p)(1+w)
4 if and only if w � 1−p

3+p .
It remains to show that B1 for given p and w cannot exceed
max[2, 1 + 1+w

2 + (1+p)(1+w)
4 ].

In order to do so, we note first that it can be easily seen
using the same argumentation [58] as in [53] that either
B1(p,w) � 2 or for both measurements the effects for out-
come “−” are proportional to projectors. That is, one uses the
parametrization

E+|i = ai(12 + bi �σ · �ci ) (B3)

with 0 � ai � 1/(1 + bi ), 0 � ai � 1, and �ci being a real
vector of unit length, and considers the critical points with
respect to ai (all other parameter are assumed to be fixed but
arbitrary). One observes that at the points where the derivative
vanishes, Eq. (A4) with d = 2 holds. Hence, at these points,
B1 � 2. It remains to consider the boundary of the interval
0 � ai � 1/(1 + bi ). For ai = 0, one also obtains B1 � 2. For
ai = 1/(1 + bi ), the effect corresponding to outcome “−” is
proportional to a projector.

Using then the parametrization of effects as given in
Eq. (A5) and considering the points where the gradient with
respect to u0 and u1 (assuming again all other parameters to
be fixed but arbitrary) vanishes, we obtain

∑
i

ui
∂ B1

∂ui
= 0. (B4)

This is equivalent to

B1 = 1
2 [p(+|0) + p(+|1) + p(+| + 00)

+ p(−| + 01) + p(+| + 11) + p(−| + 10)], (B5)

where we used that one can write p(+b|xy) = p(+|x)p(b| +
xy). By maximizing the right-hand side of this equation, one
can obtain an upper bound on B1 at the points where the
gradient vanishes. Note first that the expression is a linear
function in the parameters ui and therefore is maximal at
one of the boundary points ui = 0 or ui = 1. If u0 = u1 = 0,
then, independent of the measured states, outcome “−” never
occurs and therefore the right-hand side is upper bounded
by two. In case u0 = u1 = 1, the effects are projective and
by choosing the optimal initial and postmeasurement states
analogous to [53], we get, for the right-hand side,

1
4 [6 + 2w

√
2 − 2x + p

√
2 + 2x], (B6)

where, here and in the following, x corresponds to the angle
between the Bloch vectors of the effects for outcome “+”
of the two measurements, i.e., �c0 · �c1 = x. More precisely,
one chooses the vector �α in Eq. (B1) for the initial state
proportional to �c0 + �c1 and for the postmeasurement states
proportional to ±(�c0 − �c1). This choice is optimal, as the
maximal value of an expression of the form �α · �v is attained
if �α is chosen parallel to �v. One can then easily show that
Eq. (B6) is maximized for the point where the derivative
with respect to x vanishes (and not at the boundary given by
x ∈ {±1}), i.e., x = (p2 − 4w2)/(p2 + 4w2). This results in a
maximal value for the right-hand side that is strictly smaller
than 1 + 1+w

2 + (1+p)(1+w)
4 for all possible values of p and w.

It remains then to consider u0 = 0 and u1 = 1 as Eq. (B5) is
symmetric with respect to the exchange of measurements 0
and 1. It can be easily seen that in this case, the right-hand
side of Eq. (B5) is, at most,

1

2

[
3 + 1 + p

2
+ w

]
� 1 + 1 + w

2
+ (1 + p)(1 + w)

4
. (B7)

In summary, we have seen that for the points where the
gradient with respect to ui vanishes, B1 � 2 or B1 � 1 +
1+w

2 + (1+p)(1+w)
4 for the given purities, which implies in

particular that B1 � max(2, 1 + 1+w
2 + (1+p)(1+w)

4 ). In order
to prove the theorem, it therefore remains to show that this
upper bound also holds true at the boundary of the domain
0 � ui � 1, i.e., the effect for one of the measurements is
either projective (case A) or the identity (case B). Note that B1

is symmetric regarding the exchange of the measurements. Let
us first discuss case A and choose, without loss of generality,
u1 = 1, i.e., measurement 1 is projective. At the points where
the derivative with respect to u0 vanishes, one obtains

B1 = {[p(+|0) − 1][1 − p(+| + 00)] + 1

+ p(−| + 01) + p(+|1)p(+| + 11)}

� 1 + 1 + w

2
+ (1 + p)(1 + w)

4
, (B8)

for all p and w if u1 = 1. It remains to consider, for case A,
the boundary points u0 = 0 and u0 = 1. The case u0 = 0
corresponds to a deterministic assignment of outcome “+”
and is included in case B. By choosing analogously to before
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(see also [53]) the optimal states for the measurements with
u0 = u1 = 1, one obtains that in this case,

1
4 (2 + w

√
2 − 2x)(2 + p

√
2 + 2x). (B9)

It can be shown that at the critical points, this function
is smaller or equal to 1 + 1+w

2 + (1+p)(1+w)
4 , and therefore

with projective effects one cannot exceed this value. We will
proceed with case B and choose, without loss of generality,
u0 = 0. It is then immediate to see that the Bloch vectors of
the optimal states have to be chosen parallel or antiparallel to
the Bloch vector of measurement 1. For this choice of states
and measurements, one obtains

B1 = 1
4 [8 + (1 − p)(1 − w)u2

1 + 2u1(−1 + p + 2w)].

It can be checked that for the boundary points u1 = 0 and u1 =
1, this implies that B1 = 2 and B1 = 1 + 1+w

2 + (1+p)(1+w)
4 .

Moreover, it can be easily seen that the point where the deriva-
tive with respect to u1 vanishes corresponds to a minimum. In
summary, this concludes the proof that B1, for given length of
the Bloch vectors of the states w and p, is upper bounded by
max(2, 1 + 1+w

2 + (1+p)(1+w)
4 ). Recall that this bound is tight

and that 2 � 1 + 1+w
2 + (1+p)(1+w)

4 if and only if w � 1−p
3+p ,

which proves the theorem. �

APPENDIX C: PROOF OF THE UPPER BOUND
ON THE CONCURRENCE BASED ON THE PURITY

OF A SUBSYSTEM

It should be noted that the upper bound on the concurrence
given by C(�AB) � minX∈{A,B}

√
2{1 − tr[(�X )2]} has already

been proven for arbitrary bipartite d-dimension systems in
[21]. For the sake of completeness, here we provide an (al-
ternative, but similar) proof for two-qubit states.

Proof. We will use, in the following, that in the two-qubit
case, it has been proven in [59] that for any �, there exists
some decomposition into pure states, � = ∑r

i=1 pi|φi〉〈φi|,
such that C(�) = C(|φi〉) for all i ∈ {1, . . . , r}. Moreover,
recall that it holds, for the pure states |φi〉, that C(|φi〉) =√

2{1 − tr[(�i
A)2]} with �i

A = trB(|φi〉〈φi|). Note that due to
C(|φi〉) = C(|φ j〉), we have, therefore,

tr
[(

�i
A

)2] = tr
[(

�
j
A

)2] ≡ Q(�). (C1)

From this equation, it follows that

tr[(�A)2] =
∑
i, j

pi p j tr
(
�i

A�
j
A

)

�
∑
i, j

pi p j

√
tr
[(

�i
A

)2]√
tr
[(

�
j
A

)2]

=
∑
i, j

pi p j tr
[(

�i
A

)2] = Q(�). (C2)

The inequality arises from the Cauchy-Schwarz inequality
(using the Hilbert-Schmidt inner product for each summand)
and then we use Eq. (C1) and

∑
pi = 1. Hence, we have that

C(�) = C(|φi〉) =
√

2[1 − Q(�)] �
√

2{1 − tr[(�A)2]}.
(C3)

One can show analogously that the bound also holds true for
�B, which proves the statement. �
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