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The time evolution of spin chains has been extensively studied for transferring quantum states between
different registers of a quantum computer. Nonetheless, in most of these protocols only one sender-receiver
pair can share the channel at each time. This significantly limits the rate of communication in a network of
many users because they can only communicate through their common data-bus sequentially and not all at the
same time. Here, we propose a protocol in which multiple users can share a spin chain channel simultaneously
without having crosstalk between different parties. This is achieved by properly tuning the local parameters
of the Hamiltonian to mediate an effective interaction between each pair of users via a distinct set of energy
eigenstates of the system. We introduce three strategies with different levels of Hamiltonian tuning; each might
be suitable for a different physical platform. All the three strategies provide very high transmission fidelities with
vanishingly small crosstalk. The protocol is robust against various imperfections and we specifically show that
our protocol can be experimentally realized on currently available superconducting quantum simulators.
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I. INTRODUCTION

Spin chains have been proposed [1] and extensively stud-
ied [2,3] as a data-bus for transferring quantum information
between different registers through their natural time evolu-
tion. The main advantage of these protocols is their minimal
demand for dynamical control and their resilience against
disorder and imperfections [4,5]. The drawback, however,
is the dispersive nature of their dynamics, which scrambles
the information among various degrees of freedom [6,7].
Many proposals have been put forward to fix this issue.
By engineering the couplings [8–10] or tuning long-range
exchange interactions [11] one can achieve a linear dispersion
relation and thus fulfill perfect state transfer. Simpler designs
excite the system only in the linear zone of its dispersion
relation and achieve pretty good transfer fidelities [12–14].
Dual rail systems [15,16] and d-level spin chains [17,18]
can asymptotically reach perfect state transfer. Adiabatic at-
tachment and detachment of qubits [19–21] and their faster
versions through a shortcut to adiabaticity [22,23], optimal
control [24], and machine learning assisted transfer [25] have
also been suggested. Routing information between different
nodes of a graph can be achieved by a combination of ferro-
magnetic and antiferromagnetic couplings [26,27] and encod-
ing the information in a decoherence-free subspace protects
it against noise [28]. Exploiting projective measurements for
encoding [29] and countering dephasing [30] can enhance
quality of transfer and local rotations [31,32] may yield
an enhanced communication rate. In addition, an important
class of protocols relies on inducing an effective end-to-end
interaction between the sender-receiver sites through either
weak boundary couplings [33–39] or large magnetic fields

*RozhinYousefjani@uestc.edu.cn
†abolfazl.bayat@uestc.edu.cn

near the ends [40,41]. Some of the proposals have been
experimentally implemented in coupled optical fibers [42,43],
nuclear magnetic resonance devices [44], optical lattices [45],
and superconducting quantum simulators [46].

In almost all the existing state-transfer protocols only one
sender-receiver pair can use the spin-chain channel at each
time. This significantly reduces the communication rate, a
bottleneck that may ultimately limit the speed of big quantum
computers. Although multiple qubit communication [39,41]
has been proposed, they have no freedom to adjust the choice
of the sender and receiver qubits, which are predetermined
by the symmetry of the system and thus still work as a single
sender-receiver protocol with multiple qubits. Alternatively, to
increase the rate, bidirectional protocols have been proposed
but they have poor fidelities [47]. In classical communica-
tion networks (e.g., telecommunication systems), however,
the frequency bandwidth of the channel is divided between
multiple users who can use the channel simultaneously. This
can be achieved by modulating the signal of each sender-
receiver pair with a different carrier signal, each with a distinct
frequency, and send it through a common channel. Since
each sender’s data lie in a different frequency bandwidth, the
corresponding receiver can access the relevant information
by using a proper frequency filter. Consequently, crosstalk
is prevented and the communication rate is significantly en-
hanced. A key open question is whether one can develop a
quantum counterpart of classical communication systems and
allow multiple users simultaneously communicating through a
common channel.

In this paper, we address this critical problem by propos-
ing a communication scheme which is based on tuning the
local parameters at the sender and receiver sites. These local
tunings, proposed in three different strategies, excite different
sets of energy eigenstates for communication of each pair
of users and thus result in high transmission fidelities and
negligible crosstalk. We have also shown that our protocol is
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FIG. 1. Schematic of simultaneous quantum communication be-
tween multiple users across a spin-chain channel. By optimizing the
local parameters at the sender and receiver sites, multiple pairs can
use the channel simultaneously.

stable against various sources of imperfections and propose to
implement it on superconducting quantum simulators.

II. THE MODEL

We consider M sender-receiver pairs in a way that pair α

(α = 1, . . . , M) communicates between the qubits Sα (sender)
and Rα (receiver). All pairs share a common spin-chain data
bus between their sender and receiver sites. A schematic of the
system is given in Fig. 1. The goal is to establish simultaneous
high-fidelity communication between any pair of (Sα, Rα )
while suppressing the crosstalk between (Sα, Rβ ) with α �= β.
The spin-chain channel consists of N spin-1/2 particles which
interact via the Hamiltonian

Hch = J
N−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

) + B0
(
σ z

1 + σ z
N

)
, (1)

where σ x
i , σ

y
i , and σ z

i are the Pauli operators acting on site i,
J is the spin-exchange coupling and B0 is the magnetic field
in the z direction acting only on sites 1 and N . All senders
(receivers) are coupled to the first (last) site of the channel.
The interaction between the users’ qubits and the channel is
given by

HI = J0

M∑
α=1

(
σ x

Sα
σ x

1 + σ
y
Sα

σ
y
1 + σ x

Nσ x
Rα

+ σ
y
Nσ

y
Rα

)

+
M∑

α=1

Bα

(
σ z

Sα
+ σ z

Rα

)
, (2)

where J0 is the coupling between the users and the channel
and Bα is the magnetic field acting on the pair user α (see
Fig. 1). Without loss of generality, we assume that the sender
α initially sets its qubit in an arbitrary, possibly unknown, state

∣∣ψSα

〉 = cos

(
θα

2

)
|0〉 + eiφα sin

(
θα

2

)
|1〉,

α = (1, . . . , M ), (3)

where θα and φα are the angles determining the quantum state
on the surface of the Bloch sphere. The rest of the spins,
including all receivers and the channel, are initialized in |0〉.
Therefore, the state of the whole system becomes

|�0〉 = ∣∣ψS1

〉⊗· · ·⊗∣∣ψSM

〉 ⊗ |0ch〉 ⊗ ∣∣0R1

〉⊗· · ·⊗∣∣0RM

〉
, (4)

where |0ch〉 = |0, . . . , 0〉 shows the state of the channel.
Since this quantum state is not an eigenstate of the total
Hamiltonian H = Hch+HI , it evolves as |�(t )〉 = e−iHt |�0〉.
At any time t the state of the receiver sites are given by
ρRα

(t ) = TrR̂α
(|�(t )〉〈�(t )|), where TrR̂α

means tracing over
all sites except Rα . To quantify the quality of transfer between
the sender α and receiver β we define a fidelity matrix as
Fαβ (t,
) = 〈ψSα

|ρRβ
(t )|ψSα

〉 (α, β = 1, . . . , M), where 
 =
{θ1, . . . , θM , φ1, . . . , φM} accounts for the input parameters of
the senders. To get an input-independent quantity one can take
the average of these fidelities over all possible initial states on
the surface of the Bloch spheres for all M users:

Fαβ (t ) =
∫

Fαβ (t,
)d�1 · · · d�M, (5)

where d�α = 1
4π

sin(θα )dθαdφα is the normalized SU(2)
Haar measure. For our Hamiltonian H that conserves the total
number of excitations, we provide a general form of Fαβ (t ) in
Appendix A. The diagonal term Fαα (t ) quantifies the average
fidelity of the transmission between the sender-receiver α,
and the off-diagonal term Fαβ (t ) with α �= β accounts for
the crosstalk between the users α and β. Our goal is to
maximize the transmission fidelities Fαα simultaneously and
meanwhile keep the crosstalk fidelities Fαβ around 0.5 (i.e.,
no crosstalk), through controlling the Hamiltonian parameters
B0, J0, and Bα . This goal can be pursued by maximizing the
average of the transmission fidelities FT = ∑M

α=1 Fαα/M in
time and, consequently, keeping the average of the crosstalk
FC = ∑M

α �=β=1 Fαβ/M(M − 1) around 0.5. Our protocol can
be understood in two steps: The first step is to induce an
effective end-to-end transmission between the senders and the
receivers, namely, confining the excitations to the subspace
{S1, . . . , SM , R1, . . . , RM} and leaving the channel close to
|0ch〉 at all times, by either decreasing J0/J [30,33–36] or
increasing B0/J [40,41]. The second step is to separate the
communication between each of the M pairs by tuning the
Bα individually. In the following, we first restrict ourselves to
the case of two pairs, i.e., M = 2, and consider three different
strategies to maximize Fαα with minimum crosstalk. Then,
we extend the results to larger M.

A. Strategy 1 (B0 = 0)

In the first scenario, inspired by Refs. [30,33–36] for
single-user end-to-end communication, we put B0 = 0 and
consider J0 � J . This choice of parameters creates an effec-
tive direct interaction between the sender subspace {S1, S2}
and the receiver ones {R1, R2}. To suppress the crosstalk and
block the flow of information between the two subspaces
of {S1, R1} and {S2, R2} we apply external fields B1 and B2

to make them energetically off-resonance from each other.
By sitting at the site R1, one can see that the information
arrives from both senders. In Fig. 2(a) we plot the average
transmission fidelity FT = (F 11 + F 22)/2 as a function of
time in a chain of N = 20 when the parameters are tuned to
B1/J = 0.35, B2/J = −0.25, and J0/J = 0.04. As the figure
shows, the average transmission fidelity evolves and at a
certain time t = τ , it peaks to a very high value. In practice, at
t = τ the receivers need to decouple their qubits from the data
bus or equivalently swap the quantum state from the receiver
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FIG. 2. Strategy 1: (a) The average transmission fidelity FT and
FC as functions of time in a spin chain of length N = 20. The Hamil-
tonian parameters are taken to be J0/J = 0.04, B1/J = 0.35, B2/J =
−0.25. (b) The obtainable average transmission fidelity Fmax

T and
corresponding average crosstalk FC (τ ) as functions of N . (c) The
optimal time τ , optimized over the interval τ ∈ [1, 500]/J , at which
the average transmission fidelity peaks. (d) The optimal parameters
Bopt

1 /J ∈ [0.05, 0.5] and Bopt
2 /J ∈ [−0.5, −0.05] when the optimal

coupling is found to be Jopt
0 /J = 0.04. All plotted quantities are

dimensionless.

site to their registers. However, if this decoupling procedure or
performing the swap operation happens at a slightly different
time, then the fidelity may not be at its maximum. However,
this error can largely be corrected. The fast oscillations in the
average transmission fidelity are due to local magnetic field
Bα and the slow dynamics following the envelope of the curve
is due to the main Hamiltonian. If the decoupling procedure
has a small time delay �t , then the error is mainly due to
fast oscillation and a local rotation of the form eiBασ z�t on site
Rα largely compensates this time delay because it cancels the
effect of local rotation by Bα . Interestingly, as Fig. 2(a) shows,
the crosstalks FC = (F 12 + F 21)/2 remain low and oscillate
around 0.5, resulting in negligible crosstalk between the two
communicating parties. Apart from the average fidelity one

may also consider the best and worst cases among all pos-
sible states, which is discussed in detail in Appendix B. To
optimize the parameters, one can fix a time window, e.g.,
we choose [1, 500]/J , for the dynamics of the system and
then find optimal values for all the Hamiltonian parameters
(namely Jopt

0 , Bopt
1 , and Bopt

2 ) as well as the time τ at which
all receivers should simultaneously assume their quantum
states. The corresponding transmission fidelities, for optimal
parameters, are F

max
αα = Fαα (τ ). In Fig. 2(b) we plot Fmax

T =
(F

max
11 + F

max
22 )/2 as well as FC (τ ) = [F 21(τ ) + F 12(τ )]/2 as

functions of N . Remarkably, for all channels of length N < 40
the fidelity Fmax

T remains above 0.95, while FC (τ ) remains
around 0.5, showing negligible crosstalk. At the chosen time
window, the optimal coupling is Jopt

0 /J = 0.04 for all values
of N and its weak dependence on the length is consistent
with the results of Ref. [30]. For the sake of completeness,
the optimal time τ and the optimal local fields Bopt

1 /J ∈
[0.05, 0.5], Bopt

2 /J ∈ [−0.5,−0.05] for any given system size
N are reported in Figs. 2(c) and 2(d), respectively. The local
magnetic fields are chosen from intervals with opposite signs
to maximize their difference while keeping their amplitude
small. The optimal values for the local fields are not mono-
tonic for different system sizes, making the behavior of τ

slightly irregular, too.

B. Strategy 2 (J0 = 1)

Our second strategy is adopted from Refs. [40,41] and is
accomplished by applying a strong field B0 on the ending
sites of the channel and instead keep the couplings uniform,
i.e., J0 = J (see Fig. 1). To see the attainable fidelities for this
strategy we plot FT and FC as functions of time in Fig. 3(a)
for a chain of N = 20 in which B0/J = 21, B1/J = 0.3, and
B2/J = −0.35. As the figure shows, FT reaches very high
values and peaks at t = τ . Remarkably, FC fluctuates around
0.5, showing very small crosstalk. Analogous to the previous
strategy, one can optimize the time of the evolution as well
as the Hamiltonian parameters within a chosen time window,
here again [1, 500]/J . In Fig. 3(b) we report the maximum
of the average transmission fidelity Fmax

T and the average
crosstalk FC (τ ) as functions of N . This figure shows that,
while the transmission fidelities for both parties achieve above
0.95, the crosstalk between them remains negligible. The opti-
mal time τ for obtaining such quantities is plotted in Fig. 3(c).
The optimal times oscillate with length because the chosen
time window allows for several peaks and their maximum
changes as the length varies. The other optimal parameters
such as Bopt

0 /J ∈ [1, 40] and as well as Bopt
1 /J ∈ [0.05, 0.5],

Bopt
2 /J ∈ [−0.5,−0.05] are presented in Figs. 3(d) and 3(e),

respectively. The results show that, by tuning 20 � B0/J �
30, one needs weak local magnetic field Bα for obtaining
high-fidelity simultaneous transmission.

C. Strategy 3

The third scenario is a hybrid of both strategies outlined,
and the performance of the channel is investigated when both
B0 and J0 are optimized. Again we fix the time window to
[1, 500]/J and optimize the time and the parameters B0, J0,
B1, and B2 to maximize the average transmission fidelity and
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FIG. 3. Strategy 2: (a) The average transmission fidelity FT and
FC as functions of time in a chain of N = 20. The Hamiltonian
parameters are taken as B0/J = 21, B1/J = 0.3, and B2/J = −0.35.
(b) The obtainable average transmission fidelity Fmax

T and corre-
sponding crosstalk FC (τ ) as functions of N . (c) The optimal time
τ , optimized over the interval τ ∈ [1, 500]/J , at which the average
transmission fidelity peaks. (d) The optimal parameter Bopt

0 /J ∈
[1, 40]. (e) The optimal parameters Bopt

1 /J ∈ [0.05, 0.5] and Bopt
2 /J ∈

[−0.5,−0.05]. All the plotted quantities are dimensionless.

keep the average crosstalk negligible. In Table I we report the
maximum fidelity Fmax

T , the corresponding crosstalk FC (τ ),
the optimal time τ , as well as the optimized values of the

Hamiltonian parameters for different values of N . Clearly,
Jopt

0 and Bopt
0 are midway between the two previous strategies,

namely, Jopt
0 becomes larger in comparison with the optimal

values in strategy 1 and Bopt
0 becomes smaller than the case of

strategy 2. A comparison between different strategies shows
that, for long chains strategy 3 is superior to the others in terms
of fidelity, indicating that a hybrid optimization of both B0 and
J0 outperforms the optimization of individual parameters.

III. MULTIPLE USERS

The proposed protocol with all three strategies can be
generalized to more than two users. No matter how many
users we consider, one can always tune the parameters to
keep the crosstalk negligible. To confirm this expectation, we
study the performance of two strategies 1 and 2 for the case
of three users. Our results show that, in different spin chains,
three users can simultaneously communicate with the average
transmission fidelity FT = ∑3

α=1 Fαα/3 more than 0.94 while
keeping the average crosstalk FC = ∑3

α �=β=1 Fαβ/6 around
0.5 within the timescale of [1, 500]/J . In Table II we report
Fmax

T and FC (τ ), the optimal time τ and also corresponding
optimal parameters for some system sizes by adopting the
first and second strategies. The transmission fidelities remain
steadily high and comparable with the case of two users.
Interestingly the optimal coupling strength in the first strategy
is obtained as Jopt

0 /J = 0.04 for all considered chains, which
is very close to the case of 2 users.

IV. BILOCALIZED EIGENSTATES

The main reason behind the achievement of high trans-
mission fidelities and low crosstalk is the emergence of bilo-
calized eigenstates whose excitations are mainly localized at
sender and receiver sites. Since these bilocalized eigenstates
are the only ones involving in the dynamics of the system,
the channel mostly remains in the state |0ch〉. Consequently,
an effective end-to-end interaction is generated between the
sender and receiver qubits. The emergence of bi-localized
qubits is mainly due to the engineering of J0 and B0 and then,
to minimize the crosstalk, further localizing the excitations
between each pair (Sα, Rα ) is achieved by tuning Bα . See
Appendix B for details.

TABLE I. Strategy 3: The maximum of FT and corresponding FC (τ ) in optimal time τ for strategy 3 in chains with different lengths.
The optimal exchange coupling, Jopt

0 /J ∈ [0.01, 1], the optimal local magnetic field on the ends of the chain, Bopt
0 /J ∈ [0, 40], and the optimal

values of the local fields on the users’ qubits, Bopt
1 /J ∈ [−0.5, 0.5], Bopt

2 /J ∈ [−0.5, 0.5] for providing the presented results.

N 5 10 15 20 25 30 35 40

Fmax
T 0.990 0.983 0.977 0.977 0.971 0.966 0.975 0.965

FC (τ ) 0.498 0.499 0.501 0.496 0.497 0.506 0.501 0.499
τ 463 419 474 488 492 499 469 500
Jopt

0 /J 0.04 0.04 0.8 0.8 0.8 0.85 0.85 0.7
Bopt

0 /J 0 0 20 20 21 25 24 21
Bopt

1 /J 0.35 0.45 −0.25 −0.3 −0.35 −0.25 −0.3 −0.35
Bopt

2 /J −0.5 −0.1 0.2 0.4 0.45 0.4 0.25 0.45
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TABLE II. Three users: The maximum of FT and corresponding FC (τ ) in optimal time τ using strategy 1 or 2 in different chains. Here,
the optimal exchange coupling Jopt

0 /J for strategy 1 has been optimized over the interval Jopt
0 /J ∈ [0.01, 1] and the optimal local magnetic field

on the ends of the chain Bopt
0 /J for strategy 2 has been optimized over Bopt

0 /J ∈ [1, 40]. In both strategies, the optimal values of the local fields
on user qubits, Bopt

1 /J , Bopt
2 /J , and Bopt

3 /J , have been optimized over the interval [−1.5, 1.5].

N 5 6 7 8 9 10 20

Strategy 1

Fmax
T 0.975 0.961 0.984 0.960 0.966 0.966 0.958

FC (τ ) 0.499 0.497 0.499 0.500 0.496 0.501 0.498
τ 446 438 474 428 447 438 435
Jopt

0 /J 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Bopt

1 /J −0.4 0.1 −0.5 −0.5 −0.45 −0.5 −0.35
Bopt

2 /J −0.3 0.15 −0.4 0.15 −0.35 0.1 0.25
Bopt

3 /J 0.35 0.2 0.3 −0.05 −0.4 −0.45 −0.05

Strategy 2

Fmax
T 0.972 0.974 0.971 0.975 0.967 0.967 0.949

FC (τ ) 0.499 0.498 0.497 0.499 0.499 0.498 0.501
τ 459 378 491 500 450 472 500
Bopt

0 /J 26 21 27 26 25 25 28
Bopt

1 /J −1.1 −1.1 −0.6 −0.8 −0.4 −0.7 −1
Bopt

2 /J 0.5 0.1 0.4 0.1 1.0 0.0 0.6
Bopt

3 /J 1.1 1.4 1.2 1.0 0.3 1.2 1.2

V. PERFORMANCE UNDER REALISTIC CONDITIONS

In the previous sections we illustrated that multiple users
can accomplish high-fidelity simultaneous communication
with negligible crosstalk by tuning Hamiltonian parameters.
However, acquiring this result is based on four ideal as-
sumptions; namely, (i) the chain is initially prepared in the
state |0ch〉, (ii) the couplings are accurately adjusted to their
specific values, (iii) the local magnetic fields can be tuned
perfectly, and (iv) the system is isolated from its environment.
In this section, we investigate imperfect scenarios in which
these assumptions are relaxed. For the sake of brevity and
without loss of generality, we focus on two-user communi-
cation considering only our first and second strategies. Since
the third strategy is a hybrid of the first two, the impact of
the imperfections will approximately be the average of the
impacts on the first two strategies.

A. Thermal initial state

In practice, thermal fluctuations may create excitation in
the channel. To investigate the effect of finite temperatures,
we consider the initial state of the channel to take the form of
a thermal ensemble

ρch = e−Hch/KBT

Tr[e−Hch/KBT ]
, (6)

where T is temperature and KB is the Boltzmann constant.
To see the impact of finite temperature T , we compute the
average fidelity Fαβ (t ), for which we provide a compact form
in Appendix A. Figure 4 shows the maximum of transmission
fidelities in a chain of length N = 6 for our first two strate-
gies. As the figure shows, by increasing the temperature, the
fidelity first remains very high, showing a plateau at small
temperatures, and then monotonically decreases to eventually

reach the classical threshold of 2/3 for transferring quantum
information [1]. The width of the plateau is determined by
the energy gap of the finite system and is consistent with
previous observations [48]. Interestingly, Fig. 4 shows that,
while the strategy 1 gives higher fidelity at low temperatures,
at higher temperatures strategy 2 gives better transmission
quality. Therefore, depending on the temperature of the sys-
tem, one strategy may result in a higher fidelity than the other.

B. Random coupling

The second assumption in our protocols is the homogeneity
of the Hamiltonian Hch and tunability of J0. However, the
exchange couplings may not be as precise as we expect
and random variations are inevitable during fabrication. For

0 0.5 1 1.5 2
0.6

0.7

0.8

0.9

1

FIG. 4. Thermal initial state: The maximum of transmission
fidelities for strategies 1 and 2 as a function of dimensionless param-
eter KBT/J in a spin chain of length N = 6. In preparing these plots,
the Hamiltonian parameters are tuned as {J0/J = 0.04, B1/J =
0.15, B2/J = −0.05} and {B0/J = 26, B1/J = 0.3, B2/J = −0.2},
respectively, for strategies 1 and 2.
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FIG. 5. Random coupling: (a) The maximum average transmis-
sion fidelity for various values of δ as a function of δ0 in a spin chain
of length N = 8 for strategy 1. The Hamiltonian parameters are taken
as J0/J = 0.04, B1/J = 0.15, and B2/J = −0.05. (b) The maximum
average transmission fidelity for strategy 2 as a function of δ0 in a
spin chain with N = 8. The Hamiltonian parameters are tuned as
B0/J = 25, B1/J = 0.25, and B2/J = −0.15. All plotted quantities
are dimensionless.

investigating how such randomness affects the quality of
our protocols, we assume that the first terms of Eqs. (1)
and (2) are updated as J

∑N−1
i=1 (1 + ji )(σ x

i σ x
i+1 + σ

y
i σ

y
i+1) and

J0
∑M

α=1(1 + j0α )(σ x
Sα

σ x
1 + σ

y
Sα

σ
y
1 + σ x

Nσ x
Rα

+ σ
y
Nσ

y
Rα

), respec-
tively. Here, ji ∈ [−δ,+δ] and j0α ∈ [−δ0,+δ0] are uni-
formly distributed random variables with zero means. We
generate 100 different random Hamiltonians, according to
these distributions, for each value of δ and δ0, and obtain
the maximum average fidelity Fmax

T . By averaging over all
these random realizations one gets 〈Fmax

T 〉 as a parameter to
quantify the quality of transfer. In Fig. 5(a), we depict the
results for different values of δ as a function of δ0 in a spin
chain of length N = 8 when strategy 1 is adopted. The pro-
tocol shows very robust behavior, even for a strong disorder
with strength δ0 = 0.15. In Fig. 5(b) we plot the transmission
fidelity 〈Fmax

T 〉 as a function of δ in a chain of length N = 8
when strategy 2 is adopted. In comparison with strategy 1,
the fidelity is more susceptible to randomness and thus decays
faster. Nonetheless, for even a strong disorder with strength
δ = 0.1, the fidelity 〈Fmax

T 〉 still remains above 0.92.

C. Inaccurate local magnetic fields

The key point for the success of our protocol is to properly
adjust the local magnetic fields, namely, Bα and B0. The

0 0.05 0.1 0.15

0.92

0.94

0.96

0.98 (a)

0 0.05 0.1 0.15
0.92

0.93

0.94

0.95
(b)

FIG. 6. Inaccurate local magnetic fields: (a) The maximum av-
erage transmission fidelity for strategy 1 as a function of η in a
chain with N = 8 spins. The Hamiltonian parameters are adjusted
as J0/J = 0.04, B1/J = 0.15, and B2/J = −0.05. (b) The maximum
average transmission fidelity for various values of η0 as a function
of δ0 in a spin chain with N = 8 by adopting strategy 2. The
Hamiltonian parameters are tuned as B0/J = 25, B1/J = 0.25 and
B2/J = −0.15. All plotted quantities are dimensionless.

inaccuracy in tuning these fields may affect the obtainable
fidelities. To investigate this effect, analogous to the previous
section, we assume B0 and Bα , are random variables that vary
around average values Bopt

0 and Bopt
α , respectively. So, the co-

efficient of the second terms of Eqs. (1) and (2) are considered
to be Bopt

0 (1 + b0) and Bopt
α (1 + bα ), respectively, where b0 ∈

[−η0, η0] and bα ∈ [−η, η] are uniformly distributed random
variables with zero means. For each value of η0 and η we
repeat the procedure for 100 random realizations to get the
average fidelity 〈Fmax

T 〉. In Fig. 6(a) the average transmission
fidelity 〈Fmax

T 〉 is plotted as a function of η for a chain of
length N = 8 by using our first strategy. The fidelity shows
fairly stable behavior and remains almost steady around 0.92
after a short decay. In Fig. 6(b) we plot the same quantity
for our second strategy for various choices of η0. Again the
fidelity has a stable behavior against disorder in the magnetic
field, even up to η = 0.15.

D. Dephasing

A central aspect of all quantum processes in a real-world
scenario is dephasing. It destroys the coherent superposition
of quantum states and results in a classical mixture. In a
typical quantum state-transfer protocol, the channel and users
are not well isolated from the environment and might be
disturbed by the effect of surrounding fluctuating magnetic or
electric fields. This yields to random level fluctuations in the
system and affects the fidelity of transmission. For fast and
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FIG. 7. Dephasing: (a) The average transmission fidelity for
strategies 1 and 2 as a function of dephasing rate γ /J in a
spin chain of length N = 8. The Hamiltonian parameters are
taken as {J0/J = 0.04, B1/J = 0.15, B2/J = −0.05} and {B0/J =
26, B1/J = 0.3, B2/J = −0.2}, respectively, for strategies 1 and 2.
(b), (c) The average transmission fidelity as a function of N for three
values of γ /J and strategies 1 and 2, respectively. In preparing these
plots the Hamiltonian parameters are tuned such that, if γ = 0, the
results for FT are equal with their maximum values for the relevant
strategy and N .

weak random-field fluctuations, i.e., in the Markovian limit,
the evolution of the system can be described by a quantum
master equation as

dρ(t )

dt
= −i[H, ρ(t )] + γ

∑
i

[
σ z

i ρ(t )σ z
i − ρ(t )

]
, (7)

where the first term on the right-hand side is the unitary
evolution of the system and the second term is the dephasing
which acts on all the qubits involved with the rate γ . The
fidelities Fαβ (t ) (with α, β = 1, . . . , M) can be computed
by using Eq. (A4) in Appendix A. To see the destructive
effect of dephasing, Fig. 7(a) plots the maximum average
transmission fidelity as a function of γ in a chain of length
N = 8 with 2 users for our first two strategies. Clearly, by

increasing the strength of the noise, the quality of transmission
decreases for both strategies. Nonetheless, for the dephasing
rate γ < 1.5 × 10−3J the fidelity remains above the classical
threshold 2/3. To finalize our analysis, Figs. 7(b) and 7(c)
depict the fidelity as a function of length N for three values
of γ , using strategy 1 and 2, respectively. The results show
that the obtainable transmission fidelity only changes by the
value of γ and not the system size N . This is because the
channel qubits are hardly populated and thus the Lindbladian
terms acting on channel qubits hardly change the state of the
system. It is worth mentioning that the slight fluctuations in
the maximum values of the average transmission fidelity is
because of the dependency of τ on the system size N .

VI. EXPERIMENTAL PROPOSAL

The best physical platform to provide the XX Hamil-
tonian with the required controllability of our protocol is
superconducting coupled qubits. Recently, they have been
used for simulating nonequilibrium dynamics of many-body
systems for single-user perfect state transfer [46], many-
body localization [49,50], spectrometry [51], and quantum
random walks [52]. In such devices, the exchange coupling
varies between J ≈ 10–50 MHz, the dephasing time is T2 	
10–20 μs (i.e., γ = 50 kHz) and the local energy splitting,
equivalent to magnetic fields in our protocol, can be tuned
up to 800 MHz (namely B/J ≈ 16) [46,49–52]. Adopting
our strategy 2, for a system of length N = 8 and exchange
coupling J = 50 MHz, one can tune the energy splittings to be
B0 = 600 MHz (i.e., B0/J = 12), B1 = 50 MHz (i.e., B1/J =
1), and B2 = −35 MHz (i.e., B2/J = −0.7). These parame-
ters result in FT > 0.96 for an optimal time of τ 	 2.6 μs, in
the absence of decoherence. Considering the dephasing rate
γ /J = 10−3, the fidelity FT is estimated to be ≈0.75 which
is still above 2/3.

VII. CONCLUSION

Spin chains provide fast and high-quality data buses for
connecting different registers. However, in the absence of si-
multaneous communication between different sender-receiver
pairs, the speed of computation will be ultimately limited by
the waiting time required for the sequential use of the channel.
In this article, we address this key issue by introducing a
protocol for simultaneous quantum communication between
multiple users sharing a common spin chain data bus. Our pro-
posal, presented in three different strategies, is based on creat-
ing an effective end-to-end interaction between each sender-
receiver pair and yields very high transmission fidelities. In
each proposed strategy, different sets of local parameters are
optimized so that each pair of users communicate through a
different energy eigenstate of the system. Since the energy
of each communication channel is off-resonance with the
others, the crosstalk is negligible. While all the three strategies
provide high transmission fidelities, the third strategy, which
is a hybrid control of both the coupling and the magnetic field,
outperforms the others. Moreover, increasing the number of
users does not significantly change the transmission time,
which means that the rate of communication is enhanced
proportional to the number of users. Our protocol is shown
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to be stable against various imperfections and can also be
realized in current superconducting quantum simulators.
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APPENDIX A: AVERAGE FIDELITY MATRIX FOR
EXCITATION-CONSERVING HAMILTONIAN

The key mathematical objects needed to analyze the perfor-
mance of simultaneous multiple-user quantum communica-
tion are Fαβ (t ) evaluated by integration over the Bloch sphere
of all possible pure input states. To obtain a general form of
these quantities, let us start by rewriting Eq. (4) in the main
text as

|�0〉 =
∑

i

ai(
)|i〉 ⊗ |0ch〉 ⊗ |0R〉, (A1)

where the vectors |i〉 = |i1, . . . , iM〉 (iα = 0, 1), |0ch〉 =
|0, . . . , 0〉, and |0R〉 = |0, . . . , 0〉 denote the state of the
senders, channel, and receivers, respectively. The coefficient
ai(
) is an abbreviation for ai(
) = ai1,...,iM (
) and contains
all the parameters 
 = {θ1, . . . , θM , φ1, . . . , φM} which are

input by the M senders. Considering the evolved state of the
overall system as ρ(t ) = U [|�0〉〈�0|], with U [•] = e−iHt •
eiHt , the output state of each receiver can be obtained by
tracing out the other qubits as

ρRα
(t ) =

∑
i, j

ai(
)a∗
j (
)�α

i, j (t ), α = 1, . . . , M, (A2)

where �α
i, j (t ) = TrR̂α

(U [|i〉〈 j| ⊗ |0ch〉〈0ch| ⊗ |0R〉〈0R|]) and
TrR̂α

means tracing over all sites except the receiver Rα . Sub-
stituting Eq. (A2) in the fidelity Fαβ (t,
) = 〈ψSα

|ρRβ
(t )|ψSα

〉
(α, β = 1, . . . , M) and taking the average over all possible
initial states on the surface of the Bloch spheres for all users
results in

Fαβ (t ) =
∫

Fαβ (t,
)d�1 · · · d�M

= 1

2
+ 1

3 × 2M

⎧⎨
⎩

∑
i|iα=0

〈0|�β

i,i|0〉 −
∑
i|iα=1

〈0|�β

i,i|0〉

+
∑

i,i′|iα �=i′α

〈iα|�β

i,i′ |i′α〉
⎫⎬
⎭, (A3)

where the first and second summations contain all |i〉 in which
iα = 0 and iα = 1, respectively, while the last summation
includes all |i〉 and |i′〉 that differ only in iα .

For the sake of completeness, we present the form of Fαβ (t ) for a protocol with two users (i.e., M = 2). In this case the vector
|i〉 belongs to {|00〉, |01〉, |10〉, |11〉}. So, using Eq. (A3) results in

F 1β (t ) = 1

2
+ 1

12

{〈0|�β

00,00 + �
β

01,01|0〉 − 〈0|�β

10,10 + �
β

11,11|0〉 + 〈0|�β

00,10 + �
β

01,11|1〉 + 〈1|�β

10,00 + �
β

11,01|0〉},
F 2β (t ) = 1

2
+ 1

12

{〈0|�β

00,00 + �
β

10,10|0〉 − 〈0|�β

01,01 + �
β

11,11|0〉 + 〈0|�β

00,01 + �
β

10,11|1〉 + 〈1|�β

01,00 + �
β

11,10|0〉}. (A4)

APPENDIX B: STATE DEPENDENCY

So far, we have averaged the fidelities over all possible
inputs. However, some may argue that it is better to know the
performance of the protocol in the worst scenario, namely,
the minimum obtainable fidelity. Note that this minimum
fidelity may only happen for very special cases in the Bloch
sphere and thus it is always good to study both the minimum
and average fidelities together. To investigate the fidelity for
different states, in Fig. 8(a), we plot the transmission fidelity
FT = (F 11 + F 22)/2 as a function of polar angles θ1 and θ2

[see Eq. (4) in the main text] in a chain of length N = 20
by adopting strategy 1. Here, azimuthal angels φ1 and φ2 are
chosen as random numbers within the interval [0, 2π ]. The
same quantity for strategy 2 is plotted in Fig. 8(b). As one can
see, in both strategies, FT takes its minimum when θ1, θ2 ∈
[π/2, π ], i.e., the two states are in the southern hemisphere of
the Bloch sphere. This is due to the special choice of the state
of the channel in which all qubits are initialized in |0〉, namely,
at the north pole of the Bloch sphere. The figures clearly show
that the fidelity FT is mostly very high and only in some
special states takes lower values. In providing these plots, the
Hamiltonian parameters are adjusted on their optimal values.

APPENDIX C: RELEVANT EIGENSTATES LOCALIZED
AT BOUNDARIES

Making an effective end-to-end transmission between the
senders and the receivers will be possible by either decreasing
the coupling between users and the chain, i.e., choosing
J0/J � 1 or applying a strong magnetic field B0/J on the end
sites of the chain. In both cases, the excitations are confined
to the users’ sites {S1, . . . , SM , R1, . . . , RM} and leave the
channel almost unexcited at all times. Besides, by tuning the
local magnetic fields Bα , one can further localize the excita-
tions between each pair (Sα, Rα ) to minimize the crosstalk.
To investigate these issues we use the inverse participation
ratio (IPR), which will be defined below, to quantify the
degree of localization of each Hamiltonian’s eigenstate in
different sites (see, e.g., Ref. [40]). Here, without loss of
generality, we restrict ourselves to the case of two users and
discuss in particular the locality of eigenstates in qubit sites
{S1, S2, R1, R2}. Since the XX Hamiltonian considered here
commutes with the total spin in the z direction and hence
conserves the number of excitations the dynamic of the overall
system in the case of two users is restricted to evolve within
the zero-, one-, and two-excitation subspaces. Let |n〉 (n ∈
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FIG. 8. State dependency: The transmission fidelity for strategies
(a) 1, and (b) 2 as a function of polar angels θ1 and θ2 in a spin chain
of length N = 20. Here azimuthal angels φ1 and φ2 are chosen as ran-
dom numbers belonging to [0, 2π ]. The Hamiltonian parameters for
strategies 1 and 2 are taken as {J0/J = 0.04, B1/J = 0.35, B2/J =
−0.25} and {B0/J = 21, B1/J = 0.3, B2/J = −0.35}, respectively.
All plotted quantities are dimensionless.

{S1, S2, 1, . . . , N, R1, R2}) and |n1, n2〉 with n1 < n2 (n1 ∈
{S1, S2, 1, . . . , N, R1} and n2 ∈ {S2, 1, . . . , N, R1, R2}) denote
the positions of the excitations in the one- and two-excitation
subspaces, respectively. Moreover, consider {ε(μ)

k } and {|ε(μ)
k 〉}

as the sets of the eigenvalues, in increasing order, and the
corresponding eigenstates of H (μ) (μ = 1, 2) which in turn
is the total Hamiltonian within the μ-excitation subspace.
Since the type and the number of eigenstates of H (1) and
H (2) are different, the IPR should be considered separately in
each subspace. In the one-excitation subspace, the degree of
localization of a given eigenstate |ε(1)

k 〉 can be calculated by
IPR1, which is defined as

IPR1 = 1∑
n

∣∣〈n∣∣ε(1)
k

〉∣∣4 . (C1)

When the eigenstate |ε(1)
k 〉 is highly localized, i.e., |〈n|ε(1)

k 〉| is
nonzero for only one particular position state |n〉, Eq. (C1)
gets its minimum value 1 and, when the eigenstate is uni-
formly distributed on all sites, this quantity attains its maxi-
mum value N .

Likewise, for the eigenstates of H (2), IPR2 is

IPR2 = 1∑
n1,n2

∣∣〈n1, n2

∣∣ε(2)
k

〉∣∣4 . (C2)

Analogous to the previous case, the minimum value of IPR2

is equal to 1, which indicates that the eigenstate |ε(2)
k 〉 is

completely localized in a specific position state |n1, n2〉 and
its maximum value, O(N2), appears when excitations are
distributed on all sites uniformly. In the following, we exploit
IPR1 and IPR2 to peruse the localization of the Hamiltonian’s
eigenstates for the first and second strategies outlined in the
main text.

The first strategy is based on weakly coupling the users
to the chain (i.e., J0/J � 1 and B0 = 0). The degree of lo-
calization for the Hamiltonian’s eigenstates in one-excitation
subspace is reported in Fig. 9(b) for a chain of length N = 12.
Clearly, two couples of degenerate eigenstates |ε(1)

k 〉 are highly
localized with IPR1 = 2. By considering the numerator of
IPR1, i.e., |〈n|ε(1)

k 〉|4 plotted in Fig. 9(a) as a function of n
and k, one can find that the excitations of these eigenstates are
strongly localized on sites (S1, R1) and (S2, R2). Analogous
results can be obtained for eigenstates with two excitations.
In Fig. 9(c) the localization’s degree IPR2 is plotted as a
function of k. Strong localization IPR2 = 1 take places for
two eigenstates at position states |S1, R1〉 and |S2, R2〉. Besides
these two, there are four eigenstates with middle energies
that show non-negotiable localization, i.e., IPR2 < 5. Our
results show that these eigenstates have remarkable overlap
only with |S1, S2〉, |S1, R2〉, |S2, R1〉, and |R1, R2〉. Note that,
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FIG. 9. Localization for J0 � J: (a) The localization value |〈n|ε(1)
k 〉|4 of eigenstates with one excitation in different position state |n〉.

(b) The inverse participation ratio IPR1 as a function of the number of eigenstates in the one-excitation subspace. (c) The inverse participation
ratio IPR2 as a function of the number of eigenstates in the two-excitation subspace. These quantities are obtained in chains of length N = 12
with the Hamiltonian’s parameters as J0/J = 0.04, B0/J = 0, B1/J = 0.4, and B2/J = −0.5.
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FIG. 10. Localization for B0 > J: (a) The localization value |〈n|ε(1)
k 〉|4 of eigenstates with one excitation in a different position state |n〉.

(b) The inverse participation ratio IPR1 as a function of the number of eigenstates in the one-excitation subspace. (c) The inverse participation
ratio IPR2 as a function of the number of eigenstates in the two-excitation subspace. These quantities are obtained in chains of length N = 12
with the Hamiltonian’s parameters which are considered as J0/J = 1, B0/J = 25, B1/J = 0.15, and B2/J = −0.45.

in producing Fig. 9, the Hamiltonian’s parameters are set as
B1/J = 0.4, B2/J = −0.5, and J0/J = 0.04.

Excitation confinement to the users’ qubits can be also
established by applying magnetic field B0 on the end sites
of the chain (corresponding to the second strategy outlined
in the main text). This is shown in Fig. 10(b) for eigenstates
in one-excitation subspace in a chain of length N = 12. In
contrast with the previous case, the excitations are localized
not only on users’ sites but also on the first and last sites
of the chain [see Fig. 10(a)]. Obviously, in the presence
of B0 two eigenstates corresponding to the lowest energy
are extremely localized at the endest sites of the chain i.e.,
(1, N ). It should be emphasized that these eigenstates can

never be populated because of the barriers made by local
magnetic field B0. The rest of the two-couple eigenstates
with IPR1 	 2 are highly localized in user positions {S1, R1}
and {S2, R2}. In Fig. 10(c), the localization of |ε(2)

k 〉 is also
considered. Our results show that, while there are three
eigenstates with IPR2 = 1 that completely overlap with three
states |1, N〉, |S1, R1〉, and |S2, R2〉, the others with remark-
able localization (i.e., IPR2 < 5) have superposition with the
states belonging to {|S1, 1〉, |1, R1〉, |S1, N〉, |N, R1〉, |S2, 1〉,
|1, R2〉, |S2, N〉, |N, R2〉, |S1, S2〉, |S1, R2〉, |S2, R1〉, |R1, R2〉}.
Note that in Fig. 10 the parameters of the Hamilto-
nian are tuned as B1/J = 0.15, B2/J = −0.45, B0/J = 25,
and J0/J = 1.
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