
PHYSICAL REVIEW A 102, 012417 (2020)

Training Gaussian boson sampling distributions

Leonardo Banchi ,1,2 Nicolás Quesada,3 and Juan Miguel Arrazola3

1Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
2INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy

3Xanadu, Toronto, Ontario, Canada M5G 2C8

(Received 21 April 2020; accepted 4 June 2020; published 15 July 2020)

Gaussian boson sampling (GBS) is a near-term platform for photonic quantum computing. Applications have
been developed that rely on directly programming GBS devices, but the ability to train and optimize circuits
has been a key missing ingredient for developing new algorithms. In this work, we derive analytical gradient
formulas for the GBS distribution, which can be used for training devices using standard methods based on
gradient descent. We introduce a parametrization of the distribution that allows the gradient to be estimated
by sampling from the same device that is being optimized. In the case of training using a Kullback-Leibler
divergence or log-likelihood cost function, we show that gradients can be computed classically, leading to fast
training. We illustrate these results with numerical experiments in stochastic optimization and unsupervised
learning. As a particular example, we introduce the variational Ising solver, a hybrid algorithm for training GBS
devices to sample ground states of a classical Ising model with high probability.
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I. INTRODUCTION

Gaussian boson sampling (GBS) is a special-purpose plat-
form for photonic quantum computing. It was proposed as
a method to build photonic devices capable of performing
tasks that are intractable for classical computers [1,2]. Since
then, several quantum algorithms based on GBS have been
introduced [3], with applications to graph optimization [4–6],
graph similarity [7,8], point processes [9], and quantum chem-
istry [10,11]. These algorithms rely on strategies to carefully
program GBS devices, typically by encoding a suitable sym-
metric matrix into the GBS distribution.

Yet many quantum algorithms rely on the ability to train
the parameters of quantum circuits [12], a strategy inspired by
the success of neural networks in machine learning. Examples
include quantum approximate optimization [13,14], varia-
tional quantum eigensolvers [15], quantum feature embed-
dings [16,17], and quantum classifiers [18]. Training is often
performed by evaluating gradients of a cost function with
respect to circuit parameters, then employing gradient-based
optimization methods [19,20]. Deriving similar methods to
train GBS devices is a missing piece for unlocking new
algorithms, particularly in machine learning and optimization.

In this work, we derive analytic gradients of the GBS dis-
tribution, which can be used to train the device using gradient-
based optimization. We derive a general gradient formula that
can be evaluated in simulators, but is not always accessible
from hardware. We then introduce a specific parametrization
of the GBS distribution that expresses the gradient as an
expectation value from the same distribution. Such gradients
can be evaluated by sampling from the same device that is
being optimized. Using this parametrization, we show that for
Kullback-Leibler divergence or log-likelihood cost functions,
analytical gradients can be evaluated efficiently using classical
methods, leading to fast training. We illustrate these results

with numerical experiments in stochastic optimization and
unsupervised learning.

As a specific application for our training scheme, we intro-
duce the variational Ising solver (VIS). In this algorithm, as in
the variational quantum eigensolver [15], a parametric circuit
is optimized to approximate the ground state of a Hamiltonian.
Similarly to the quantum approximate optimization algorithm
[13,14,21], we focus on combinatorial optimization problems
where the Hamiltonian can be expressed as a classical Ising
model. Both the variational eigensolver and the quantum
approximate optimization algorithm are tailored for near-term
qubit-based quantum computers, while VIS is tailored for
near-term GBS devices. We use a parametric circuit that
creates a particular Gaussian state, and iteratively update the
Gaussian state using a gradient-based hybrid strategy based
on outcomes coming from either photon-number-resolving
detectors or threshold detectors.

The paper is organized as follows. In Sec. II, we provide
a short review of GBS. In Sec. III, we review the stochastic
optimization and unsupervised learning tasks covered in this
work. In Sec. IV we present the main theoretical contributions
of this paper: we derive the analytical gradient formulas and
introduce a suitable parametrizations of the GBS distribution
that enables the measurement of the gradient in a quantum
device. Finally, in Sec. V, we provide numerical examples
demonstrating the ability of VIS to approximate the solu-
tion to certain combinatorial optimization problems, and the
ability to train GBS distributions using classical gradient
formulas. Conclusions are drawn in Sec. VI. A summary of
the main results is shown in Table I.

II. GAUSSIAN BOSON SAMPLING

In quantum optics, the systems of interest are optical
modes of the quantized electromagnetic field. The quantum
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TABLE I. Summary of the main results.

General gradient formula Eq. (21)
Efficiently measurable gradients Eq. (29)
Classically computable gradients Eq. (33)

state of m modes can be specified by its Wigner function
W (q, p), where q, p ∈ Rm are known, respectively, as the po-
sition and momentum quadrature vectors. Gaussian states are
characterized by having a Wigner function that is Gaussian.
Consequently, Gaussian states can be completely specified by
their first and second moments, namely two m-dimensional
vectors of means q̄, p̄ and a covariance matrix �. For our
purposes, it is more convenient to work with the complex-
normal random variable α = 1√

2h̄
(q + i p) that has mean ᾱ =

1√
2h̄

(q̄ + i p̄) and covariance matrix V .
When measuring a Gaussian state ρ in the photon-number

basis, the joint probability of observing ni photons in mode
i, is given by PA(n̄) = 〈n̄|ρ|n̄〉, where n̄ = (n1, . . . , nm) is the
vector of outcomes, |n̄〉 = |n1, . . . , nm〉 is a product of Fock
states, and the matrix A, defined below, uniquely identifies
the state ρ. As shown in Ref. [1], the above probability can be
written as

PA(n̄) = 1

Z
Haf(An̄⊕n̄)

n1! · · · nm!
, (1)

with the following definitions:

A = X (1 − (V + 1/2)−1), (2)

X :=
[

0 1
1 0

]
, (3)

1

Z :=
√

det(1 − XA). (4)

We now explain the notation used in Eq. (1). For a matrix B ∈
Cm×m the notation Bn̄ indicates the matrix constructed from B
as follows. If ni = 0, the ith row and column are deleted from
B. If ni > 0, the ith row and column are repeated ni times.
In the case of A ∈ C2m×2m as in Eq. (1), this procedure is
performed with the vector n̄ ⊕ n̄ = (n1, . . . , nm, n1, . . . , nm).

The Hafnian of a 2m × 2m matrix A is defined as [22]

Haf(A) =
∑

μ∈PMP(2m)

∏
(i, j)∈μ

Ai, j, (5)

where Ai, j is the (i, j) entry of the symmetric matrix A =
AT and PMP is the set of perfect matching permutations,
the possible ways of partitioning the set {1, . . . , 2m} into
disjoints subsets of size two. The Hafnian is �P-hard to ap-
proximate for worst-case instances [23] and the runtime of the
best known algorithms for computing Hafnians of arbitrary
matrices scales exponentially with m [24]. Using techniques
from Ref. [25], it has been argued that sampling from a
GBS distribution cannot be done in classical polynomial time
unless the polynomial hierarchy collapses to third level [1].

For pure Gaussian states, it holds that A = A ⊕ A∗ and A ∈
Cm×m is a symmetric matrix that can be decomposed as

A = Udiag(λ1, . . . , λm )UT, (6)

where 0 � λi < 1. The probability distribution is then

PA(n̄) = 1

Z
|Haf(An̄)|2
n1! · · · nm!

. (7)

The mean photon number is given by

〈n〉 =
m∑

i=1

λ2
i

1 − λ2
i

, (8)

which can be adjusted by rescaling the matrix A → cA for an
appropriate parameter c > 0.

III. TRAINING THE GBS DISTRIBUTION

In this section, we briefly review the training tasks consid-
ered in this work: stochastic optimization and unsupervised
learning. Here and throughout the paper, given a vector of
parameters θ = (θ1, θ2, . . . , θd ), we use ∂θ as a shorthand for
the gradient ( ∂

∂θ1
, ∂

∂θ2
, . . . , ∂

∂θd
). Similarly, we employ ∂θ j to

denote ∂
∂θ j

.

A. Stochastic optimization

It has been recently shown that certain optimization prob-
lems in graph theory can be solved by sampling solutions
from a properly configured GBS device [4,6]. This was made
possible by encoding graphs into the GBS distribution [26]
and exploiting the fact that this distribution outputs, with high
probability, photon configurations n̄ that have a large Hafnian
Haf(An̄).

We consider the more general problem of optimizing the
GBS distribution directly from the samples, without requir-
ing a theoretical scheme to optimally program the device.
Consider a function H (n̄) that associates a cost to the set of
positive integers nk sampled from the GBS distribution. Fixing
the symmetric matrix A = A(θ ) where θ is a set of variational
parameters, the cost is given by

C(θ ) = En̄∼PA(θ ) (n̄)[H (n̄, θ )] ≡
∑

n̄

H (n̄)PA(θ )(n̄). (9)

Our goal is to optimize the Gaussian state, encapsulated by the
2M × 2M matrix A(θ ), in order to minimize the cost function.
Suppose that there are certain choices of the parametrization
such that the gradient ∂θC(θ ) can be either efficiently com-
puted numerically or estimated via sampling on a physical
device. In such cases it is possible to minimize the average
cost C(θ ) using the update rule

θ → θ − η ∂θC(θ ), (10)

where η > 0 is a learning rate. Alternatively, other gradient-
based optimization algorithms can be used [27,28].

We show that, for some parametrizations of the Gaussian
state, it is possible to write

∂θC(θ ) = En̄∼PA′ (θ ) (n̄)[G(n̄)], (11)

namely it is possible to write the gradient of C(θ ) as an
expectation value of a different function G(n̄) with respect to
a possibly different GBS distribution PA′(θ )(n̄). A GBS device
can then be used to sample from this new distribution and
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obtain an empirical gradient

∂θC(θ ) ≈ 1

T

T∑
t=1

G(n̄(t ) ), (12)

from the samples {n̄(1), . . . , n̄(T )}. The parameters are then
iteratively updated using the gradient estimate

θ → θ − η
1

T

T∑
t=1

G(n̄(t ) ). (13)

B. Unsupervised learning

In a standard unsupervised learning scenario, data are
assumed to be sampled from an unknown probability distri-
bution Q(n̄), and a common goal is to reproduce the statis-
tics of the data. This is done by introducing a parametric
approximation P(n̄) of the unknown distribution Q(n̄), and
then iteratively updating the parameters in such a way that
the data sequence matches the samples from the model dis-
tribution P(n̄). Training can be performed by minimizing a
suitably chosen cost function, such as the Kullback-Leibler
(KL) divergence

DKL[Q, P] =
∑

x

Q(x) ln
Q(x)

P(x)
. (14)

Thanks to the results of this paper, we can use the GBS
distribution PA(θ )(n̄) as a model. In this distribution, the
parameters are those entering into the covariance matrix of
the Gaussian state, and hence into the A matrix via Eq. (2).
We call θ the set of parameters that we are allowed to vary
in the Gaussian state. These can be either physical parameters
such as squeezing or multimode transmissivities, or can be
mathematical parameters that depend on the physical ones,
possibly in a complex way. The KL divergence between
the unknown data distribution and a GBS distribution with
parameters θ is

Cdata (θ ) = DKL[Pdata (n̄), PA(θ )(n̄)]. (15)

Its gradient is given by

∂θCdata (θ ) = −
∑

n̄

Pdata (n̄) ∂θ ln PA(θ )(n̄)

= En̄∼Pdata [−∂θ ln PA(θ )(n̄)]. (16)

In practice, instead of an explicit expression for the data
distribution Pdata (n̄), a training set {n̄(1), . . . , n̄(T )} is provided.
This is interpreted as a collection of samples from the data dis-
tribution. Averages are defined with respect to these samples:

En̄∼Pdata [−∂θ ln PA(θ )(n̄)] = − 1

T

T∑
t=1

∂θ ln PA(θ )(n̄
(t ) ). (17)

We show that for certain choices of the parametrization, it
is possible to compute the derivatives ∂θ ln PA(θ )(n̄), allowing
for an efficient training of the GBS distribution.

IV. ANALYTICAL GRADIENTS

In this section we obtain gradient formulas for the GBS
distribution, which represent some of the main results of
this paper. We first derive a general formula expressing the
gradient for arbitrary parametrizations. Then we proceed by
introducing a strategy, the WAW parametrization, which al-
lows gradients for arbitrary cost functions to be computed
as expectation values over GBS distributions. Moreover, for
specific cost functions, we show that gradients can be effi-
ciently calculated classically. Finally, we extend our gradient
formulas to GBS with threshold detectors, and derive other
algorithms based on reparametrization or on the projected
subgradient method, which have different applicability.

A. General formula

We now derive the gradient of the GBS distribution.
Thanks to Eq. (1), PA(n̄) = 1

Z
Haf(An̄⊕n̄ )

n1!···nm! can be expressed as

∂θPA(n̄) =
(

∂θ

1

Z

)
Haf(An̄⊕n̄)

n1! · · · nm!
+ 1

Z
∂θHaf(An̄⊕n̄)

n1! · · · nm!
. (18)

Note that in this section we avoid writing the explicit de-
pendence of A on θ to simplify the notation. As we find in
Appendix A, the derivatives in Eq. (18) can be calculated
analytically and the result is

∂θ

(
1

Z

)
= −1

2
Tr

[
1

Z
∂θA

X − A

]
, (19)

∂θHaf(An̄⊕n̄) =
2N∑
i = j

(∂θAn̄)i j Haf
(
A[i, j]

n̄⊕n̄

)
, (20)

where 2N , with N = ∑
k nk , is the dimension of the ma-

trix An̄⊕n̄. The submatrix A[i, j]
n̄⊕n̄ is constructed from An̄⊕n̄ by

removing rows (i, j) and columns (i, j). Combining these
results gives a general formula for the gradient of the GBS
distribution:

∂θPA(n̄) = −1

2
Tr

[
∂θA

X − A

]
PA(n̄)

+ 1

Z
1

n1! · · · nm!

2N∑
i = j

(∂θAn̄⊕n̄)i j Haf
(
A[i, j]

n̄⊕n̄

)
.

(21)

From the above equation we can also obtain the derivative of
the cost function C(θ ) in Eq. (9):

∂θC(θ ) =
∑

n̄

H (n̄)∂θPA(n̄)

= −1

2
En̄∼P(n̄)

[
Tr

(
H(n̄)

X − A∂θA
)]

+ Z−1

n1! · · · nm!

∑
n̄

H (n̄)
2N∑
i = j

(∂θAn̄⊕n̄)i jHaf
(
A[i, j]

n̄⊕n̄

)
.

(22)

The generalization to a θ -dependent cost function is straight-
forward.
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Equation (21) represents the first main result of this work.
Nonetheless, the quantities Haf(A[i, j]

n̄⊕n̄) are not proportional
to probabilities unless i = j + N or i + N = j [29], which
makes it challenging to express gradients as expectations over
the GBS distribution. It is currently an open question to define
a general strategy to estimate those quantities in GBS-like
experiments. Nevertheless, as we derive next, it is possible
to cast gradients as expectation values for carefully chosen
parametrizations of the matrix A.

B. WAW parametrization

We focus on the pure-state case, A = A ⊕ A∗, and replace
the matrix A with

AW = WAW, (23)

where Wk j = √
wkδk j and wk � 0. The generalization to

mixed states is studied in Appendix B. The symmetric matrix
A is kept fixed and the weights wk of the diagonal weight
matrix W are trainable parameters. The matrix A serves as a
model for the distribution and W encodes its free parameters.
We refer to this strategy as the WAW parametrization, in
reference to Eq. (23). Similar parametrizations have been
successfully used for training determinantal point processes in
machine learning [30]. The WAW parametrization represents
a mathematical abstraction to conveniently parametrize the
Gaussian state and evaluate its gradient, as we will see. For
any Gaussian state parametrized as in Eq. (23), we may get
the physical parameters via standard decompositions [31,32].

It is important that when updating parameters, the matrix
AW always corresponds to a physical Gaussian state. As
shown in Appendix B, if A is a valid matrix with singular
values contained in [0,1), AW is also valid whenever 0 � wk �
1. This condition can be enforced via reparametrization. The
condition wk � 0 is necessary to avoid introducing imaginary
numbers, while wk � 1 is sufficient to get a valid Gaussian
state. However, enforcing wk � 1 at each step is too restric-
tive, as the matrix elements in Eq. (23) can only diminish. As
we will show in Sec. IV F, a more general strategy consists
in allowing any positive value of wk , and then projecting the
matrix AW to the closest physical state. With this in mind, one
of the strategies we consider is to express wk (θ ) as

wk (θ ) = exp(−θT f (k) ), (24)

where f (k) = ( f (k)
1 , f (k)

2 , . . . , f (k)
d ) is a d-dimensional vector,

and θ = (θ1, θ2, . . . , θd ) is a vector of parameters. The condi-
tion 0 � wk � 1 can be satisfied by enforcing θT f (k) � 0 for
all k.

The Hafnian of AW can be factorized into independent
contributions from A and W [23]:

Haf(AW ) = Haf(A) det(W ). (25)

Inserting the above in Eq. (7) gives

PA,W (n̄) = 1

Z Haf(An̄)2
m∏

i=1

w
ni
i

ni!
, (26)

where the notation PA,W (n̄) is used as a reminder that the
distribution depends on both A and W . Since the Hafnian is
independent of the parameters wk , it is possible to express the

derivative of the distribution in terms of GBS probabilities.
Explicit calculations are done in Appendix A and the result is

∂wk PA,W (n̄) = nk − 〈nk〉
wk

PA,W (n̄), (27)

where 〈nk〉 is the average number of photons in mode k, which
can be calculated directly from the covariance matrix V :

〈nk〉 = Vk,k + Vk+m,k+m − 1

2
. (28)

The above can be generalized with a reparametrization of the
weights, namely wk = wk (θ ), so by the chain rule

∂θPA,W (n̄) =
m∑

k=1

(nk − 〈nk〉) PA,W (n̄)∂θ ln wk. (29)

Equation (29) represents the second main result of this work.
From Eq. (29) it is also possible to calculate the gradient of
cost functions

∂θC(θ ) = En̄∼PA,W (n̄)

[
m∑

k=1

H (n̄) (nk − 〈nk〉)∂θ ln wk

]
. (30)

Therefore, gradients can be obtained by sampling directly
from the distribution to estimate this expectation value.

C. Computing gradients classically

We now show that the gradient of the KL divergence is
straightforward to compute with the WAW parametrization.
Indeed since ∂θ ln P = ∂θ P

P , from Eq. (29) the gradient can be
written as

∂θCdata (θ ) = −En̄∼Pdata

[
m∑

k=1

(nk − 〈nk〉)∂θ ln wk

]

= −
m∑

k=1

(〈nk〉data − 〈nk〉GBS)∂θ ln wk, (31)

where we introduce the notation 〈nk〉GBS to distinguish the
average photon number of Eq. (28) from the expectation value
〈nk〉data, defined as 〈nk〉data = En̄∼Pdata [nk], or alternatively as

〈nk〉data = 1

T

T∑
t=1

n(t )
k , (32)

when the data distribution is defined in terms of a given
data set {n̄(1), . . . , n̄(T )}. When using the reparametrization of
Eq. (24), the gradient is given by

∂θCdata (θ ) =
m∑

k=1

(〈nk〉GBS − 〈nk〉data ) f (k). (33)

Equation (33) is the third main result of this work. This
expression can be further simplified by defining

Fdata :=
m∑

k=1

〈nk〉data f (k), (34)
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which depends only on the data and the choice of vectors f .
We then have

∂θCdata (θ ) =
m∑

k=1

〈nk〉GBS f (k) − Fdata. (35)

Once Fdata has been calculated, only m terms 〈nk〉GBS f (k) need
to be computed to obtain the gradient. This can be done in
O(m) time on a classical computer by using Eq. (28).

Finally, we note that the log-likelihood function

L(θ ) =
T∑

t=1

ln PA,W (n̄(t ) ), (36)

which is also often used in unsupervised learning [30], is
related to the cost function of Eq. (15) by the formula

Cdata (θ ) = 1

T

T∑
t=1

ln
1/T

PA,W (n̄(t ) )
= −L(θ )

T
− ln T, (37)

and therefore

∂θL(θ ) = −T ∂θCdata (θ ), (38)

meaning that the gradient formula of Eq. (35) can be used to
perform training for either of these two cost functions.

D. GBS with threshold detectors

Threshold detectors do not resolve photon number; they
click whenever one or more photons are observed. Mathemat-
ically, the effect of this detection on the GBS distribution can
be described by the bit string x̄ = (x1, x2, . . . , xm), obtained
from the output n̄ by the mapping

xk (n̄) =
{

0 if nk = 0,

1 if nk > 0.
(39)

The GBS distribution with threshold detectors was found
in Ref. [33] as

PA,W (x̄) = 1

Z Tor(XAW ), (40)

where AW = AW ⊕ AW and Tor(·) is the Torontonian func-
tion. This distribution does not factorize under the WAW
parametrization as in Eq. (25), which makes it challenging
to compute exact gradients. Instead, we note that whenever
〈nk〉 � 1 it holds that

〈xk〉GBS = 〈nk〉
〈nk〉 + 1

� 〈nk〉, (41)

where we have implicitly defined 〈xk〉GBS, the probability of
detecting at least one photon in mode k. The latter can be
computed efficiently as [6]

〈xk〉GBS = 1 − 1√
det(Q(k) )

, (42)

where Q = (1 − XA)−1 and Q(k) is the submatrix obtained
by keeping the (k, k + m) rows and columns of Q. Under this

approximation, and assuming 〈xk〉 ≈ 〈nk〉, Eqs. (30) and (33)
can be updated to obtain

∂θC(θ ) ≈ Ex̄∼Tor

[
m∑

k=1

H (x̄) ∂θ ln wk (xk − 〈xk〉GBS)

]
, (43)

∂θCdata (θ ) ≈
m∑

k=1

[〈xk〉GBS − 〈xk〉data] f (k), (44)

where x̄ ∼ Tor is a shorthand notation to say that x̄ are sam-
pled from Eq. (40), and expectations 〈xk〉data are taken with
respect to the data distribution. The opposite limit, 〈nk〉 � 1 is
studied in Appendix C. A better approximation to the gradient
in this limit is given by

∂θC(θ ) ≈ Ex̄∼Tor

[
H (x̄)

m∑
k=1

vk (x̄)∂θ ln wk

]
, (45)

where

vk (x̄) = max {〈nk〉(xk − 1), xk − 〈nk〉}. (46)

As we demonstrate in the Sec. V, these gradient formulas
work sufficiently well in practice for training GBS distribu-
tions. These approximate formulas are also a biased estimator
of the gradient, but it has been shown that convergence is
expected even with some biased gradient estimators [34].

E. Quantum reparametrization

In this section we discuss an alternative training mech-
anism with a fixed Gaussian state. Before considering the
application to GBS, we recall the general problem of stochas-
tic optimization, namely to minimize the average value of
a quantity that is estimated from sampled data. We assume
that the data are distributed with a parametric probability
distribution pθ (x) and the quantity to minimize is

C(θ ) = Ex∼pθ (x)[ f (x, θ )], (47)

where f (x, θ ) is an arbitrary function that depends on the
samples x and possibly on the parameters θ . The data distri-
bution pθ (x) changes if we update the parameters via training,
so at each step a certain number of new samples must be
obtained. Reparametrization is a common strategy [35] to
get an equivalent optimization problem to Eq. (47) with a
θ -independent distribution. It was recently employed to train
generative models using quantum annealers [36]. As shown
in Ref. [35], reparametrization is possible when a mapping
(x, θ ) → z exists such that

pθ (x)dx = q(z)dz, (48)

with a new probability distribution q(z). With the above
definition we can write

C(θ ) = Ez∼q(z)[ f (x(z, θ ), θ )], (49)

where data comes from a fixed, θ -independent distribution.
When the cost can be expressed this way, it is possible to
get a fixed number of samples before training and optimize
C(θ ) without having to generate new samples after each step.
Moreover, gradients obtained from Eq. (49) typically have a
lower variance.
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We show that this strategy can be applied to the WAW
parametrization because of the explicit form of Eq. (26). More
general parametrizations are studied in Appendix D. Indeed,
the cost function can be written in an alternative form where
the weights are shifted away from the distribution as

C(θ ) =
∑

n̄

H (n̄)PA,W (n̄) =
∑

n̄

HA(n̄,W )PA(n̄), (50)

where PA(n̄) is just Eq. (26) with W = 1 and, from Eq. (26),

HA(n̄,W ) = H (n̄)

√
det

(
1 − A2

W

)
det(1 − A2)

∏
j

w
n j

j . (51)

The extra numerical cost in computing HA(n̄,W ) is small, as
determinants and powers can be efficiently computed numer-
ically. Due to the formal analogy between the above equation
and Eq. (26) we find

∂HA(n̄,W )

∂wk
= HA(n̄,W )

nk − 〈nk〉
wk

, (52)

and, analogously to Eq. (30),

∂θC(θ ) = En̄∼PA(n̄)

[
m∑

k=1

HA(n̄,W )(nk − 〈nk〉)∂θ ln wk

]
.

(53)

The advantage of the above is that we can always sample from
the same reference state. This approach may be used when
there is a preferred choice for the A matrix, or when generat-
ing new samples is expensive. The next section discusses the
opposite scenario.

F. Projected subgradient method

In the WAW reparametrization, the matrix A is fixed and
must be set at the beginning, while the diagonal weight matrix
is updated. Here we discuss a more general strategy where A
is also updated at each step.

When following the gradient, it is important that the result-
ing matrix A always corresponds to a physical Gaussian state.
As discussed before, a sufficient condition to enforce this
constraint is to require that 0 � wk � 1 for all k, which can be
enforced via a convenient parametrization. An alternative is to
use the projected subgradient method, commonly employed
in constrained optimization problems [37,38]. For a generic
parametrized matrix A, the update rule reads

A → P[A − η∂C], (54)

where ∂C is a matrix with elements (∂C)i j = ∂Ai jC and P[A]
is a projection step that projects A to the closest matrix
corresponding to a physical Gaussian state. The projection
step is formalized explicitly in Appendix E as a semidefinite
program. The complexity of performing this projection is
comparable to matrix diagonalization.

We now show that we may combine gradient rules in the
WAW parametrization with the projected subgradient method
to directly update the matrix A during the optimization. As
outlined in the following algorithm, the strategy is to initialize
weights to wk = 1, update them by gradient descent, then

project the new WAW matrix to the closest physical state,
leading to a new matrix A′.

Formally, let A(i) be the matrix at step i. From an initial
choice A(0), each step performs the following operations.

(i) Set θ such that wk (θ ) = 1 for all k, e.g., set θk = 0 for
all k when using wk (θ ) = exp(−θT f (k) ).

(ii) At step i in the optimization, update the parameters θ

using θ → θ − η ∂θC(θ ) =: θnew, where ∂θC(θ ) is computed
using the Gaussian state with matrix WA(i)W .

(iii) Construct A(i+1)
W = W (θnew)A(i)W (θnew).

(iv) Set the updated matrix A(i+1) as

A(i+1) = P
[
A(i+1)

W

]
. (55)

Since in general some of the weights wk in W (θnew) will
satisfy wk > 1 after updating the θ parameters, the matrix
A(i+1)

W does not lead to a physical state, meaning the projection
step is nontrivial and the entire A matrix is updated during the
optimization. As such, this algorithm may be used when there
is no preferred choice for the matrix A, which can be learned
through this procedure.

V. APPLICATIONS AND NUMERICAL EXPERIMENTS

Here we apply the results of previous sections to train GBS
distributions. As a first example, we show how to identify, via
GBS, the ground state of a classical Ising model, which, to the
best of our knowledge, represents the first use of a GBS device
for such problems. We call the resulting algorithm variational
Ising solver, where our gradient formulas and optimization
strategies are used to train the GBS distribution to prefer-
entially sample low-energy states. In the second example,
we consider an unsupervised learning scenario where data
has been generated from a GBS distribution with a known
matrix A but unknown weights. We demonstrate in different
cases that classical gradient formulas can be employed to
train the GBS distribution to reproduce the statistics of the
data. In all examples, sampling from the GBS distribution
is performed using numerical simulators from the Walrus
library [39].

A. Variational Ising solver

We study a classical Ising Hamiltonian

H (x̄) = −
∑

i

hixi −
∑

i j

Ji jxix j, (56)

where x̄ = (x1, x2, . . . , xm) and xk = 0, 1. Finding the ground
state of H (x̄) is in general NP-hard, and many known NP-
hard models have a known Ising formulation [40]. We are
interested in finding a model distribution that samples the
Ising ground state with high probability. The output of GBS
with threshold detectors is a vector x̄ of binary variables,
which is well suited for Ising problems, so we consider it here.
The cost function for training is the average energy

E (W ) =
∑

x̄

H (x̄)PA,W (x̄) ≡ Ex̄∼PA,W (x̄)[H (x̄)], (57)

where PA,W (x̄) is the distribution of Eq. (40). The gradient
of this cost function with respect to the weights w can
be approximated via Eq. (43), when 〈nk〉 � 1, and using
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Eq. (45) when 〈nk〉 � 1. The exact gradient of E (W ), which
requires photon-number-resolving detectors, is introduced in
the Appendix F, while the various approximations that lead to
Eqs. (43) and (45) are discussed in Appendix C.

As a concrete example, we focus on the Ising formulation
of the maximum clique problem [41]. Given a graph G =
(V, E ) with vertex set V and edge set E , a clique is an induced
subgraph such that all of its vertices are connected by an edge.
The maximum clique problem consists of finding the clique
with the largest number of vertices. The NP-complete decision
problem of whether there is a clique of size K in a graph can
be rephrased as the minimization of the following Ising model
[40]:

HK (x̄) = cV HV (x̄) + cE HE (x̄), (58)

where cV , cE are positive constants and

HV (x̄) =
(

K −
∑
v∈V

xv

)2

, (59)

HE (x̄) = K (K − 1)

2
−

∑
(u,v)∈E

xuxv, (60)

with binary variables xv = {0, 1}. The above Hamiltonian
has ground-state energy E = 0 if and only if there is a
clique of size K ; otherwise E > 0. The corresponding NP-
hard problem of actually finding the maximum clique can
also be written as an Ising model, though the corresponding
Hamiltonian H is more complicated [40].

Although finding solutions to NP-hard problems requires
exponential time in a worst-case setting, we show that the
training of a GBS distribution, with A fixed as the graph’s
adjacency matrix, leads to a distribution that samples Ising
ground states with high probability. The adjacency matrix
provides a starting guess, while the weights are variationally
updated to get closer to the actual solution.

In Figs. 1 and 2 we study the empirical success probability
of sampling the bit string x̄gs that corresponds to the ground
state of an Ising Hamiltonian with cV = 2K and cE = 1.
The success probability is defined as the number of times
that we get x̄gs in 1000 samples. To simplify the numerical
calculations, the sampling algorithm is configured to output
a bit string with

∑
k〈xk〉 = K , as explained below. However,

since the condition
∑

k xk = K is not exactly enforced (e.g.,
via postprocessing), the final success probability is unlikely
to be exactly 1. Training is done using an estimation of
the gradient as in Eq. (45), obtained with 1000 samples per
step. At each step, the physicality of the state is enforced
by first mapping negative weights to zero, then normalizing
the weights so that they sum to one, and finally optimizing
a coefficient c in such a way that a Gaussian state with A
matrix c(WAW ) has

∑
k〈xk〉 = K . Note that the weights are

not reparametrized: they are directly optimized. The above
operations take just a few ms per operation, thanks to Eq. (42),
and effectively implement a projection step as in Sec. IV F.

In Fig. 1(a) we study a graph with eight vertices and a
single clique of K = 5 vertices, for which a sufficiently large
number of samples can be generated in a reasonable time.
The probability of sampling the ground state of the Ising
model is low, roughly 1.5%, when sampling from an untrained

FIG. 1. Success probability, namely the probability of sampling
the bit string corresponding to the ground state of the Ising model
(58), as a function of the number of steps, for the displayed graph.
The clique of size K = 5 is shown in red. In (a) there is a single
clique, while in (b) there are two degenerate cliques. Training is done
with 1000 samples per step.

distribution with A equal to the adjacency matrix of the graph.
However, using the WAW parametrization and updating the
parameters via the momentum optimizer [42], we observe that
the probability of sampling the ground state steadily increases
and is above 85% after a few steps.

In Fig. 1(b) we study a more challenging example: a graph
with ten vertices and two largest cliques of size K = 5, for
which the ground state of the corresponding Ising model is
degenerate. Nonetheless, we observe that the training algo-
rithm works almost as efficiently as with the simpler case
of Fig. 1. During training, one of the two ground states is
randomly selected and the algorithm keeps maximizing the
sampling probability of that bit string without jumping to
the other degenerate configuration. Running the algorithm
multiple times we observe that upon convergence, both de-
generate configurations can be obtained with essentially equal
probability.

In Fig. 2 we switch to random graphs. The top row il-
lustrates the effect of training for random Barabási-Albert
graphs, which are built starting from a clique of size K =
5. These graphs are more complex than those of Fig. 1
because they contain many cliques of size three and four.
We observe that training allows jumping from an initially
low success probability to one higher than 80% for sam-
pling the ground-state configuration. The bottom row shows
results obtained with random Erdős-Rènyi graphs with ten
vertices, constructed by adding an edge with probability p =
0.5. The graph in Fig. 1(d) has K = 5, while the graphs in
Figs. 1(e) and 1(f) have K = 4. In all cases, the training pro-
cedure increases the probability of sampling the ground-state
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FIG. 2. Success probability as a function of the number of steps, as in Fig. 1, for the displayed graph. Graphs (a), (b), (c) are random
Barabási-Albert graphs with ten vertices, built starting from a clique of five vertices and attaching new vertices, each connected to three
random nodes. Graphs (d), (e), (f) are random Erdős-Rènyi graphs with ten vertices and probability p = 0.5 of adding an edge between pairs
of vertices. Clique sizes are either four or five.

configuration, from initial values close to 0% to probabilities
larger than 65% after 100 steps.

B. Unsupervised learning

In unsupervised learning, data is unlabeled and the goal is
to train a model that can sample from a distribution induced
by the data. Here, data is generated by sampling from a GBS
simulator with threshold detectors that has been programmed
according to a matrix AW = WAW , where A is the adjacency
matrix of a graph, and a W is a weight matrix. The data
consists of 1000 samples from the distribution. For training,
the weight matrix is assumed to be unknown, and the goal
is to train a GBS distribution with the same A to recover the
weights that were used to generate the data.

We consider three examples. The first two cases explore
circulant graphs, with linearly increasing and decreasing
weights, respectively. These are configurations with a high
degree of symmetry. The final example is a random Erdős-
Rènyi graph with randomly chosen weights, hence a less
structured model. All graphs have 16 nodes.

In each case, 1000 samples are generated as the training
data, with a mean photon number 〈n〉 = 3. For training, we
employ the parametrization wk (θ ) = exp(−θT f (k) ), where
the vectors f (k) and parameter vectors θ are set to dimension
d = 16, equal to the number of vertices in the graph. The
vectors are chosen to satisfy f (k)

l = δkl such that wk (θ ) =
exp(−θk ). The cost function is the KL divergence, and we
employ the approximate gradient formula of Eq. (44). We set
a constant learning rate η = 0.1 and find good results when
initializing all weights to be small, so in all examples we set
θk = 5 for all k.

As shown in Fig. 3, optimization based on the gradi-
ent formula of Eq. (44) works well for all examples. The

weights of the model steadily and smoothly approach the
data weights, until the weights at the end of training closely
resemble those used to generate the training data. The entire
training takes only a few seconds when running on a standard
desktop computer. For our numerical calculations we use
a simple stochastic gradient descent algorithm, but a better
performance may be obtained with more advanced stochastic
optimization techniques [43].

VI. CONCLUSIONS

We have derived a general formula for the gradient of
the GBS distribution and have shown that, for specific
parametrizations of the Gaussian state, the gradients of rel-
evant cost functions take simple forms that can generally be
efficiently estimated through sampling, or for specific situa-
tions, computed classically. A summary of the main theoreti-
cal results is shown in Table I. Moreover, we have showcased
this framework for training GBS distributions by applying
it to problems in stochastic optimization and unsupervised
machine learning.

In stochastic optimization, we have introduced the varia-
tional Ising solver (VIS), a hybrid quantum-classical varia-
tional algorithm where the GBS device is used to generate
samples that can be mapped to a set of binary variables. We
have shown how to use the gradient formulas to train the
GBS device in order to maximize the probability of sampling
configurations that correspond to the ground state of a classi-
cal Ising model. Many questions still remain open, especially
in order to compare VIS with alternative algorithms, such
as VQE or QAOA, for qubit-based computers. For instance,
it would be interesting to study how to select the fixed A
matrix in the WAW parametrization, depending on the Ising
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FIG. 3. Results of training a GBS distribution in an unsupervised learning scenario. (Top row): The graphs whose adjacency matrix A is
used to generate the training data from a GBS simulator. The first two graphs are circulant graphs, and the third is a random Erdős-Rènyi
graph with edge probability 2/3. The weights for the first graph are linearly increasing, they decrease linearly for the second graph, and for
the random graph, they are chosen uniformly at random in the interval [0,1). The size of the vertices is proportional to the weights of the W
matrix. The goal of training is to recover these weights. (Middle row): The norm ‖W − Wmodel‖2 as a function of the number of steps in the
optimization. Here W is the weight matrix used to generate the data and Wmodel is the weight matrix of the model. (Bottom row): Bar graph of
the weights used to generate the data versus the weights of the trained model.

Hamiltonian. Moreover, it remains to be proven if VIS can
offer provable computational advantages against purely clas-
sical strategies, or whether any advantage is impossible.

In unsupervised learning, we have shown that for a specific
parametrization, the gradient of the Kullback-Leibler diver-
gence between an unknown data distribution and the GBS
distribution depends only the difference between the average
photon numbers 〈nk〉 of the two distributions. These averages
can be computed classically, leading to fast training, which we
show can be used to retrieve GBS parameters directly from
data. To the best of our knowledge, our results represent the
first algorithms to variationally use near-term GBS devices
to tackle optimization problems in combinatorial optimization
and machine learning.
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APPENDIX A: GRADIENT DERIVATIONS

We first focus on derivatives of Hafnians and show the
following result.

Proposition. The derivative of ∂θHaf(A(θ )) for a matrix A
that depends on a certain parameter θ is given by

∂θHaf(A) = 1

2

∑
j,ki

∑
i = j

(∂θA)i jHaf(A− j−i ), (A1)

where A− j−i is the submatrix of A where rows (i, j) and
columns (i, j) have been removed.

Proof. We follow Ref. [44]: given a set of non-negative
integers nk , where N = ∑m

j=1 nk is an even number, it holds
that

Haf(An̄) =
∫ m∏

j=1

dx j
e− 1

2 xT A−1x

det(2πA)1/2
xn1

1 . . . xnm
m , (A2)
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where A is an m × m matrix, and An̄ is constructed by repeat-
ing rows and columns of A as discussed in Sec. IV.

Assume that the matrix A = A(θ ) is parametrized by θ .
To calculate the derivative of the Hafnian, we use Jacobi’s
formula

∂θ det(A) = det(A)Tr[A−1∂θA], (A3)

so from the chain rule

∂θ det(A)−1/2 = − 1
2 det(A)−1/2Tr[A−1∂θA]. (A4)

Moreover,

∂θe− 1
2 xT A−1x = −1

2
e− 1

2 xT A−1x(xT ∂θA−1x)

= 1

2
e− 1

2 xT A−1x(xT A−1∂θAA−1x)

= 1

2

∑
k,�

e− 1
2 xT A−1xxkx�(A−1∂θAA−1)k�,

where we used ∂θ (A−1) = −A−1∂θAA−1. Inserting the above
equation in (A2) we get

∂θHaf(An̄) = 1

2

∑
k,�

(A−1(∂θA)A−1)k�Haf
(
An̄+ēk+ē�

)

− 1

2
Tr[A−1∂θA] Haf(An̄), (A5)

where ēk is the vector with elements (ēk )i = δki. However,
the above formula is not manifestly gauge invariant: since
the Hafnian does not depend on diagonal elements of the
matrix, neither should its derivative. Below we show how the
gauge symmetry can be explicitly restored. Without loss of
generality, consider a matrix An̄ with all nk = 1 that we simply
call A. The extended matrix Aēk+ē�

≡ An̄+ēk+ē�
in (A5) takes

the block form

Aēk+ē�
=

⎛
⎜⎜⎜⎜⎝

A11 . . . A1M A1k A1�

...
. . .

...
...

...
AM1 . . . AMM AMk AM�

Ak1 . . . AkM Akk Ak�

A�1 . . . A�M A�k A��

⎞
⎟⎟⎟⎟⎠. (A6)

Note that the above matrix has the elements Akk and A�� in
off-diagonal positions, so they contribute to its Hafnian. Now
we employ the Laplace-like expansion for the Hafnian [45]

Haf(A) =
∑
j =c

A jcHaf(A− j−c), (A7)

valid for any fixed c, where A− j−c is matrix A with rows
( j, c) and columns ( j, c) removed. Using the expansion (A7)
for Haf(A+ēk+ē�

) when c is the added column ē� [namely the
(M + 2)th column] we get

Haf
(
A+ēk+ē�

) = Ak�Haf(A) +
M∑

j=1

Aj�Haf
(
Aēk− j

)
, (A8)

where we used the fact that the index j in (A7) takes M +
1 values, as it runs from 1 to M and to the copy of the k’s

column. Inserting this equation into Eq. (A5) we get

∂θHaf(A) =1

2

M∑
k, j=1

(
(∂θA)A−1

)
jkHaf

(
Aēk− j

)
. (A9)

Using again Eq. (A7) with c equal to the added column ēk we
get

Haf
(
A+ēk− j

) =
∑
i = j

AikHaf(A−i− j ), (A10)

Inserting the above in Eq. (A9) we get

∂θHaf(A) = 1

2

∑
j,ki

∑
i = j

((∂θA)A−1) jkAikHaf
(
A−ē j−ēi

)
, (A11)

and the proposition follows. The above final form is indepen-
dent of the diagonal elements of A, as desired. �

We now focus on the gradient of the GBS distribution in
Eq. (18). Using (A1) with the matrix An̄, we get

∂θHaf(An̄) = 1

2

∑
i = j

(∂θAn̄)i j Haf(An̄−ē j−ēi ). (A12)

Finally to get ∂θ
1
Z = ∂θ

√
det(1 − XA) we can use (A3) to

write

∂θ det(B)1/2 = 1
2 det(B)1/2Tr[B−1∂θB]. (A13)

Calling B = 1 − XA, we have

Tr[B−1∂θB] = −Tr[B−1X∂θA]

= −Tr[(BX)−1∂θA]

= −Tr

[
1

X − A∂θA
]
, (A14)

since X = X −1. The above formula, together with (A13)
proves the resulting Eq. (19).

For a pure state A = A ⊕ A so we get

Ppure
A (n̄) =

√
det(1 − A2)

n̄!
Haf(An̄)2, (A15)

and

∂θPpure
A (n̄)

Ppure
A (n̄)

= − 1

2
Tr

[
2A

1 − A2
∂θA

]
+ 2

∂θHaf(An̄)

Haf(An̄)
. (A16)

Finally, we note that the formula (A1) for evaluating gra-
dients of the Hafnian function allows us to compute also the
gradient of matrix permanents. Indeed, from Ref. [45] we have

per(A) = Haf

(
0 A

AT 0

)
, (A17)

so we can use Eqs. (A1) and (A12) to get the gradient of the
matrix permanent.

Gradients in the WAW parametrization

Recall the GBS probability distribution in the WAW
parametrization

PA,W (n̄) =
√

det
(
1 − A2

W

)
Haf(An̄)2

∏
j

w
n j

j

n j!
. (A18)
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To write the gradient of the above distribution, we see that

∂wk

∏
j w

n j

j∏
j w

n j

j

=
{ nk

wk
if nk > 0,

0 otherwise.
(A19)

Then we get

∂wk PA,W (n̄) = nk

wk
PA,W (n̄)−1

2
PA,W (n̄)Tr

[
2AW

1− A2
W

∂wk WAW

]
.

(A20)

By explicit calculations

∂wkWAW = 1
2w

1
2 −1
k (|k〉〈k|AW + WA|k〉〈k|)

= 1
2w−1

k (|k〉〈k|WAW + WAW |k〉〈k|)
= 1

2w−1
k (|k〉〈k|AW + AW |k〉〈k|), (A21)

we then obtain

∂wk PA,W (n̄) =
(

nk

wk
− 1

wk
〈k|

[
A2

W

1 − A2
W

]
|k〉

)
PA,W (n̄)

= nk − 〈nk〉
wk

PA,W (n̄), (A22)

where 〈nk〉 is the average number of photons in mode k.

APPENDIX B: WEIGHT UPDATING

1. Spectral properties

When A has spectrum in [−1, 1] we show that, under some
conditions, even the matrix AW has the same property. This
corresponds to the requirement that

|〈x|AW |x〉| � 〈x|x〉 for each |x〉. (B1)

Let |y〉 = W 1/2|x〉 then

|〈x|AW |x〉| = |〈y|A|y〉 � 〈y|y〉| = |〈x|W |x〉| � 〈x|x〉, (B2)

where we used the fact that the eigenvalues of A are smaller
than one, while the last equality is true if

0 � wk � 1. (B3)

So if A was a valid parametrization for a pure-state GBS
distribution, then so is AW , provided that the weights satisfy
the above inequality. The conditions (B3) provide a sufficient
condition for having a valid AW matrix, which in general is
not necessary.

2. Generalization to mixed states

A sensible generalization of the update rule in Eq. (23) is
the following:

A → AW = W1/2AW1/2, (B4)

where W = W ⊕ W . In the case where A is block diagonal
then this rule indeed reduces to Eq. (23), which is of course
the desired limit behavior.

Now we would like to argue that the transformation in
Eq. (B4) also maps a valid A matrix corresponding to a
Gaussian state to another AW that corresponds to a Gaussian
state. Recall that the covariance matrix V of the Gaussian state
is related to the A matrix as [recall Eq. (2)]

A = X (1 − [V + 1/2]−1). (B5)

For V to be a valid quantum covariance matrix it needs to
satisfy the uncertainty relation

V + Z

2
� 0, (B6)

where Z = σ z ⊗ 1m. The update equation for A matrices can
be written in terms of the covariance matrix as

V → VW ,

= −12m

2
+

[
12m − W + W1/2

(
V + 12m

2

)−1

W1/2

]−1

.

(B7)

One would like to show that the matrix VW is a valid quantum
covariance matrix if V is a valid quantum covariance matrix,
i.e., that it satisfies VW + 1

2 Z � 0. A simple way to show this
is to first define the matrix V ε = V + ε12m, which is always a
valid quantum covariance matrix if V is also in this set. Then
defining V ε

W to be the matrix obtained by letting V → V ε in
Eq. (B7) one can easily show the following inequality:

V ε
W + 12m

2
�

[
(1m − W + ε−1W )−1 0

0 (1m − W + (1 + ε)−1W )−1

]
, (B8)

assuming Eq. (B6) holds. In the limit ε → 0, one has V ε → V , V ε
W → VW and[

(1m − W + ε−1W )−1 0
0 (1m − W + (1 + ε)−1W )−1

]
→ 12m

2
− Z

2
, (B9)

thus showing that indeed VW + Z/2 � 0 and VW is a valid covariance matrix.

APPENDIX C: VARIATIONAL ISING SIMULATION
WITH THRESHOLD DETECTORS

Numerical simulation of GBS is very complicated even for
small-scale problems, as the range of possible integer values
nk is possibly unbounded. Moreover, from the experimental
point of view, GBS requires NRDs, which are more complex

and less efficient than threshold detectors. GBS with threshold
detectors was introduced in Ref. [33] and it was proven that
the resulting sampling is still �P-hard. The use of threshold
detector formally results in the mapping (39), namely the kth
detector clicks only when nk > 0. We write xk = 1 in that
case, and xk = 0 otherwise. The outcome is then a collec-
tion of binary variables x̄, which are related to the number
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distribution via (39). As threshold detectors output a binary
variable, they are well suited for Ising model formulation. In
Appendix F we show that, when using number-resolving de-
tectors, exact gradients of the average energy can be obtained
via an extension of the Ising model H (x̄) = H (n̄), where all
numbers nk are mapped to xk = 0 if nk = 0 and xk = 1 if
nk � 1. When using threshold detectors, this extension not
required, as the output of the detectors is the desired binary
variable xk . However, we also need to consider the other
n-dependent terms in Eq. (F3).

Let Bx̄ = {n̄ : x̄(n̄) = x̄} be the set of all possible integer
sequences that produce the same binary string x̄ via Eq. (39).
Clearly, for fixed x, the set Bx̄ contains infinitely many se-
quences n̄. The probability

pTor,W,A(x̄) =
∑
n̄∈Bx̄

pA,W (n̄), (C1)

is the GBS probability with threshold detectors. On the other
hand, with these definitions, the energy gradient can be de-
composed as

∂E (w)

∂wk
=

∑
x̄

H (x̄)
∑
n̄∈Bx̄

nk − 〈nk〉
wk

pA,W (n̄).

The aim is to separate the second sum for using (C1). Indeed,
we may write∑

n̄∈Bx̄

nk pA,W (n̄) = ñk (x̄) pTor,A,W (x̄), (C2)

where

ñk (x̄) =
{∑

nk
nk pA,W (nk|x̄, xk=1) if xk = 1,

0 if xk = 0,
(C3)

and pA,W (nk|x̄, xk=1) is the conditional probability of having
nk photons given that the kth detector clicked and that the
other detectors produced the outcome x̄. With these definitions
we finally get

∂E (w)

∂wk
= Ex̄∼Tor

[
H (x̄)

ñk (x̄) − 〈nk〉
wk

]
, (C4)

where x̄ ∼ Tor is a shorthand notation to write that x̄ is
sampled from (C1). The above gradient is still exact, as no
approximations have been made so far. The expectation value
〈nk〉 is simple to get in a closed form from the Gaussian covari-
ance matrix, whereas the quantity ñk (x̄) is hard to estimate.
Nonetheless, we can use the fact that nk � 1 when xk = 1 to
write ñk (x̄) � xk . The above implies

∂E (w)

∂wk
�

∑
x̄

H (x̄)
xk − 〈nk〉

wk
pTor,A,W (x̄)

= Ex̄∼Tor

[
H (x̄)

xk − 〈nk〉
wk

]
, (C5)

namely the exact gradient is lower bounded by a quantity that
can be estimated with via GBS with threshold detectors. An
alternative estimation of the gradient is via the approximation
ñk (x̄) ≈ max{〈nk〉, 1}xk , so

∂E (w)

∂wk
≈ Ex̄∼Tor

[
H (x̄)

max {〈nk〉(xk − 1), xk − 〈nk〉}
wk

]
.

(C6)

While Eq. (C5) is always a lower bound to the exact gradient,
Eq. (C6) is just an approximation. However, we found that in
numerical experiments it performs very well.

For GBS with number-resolving detectors, Eq. (F2) pro-
vides an unbiased estimator of the gradient, so convergence
can be exactly proven for stochastic gradient descent algo-
rithms. On the other hand, Eqs. (C6) and (C5) represent a
biased estimator. Nonetheless, it has been shown that conver-
gence is expected even with some biased gradient estimators
[34].

APPENDIX D: GENERAL CONSIDERATIONS ON THE
QUANTUM REPARAMETRIZATION TRICK

To study a general form of the quantum reparametrization
trick for GBS, we write the cost function (9) as

C(θ ) =
∑

n̄

H (n̄)PA(θ )(n̄), (D1)

where A(θ ) is the θ -dependent A matrix of a Gaussian state
and n̄ is a vector of numbers, where ni is the number of
detected photons in mode i. The above cost function can be
written using quantum operators as

C(θ ) = Tr[Hρ(θ )], (D2)

where ρ(θ ) is a quantum state (in general, not necessarily
Gaussian) and

H =
∑

n̄

H (n̄)|n̄〉〈n̄|. (D3)

If we expand the trace in the Fock basis, then for a Gaussian
state with A matrix A(θ ) we get (D1). Now assume that

ρ(θ ) = Rθ [ρ0], (D4)

where Rθ is a quantum channel, namely a completely positive
trace preserving linear map, and ρ0 is a reference state that
does not depend on θ . Using the dual channel R∗

θ we find

C(θ ) = Tr[R∗
θ (H)ρ0], (D5)

and

∂θC(θ ) = Tr[ρ0 ∂θR∗
θ (H)]. (D6)

In (D2) the observable is θ independent, but the state ρ(θ )
changes at each step. On the other hand, in Eq. (D5) the quan-
tum state is always the same and the observable is changed.

GBS can be used for estimating the gradient in at least two
cases:

(i) When Rθ maps diagonal states (in the Fock basis) to
diagonal states. In that case

R∗
θ (H ) =

∑
n̄

HR(n̄, θ )|n̄〉〈n̄|, (D7)

for some HR(n̄|θ ) that depends on R. Calling A0 the A matrix
of ρ0 we find

C(θ ) =
∑

n̄

HR(n̄, θ )p(θ |A0), (D8)
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and

∂θC(θ ) =
∑

n̄

∂θHR(n̄, θ ) p(n̄|A0) (D9)

= En̄∼p(n̄|A0 )[∂θHR(n̄, θ )]. (D10)

Therefore, we can always sample from a reference state ρ0 to
get the gradient.

(ii) When ∂θR∗
θ (H ) can be put in a diagonal Fock basis

by a symplectic transformation S(θ ), possibly dependent on
θ . Namely, if

∂θR∗
θ (H ) =

∑
n̄

h′(n̄, θ ) S(θ )|n̄〉〈n̄|S(θ )†, (D11)

then

∂θC(θ ) =
∑

n̄

h′(n̄, θ ) p(n̄|AS(θ ) ) (D12)

= En̄∼p(n̄|AS(θ ) )[h
′(n̄, θ )], (D13)

where AS(θ ) is the A matrix of the state S(θ )†ρ0S(θ ). There-
fore, for each θ we can run a θ -dependent GBS to estimate the
gradient.

APPENDIX E: PROJECTION TO THE CLOSEST
GAUSSIAN STATE

We discuss the case of a pure Gaussian state with A = A ⊕
A and A∗ = A. In that case, a physical state is defined by the
requirement that A = AT and that its spectrum lies in [−1, 1].
The latter condition can be enforced by requiring that A ±
1 are positive semidefinite operators, so the projection step
P[X ] can be computed via semidefinite programming as

minimize ‖X − A‖, (E1)

such that A = AT , A ± 1 � 0, (E2)

for a suitable norm ‖ · ‖. Using the projected subgradients we
can then update the parameters via (13) and (30), and then
finding the closest Gaussian state via the projection.

APPENDIX F: VARIATIONAL ISING SIMULATION
WITH NUMBER RESOLVING DETECTORS

The main difference between the configuration space x̄ of
an Ising problem and the possible outputs n̄ of GBS is that
x̄ is a vector of binary variables while n̄ is made of arbitrary
positive integers. There are many ways of defining a binary
variable out of an integer. Here, we focus on the mapping (39),
as it is naturally implemented experimentally by threshold
detectors. By reversing that mapping we may extend the Ising
model to arbitrary integer sequences via H (n̄) = H[x(n̄)].
With these definitions, the goal is then to minimize the average
energy

E (w) =
∑

n̄

H (n̄)pA,W (n̄) ≡ En̄∼pA,W (n̄)[H (n̄)]. (F1)

The gradient of the above energy cost function easily follows
from Eq. (27) [extension to the more general (29) is trivial],
and we find

∂E (w)

∂wk
= En̄∼pA,W (n̄)[Gk (n̄,w)], (F2)

Gk (n̄,w) = H (n̄)
nk − 〈nk〉

wk
. (F3)

Therefore, we can estimate the gradient by sampling from the
GBS devices, without calculating classically hard quantities
like the Hafnians. Indeed, from many sampled integer strings
n̄ we can easily calculate Gk (n̄|w) and update the weights
following the stochastic estimation of the gradient.
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