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Machine learning phase transitions with a quantum processor
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Machine learning has emerged as a promising approach to unveil properties of many-body systems. Recently
proposed as a tool to classify phases of matter, the approach relies on classical simulation methods—such
as Monte Carlo—which are known to experience an exponential slowdown when simulating certain quantum
systems. To overcome this slowdown while still leveraging machine learning, we propose a variational quantum
algorithm which merges quantum simulation and quantum machine learning to classify phases of matter. Our
classifier is directly fed labeled states recovered by the variational quantum eigensolver algorithm, thereby
avoiding the data-reading slowdown experienced in many applications of quantum enhanced machine learning.
‘We propose families of variational ansatz states that are inspired directly by tensor networks. This allows us to use
tools from tensor network theory to explain properties of the phase diagrams the presented quantum algorithm
recovers. Finally, we propose a majority vote quantum classifier built from a nearest-neighbor (checkerboard)
quantum neural network. This classifier is successfully trained to recognize phases of matter with 99% accuracy
for the transverse field Ising model and 94% accuracy for the XXZ model. These findings suggest that a
merger between quantum simulation and quantum enhanced machine learning offers a fertile ground to develop

computational insights into quantum systems.
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I. INTRODUCTION

The best contemporary algorithms to emulate quantum
systems using classical computers suffer from an exponen-
tial slowdown in limiting cases. A recent approach is to
apply machine learning, which offers new techniques for
large-scale data analysis. In particular, machine learning was
recently proposed as a tool to recognize phases of matter
[1,2]. These methods still rely on Monte Carlo sampling
(or alternative classical simulation methods) which suffers
from the an exponential slowdown induced by the so-called
sign problem. Independently, quantum algorithms have also
been proposed as a platform for machine learning [3—11]. In
addition, unlike classical algorithms, quantum simulators are
predicted to simulate quantum systems efficiently [12-14].
Here we merge quantum machine learning with quantum
simulation, leveraging quantum mechanics to overcome two
classical bottlenecks. Namely, we leverage quantum algo-
rithms as a tool to simulate quantum systems by preparing
states which are labeled and fed into a quantum classifier.
The latter removes the data-reading slowdown experienced
in many applications of quantum enhanced machine learning,
while the former utilizes quantum simulators to avoid classical
methods with known limitations. We also replace the standard
unitary coupled cluster ansatz found in implementations of the
variational quantum eigensolver [15] with families of tensor
network ansatz states.
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Using machine learning techniques, one can analyze the
phase diagrams of strongly interacting quantum systems and
thus directly address system properties. Monte Carlo samples
of such systems are fed as input data and classified by using
supervised [1,2] or unsupervised [16] learning. Hamiltonians
with up to a few hundreds of spins can be studied. Nonethe-
less, for fermionic systems, the use of Monte Carlo methods
is drastically restricted by the sign problem.

In the variational quantum circuits approach [17-19], a
quantum processor is required to prepare a sufficiently rich
variety of probe states. The variational quantum eigensolver
(VQE) represents an implementation of variational quantum
circuits which uses a quantum processor to prepare a family
of states characterized by a polynomial number of parameters
to minimize the expectation value of a given Hamiltonian
[15,20,21].

In this paper, we circumvent the sign problem by using a
quantum variational algorithm realizable on near-term quan-
tum computers. To classify the phases of a given quantum
Hamiltonian, we first prepare its approximate ground states
variationally, and then feed them as an input to a quantum
classifier. In this respect, there is no need to sample micro-
scopic configurations with Monte Carlo based methods. In-
stead, the classifier has direct access to the quantum states [7],
yielding thus an effective realization of quantum-enhanced
machine learning.

II. TENSOR NETWORK ANSATZ STATES FOR VQE

VQE is a hybrid iterative quantum-classical algorithm used
to approximate the ground state of a given Hamiltonian [15].
It relies on preparing an ansatz state | (f)) by applying a
sequence of quantum gates U (#) and sampling the expectation
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FIG. 1. (a) Tree tensor network state. (b) Checkerboard tensor
network state. In both cases, the quantum register is instantiated in
the |0)®" state and subject to entangling gates. Black boxes indicate
two-qubit gates specified by Eq. (2) and Fig. 3. Each block is
parametrized independently. Herein quantum circuits are read left to
right.

value of a given Hamiltonian relative to this state, followed by
a classical optimizer to minimize the energy, (v (6)|H | (0)).
Within the VQE method, we approach the ground state of a
given Hamiltonian by using tensor network ansatz states.

We proceed by representing the Hamiltonian as a sum of
tensor products of Pauli operators:

H = Z ja1a2~~~an0a1 ® O, & Oq, s (l)

where o; € {0, 1, 2,3} enumerate the Pauli matrices
{1,X,Y,Z}. With the decomposition shown in Eq. (1),
individual terms of (Y (0)|H|y(#)) can be estimated
and variationally minimized elementwise by using a
classical-to-quantum process. In each iteration one prepares
the state | (#)) and measures each qubit in the local X, Y, or
Z basis, estimates the energy, and updates 6. This method can
become scalable if the number of terms in the Hamiltonian
is polynomially bounded in the number of spins and the
coefficients Jy,q,.-«, are defined up to poly(n) digits.

The performance of VQE crucially depends on the choice
of the ansatz state. A common approach is to use the uni-
tary version of the coupled cluster method, the UCC ansatz
[20,22-24]. For interacting spin problems, the (non)unitary
coupled cluster ansatz can be composed out of spin-flip
operators [17,25]. There is no known classical algorithm to
efficiently implement this method, even when the series is
truncated to low-order terms [26]. In principle, a quantum
computer could efficiently prepare this state, truncated up to
some kth order by using the Suzuki-Trotter decomposition
[27]. However, for a system of n qubits it requires O(n*) uni-
tary gates, making this technique out of reach for the available
quantum computers. Still, even if UCC is truncated to single
and double interactions (UCCSD), it requires 9n? operations
and necessitates applying some optimization strategy [28].

Instead, we test a number of shorter ansatz states inspired
by tensor network states, namely, (i) a rank-one circuit; (ii)
a tree tensor network circuit Fig. 1(a); and (iii) a family of
checkerboard-shaped circuits [Fig. 1(b)] with varying depth.

n, w n,

FIG. 2. A quantum circuit can be treated as a tensor network state
with all bonds having dimension two. If a bipartition cuts w wires,
the total bond dimension is at most 2", while the cut separates at
most w ebits of entanglement.

These states differ in the amount of entanglement they
can support. In general, quantum states of n qubits can be
represented by n-index tensors, while quantum circuits are
embodied by tensor networks. Each quantum gate is seen as
a vertex, and each string is an index running through {0, 1},
while the maximum amount of entanglement is determined
by the number of strings one needs to cut to separate the
subsystems (see Fig. 2). Each string corresponds to at most
one ebit of entanglement. An n-qubit state can contain at most
n/2] ebits of entanglement. To formalize the latter, suppose
there exists a certain bipartition in the system that brings n,
qubits to the first subsystem and n, qubits to the second. It
is then possible to regroup the tensor network state into a
2™ x 2™ matrix. The rank of this matrix provides an upper
bound to the amount of entanglement across this bipartition:
a rank-k state can support at most In; k ebits of entanglement,
i.e., when it is in the maximally entangled state.

III. STATE PREPARATION

We first approximate the ground state of a Hamiltonian by
rank-one states. One can prepare any unentangled state using
2n gates by subsequently applying R, and R, rotations to each
qubit. This ansatz captures the first-order truncation of UCC.

Figure 1(a) illustrates a circuit implementing a tree tensor
network state. This state is prepared by using the subsequently
described two-qubit parametric blocks. The preparation pro-
cedure is easier to explain when the number of qubits is a
power of two. A block first entangles qubits 1 and (n/2 + 1).
In the next layer, two blocks act on qubit pairs (1, n/4 + 1)
and (n/2 + 1, n/2 + n/4 4 1). Then, for each half of the reg-
ister, we act in the same way, but now the blocks act on qubit
pairs (1, n/4+ 1) and (n/2 + 1, n/2 + n/4 + 1). Each half
of the register is again divided into two halves. The pattern
continues. For systems where the number of qubits is not a
power of two, one can do this procedure up until the number
of qubits involved is the closest power of two and then make
the last layer of operators incomplete. Such a structure enables
long-range correlations but limits the entanglement entropy
that a state bipartition can potentially have: any contiguous
region can be isolated by O(1) cuts. It is easy to contract
(Viree|A| ¥rree) classically with A being a local observable and
|ree) being a tree tensor network state.

There is some freedom in choosing the two-qubit blocks
that comprise the tree tensor network. In principle, one
can implement any unitary in SU(4) by using three
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FIG. 3. Two-qubit entangler gate used in preparation of the states.

controlled-NOTs and 15 single-qubit rotations [29]. However,
throughout this work we used two-qubit gates with fewer
parameters 6 to simplify the optimization (Fig. 3):

U (8) = [R-(85) ® R.(64)] o R:(B3) o [Re(61) ® Re(B2)],  (2)

where R,(0) = e R.(0) = ¢7X | R,,(0) = ¢ ¥?®Z Thus,
a complete ansatz would have five free parameters per two-
qubit block. In total, the tree tensor network ansatz features
n — 1 blocks, yielding 5n — 5 independent parameters.

Remarkably, the block shown in Fig. 2 is inspired by
the parametrized Hamiltonian approach [30] and the unitary
operators used in the quantum approximate optimization al-
gorithm (QAOA) [31]. Of course, the ansatz with such blocks
is less expressive than if each block implemented the entire
SU(4) group. However, such an ansatz could also have some
redundancy as the ansatz gates are applied to a fixed n-qubit
input state |0)®".

In a checkerboard tensor network, the entangling blocks are
positioned in a checkerboard pattern as shown in Fig. 1(b).
In the following, we impose periodic boundary conditions,
meaning that the last qubit is linked to the first. For this ansatz,
we also use the two-qubit entangling gate shown in Fig. 3. The
ansatz has 5L|n/2| independent parameters, where L is the
number of layers in the circuit.

To isolate a region in a checkerboard tensor network state
with d layers, one has to cut at least O(d) bonds regardless
of the region size [if the region is very small, one can also
make a “horizontal cut” of O(L) bonds]. Therefore, if we set
the number of layers to be equal to |In;(n)], the upper bound
on the entanglement scaling is equal to that in critical one-
dimensional systems. To implement any maximally entangled
state; that is, a state with the maximum possible amount of
ebits, one needs to cut L’%J bonds. If the checkerboard ansatz
has open boundary conditions, it needs at least 2| 7] gates to
saturate entanglement. Periodic boundary conditions make the
ansatz more powerful and lower this bound by half to |5]
layers.

IV. QUANTUM CLASSIFIER

Not only can the checkerboard tensor network be used as a
VQE ansatz but it also functions as a quantum majority vote
classifier. Each data point is a VQE solution: the parameters
of the unitary gates are optimized to obtain the minimum
energy (¥ (0)|H(h)|y(#)), where h determines the phase of
the model. Each VQE solution is labeled with “0” or “1”
depending on whether the model parameter is above or below
the phase-transition point. We then prepare a circuit made of
two parts (Fig. 4). The first part takes the blank qubit registry
|000...0) and prepares the VQE solution in the form of an
ansatz state. The second part takes this state as an input and
applies a unitary Ug,ss(¢). We then measure the output of the

0) — H
0 Uvqr(0) N Uclass(®)
ol L

FIG. 4. Quantum circuit that implements the classifier. The first
part prepares the VQE solution, the second one performs the classi-
fication. The assigned label is inferred from the measurements in the
Z basis. Both Uyqg and Uy, have the checkerboard structure.

circuit in the Z basis. Let go and g; be the total number of
measurements in which more than half of the qubits are in “0”
or “1” states, respectively. The classifier returns the predicted
probability p = q1/(qo + q1) for the state belonging to the
class “1” being equal to the probability that the majority of
qubits vote “1,” excluding ties. The quantum circuit is shown
in more detail in Appendix D.

Let {(0;, y,')}ﬁvz‘”i‘" be the set of training data points and their
labels y; € {0, 1}. Let p; € [0, 1] be the label predicted by the
neural network. Then the loss function is

Nirain

f==> Iylnp;+1—y)In(l = py]. 3)

i=1

minimize f, we used the simultaneous perturbation stochastic
approximation (SPSA) algorithm [32]. This algorithm esti-
mates the gradient vector by computing a finite difference in
a random direction, then performs a gradient descent step.
We optimized the log loss over 300 epochs, with both finite
difference step size and learning rate starting very coarse and
decreasing as 1/ +/Tepoch> where 7epoch 18 the epoch number.

V. NUMERICAL RESULTS

We apply our quantum circuit of n = 10 qubits to the
transverse-field Ising model (TFIM), while being exactly
solvable [33,34] this model serves for testing purposes. This
model is specified by the Hamiltonian

Hrev =JZU,'ZUZ‘Z+1 +hZUin J>0, h>0, (4
i=1 i=1

where o is the Pauli matrix « acting on the ith spin, and we
impose periodic boundary conditions o, | = o}".

The ground state of TFIM is determined by the trade-
off between Heisenberg exchange coupling, the first term in
Eq. (4), favoring collinear orientation of magnetic moments
in the z direction, and the Zeeman coupling to the transverse
magnetic field, the second term. The latter has the tendency
to flip the z component, being thus the source of “quantum
fluctuations” in the system. In a magnetically ordered state, a
strong magnetic field 2 > J destroys magnetic order even at
zero temperature. This induces quantum fluctuations resulting
in ground-state restructuring, which in the large-particle limit
is manifested by nonanalyticity in the ground-state energy of
the quantum Hamiltonian [Eq. (4)].
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FIG. 5. Absolute value of the difference in energy between the
exact solution and VQE solutions for the transverse-field Ising
model. Hollow squares: rank-1 ansatz; hollow circles: tree tensor
network; filled markers: checkerboard states (3 : 1 layer; A: 2 layers;
e: 3 layers; ¢: 4 layers).

It is therefore intuitively clear that, in the absence of
magnetic field, 2 = 0, or in the case of high spin polarization,
h = oo, the Hamiltonian is dominated by a single interaction,
making the ground state disentangled so that even rank-one
approximations could provide quantitatively correct results.
Meanwhile, this is not the case at criticality, # = J, where the
competition between the two mechanisms favors the forma-
tion of highly entangled ground state(s).

In our numerical implementation, we use QISKIT
[35] to simulate quantum circuits and the limited
Broyden-Fletcher-Goldfarb-Shanno method (L-BFGS-B)

to update the parameters during the classical step of VQE.
We scan values of & from 0 to 2J. For & = 0, the optimization
process started from a random point, then each additional
point begins from the previous solution. To eliminate any
obviously suboptimal solutions, we also run the scanning
in the opposite direction and for each value of the field
we keep the better result. Without this “double-sweeping”
procedure, spurious solutions appear in the vicinity of the

phase transition: the solution for one phase remains a local
optimum for some time after the parameter has moved to the
other phase (see Appendix C).

All ansatz states show an increase in error near the
phase-transition point (Fig. 5). With the increasing depth, the
checkerboard states show a better approximation. At & = 0,
the ground state is degenerate. At nonzero values of the field,
this degeneracy is lifted, but the spectral gap is very small.
Nonetheless, the overlap of the VQE solution in this regime
is never smaller than 1/2 and gradually moves to 1 across the
phase transition. At h = 1.2, the point where the energy error
is the worst, the overlap of the VQE solution with the ground
state is equal to 0.92. The low-depth ansatz states, namely,
rank-one, tree tensor network, and checkerboard states of
depth one, all show similar results, which is associated with
the relative simplicity of the Ising Hamiltonian. To feed the
dataset into the classifier we prepare 100 data points using
VQE with four-layered checkerboard ansatz states. These data
were then shuffled and split into the training set (80%) and the
test set (20%). The accuracy of the prediction achieves 99%.
The outcome of the quantum classifier is presented in Fig. 6
(left).

Another exactly solved model which we use to test our
classifier is the antiferromagnetic XXZ spin chain with the
Hamiltonian

H= Z [Vi(of 0y +0i0ly) + ofof,]. o)

i=1

From a physical perspective, Eq. (5) corresponds to a uniform
exchange-coupled system with a uniaxial anisotropy specified
by J;. At |J,| < Jy, this model is in the XY, or planar,
phase, which is characterized by algebraic decay of equal-time
spin-spin correlation functions. In the regime J, > J, the
Hamiltonian corresponds to the antiferromagnetic Ising state.
The system undergoes a Berezinsky—Kosterlitz—Thouless type
phase transition at J, =J, [36]. At the phase-transition
point, the ground state has the highest nearest-neighbor con-
currence and a cusp in nearest-neighbor quantum discord
[37].
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FIG. 6. (left) Predicted label of phase II as a function of magnetic field for transverse-field Ising model. (right) Predicted label of phase II
as a function of J, for the XXZ model. Roman numbers denote the phases I and II of the models.
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This model has symmetry with respect to rotations in the
xy plane, as well as spin-flip symmetry. This fact allows
us to augment the training data. Given a VQE approxima-
tion, we can create another, equally valid approximation by
applying a rotation or spin flip. The structure of the VQE
ansatz is conserved in the sense that the new states are
produced by the same quantum circuit with different control
parameters (see Appendix A). In total, we produce 4000 data
points.

The phase transition in the XX Z model is correctly learned
by the classifier, yielding correct labels on 94.6% of test data
(Fig. 6, right). In this case, we added two more layers to the
classifier circuit to increase the accuracy. Notably, the plot for
the XX Z model looks less uniform than the plot for the Ising
model. This is partially connected to the data-augmentation
procedure described in Appendix A.

VI. CONCLUSION

We proposed a method of classifying phases of matter that
works intrinsically with quantum data, providing an advantage
over the classical methods based on Monte Carlo sampling. It
is a nontrivial fact that the Ising model requires fewer layers
than the XXZ model. In the transverse-field Ising model, the
magnetization Y (o) as a function of magnetic field clearly
points at the location of the phase-transition points. This
implies that the phases of the model are easy to classify. In the
XXZ model, the transition at J, = 1 is a transition between a
paramagnetic and an antiferromagnetic phase [36]. Neither of
these phases shows spontaneous magnetic moment in absence
of an external field, making it somewhat harder to discern
the two phases. The proposed classification technique can be
applied to any model that can be expressed as a spin model
(e.g., fermion problems can be mapped to spin problems by
using a Jordan—Wigner transformation or a Bravyi—Kitaev
transformation).

VII. NUMERICAL METHODS

The quantum circuits designed in the study were simulated
by using Qiskit [35]. Figures 5, 6, 8, and 9 were prepared
by using MATPLOTLIB [38]. The source code for the study is
available at [39].
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APPENDIX A: DATA AUGMENTATION FOR XXZ MODEL

The XXZ Hamiltonian is symmetric with respect to spin
flips and xy plane rotations. Despite the fact that its ground
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FIG. 8. Results of the learning on the random Hamiltonians model.

state is nondegenerate, applying these symmetries to a VQE
state produces a different state with the same energy, which is
an equally valid data point. Thankfully, these actions can be
easily performed on the checkerboard states without changing
their structure.

Let us start by considering rotation symmetry. This rotation
is implemented by applying a Z rotation to each qubit:

Urol = (eisz)(X)n. (Al)

In the ansatz we developed, the two-qubit blocks precede Z
rotations. So, applying this symmetry amounts to changing the
angles in the Z rotations of the last checkerboard layer by ¢.

Somewhat more complicated is the application of spin
flips. We consider spin flips as applying one of X, Y, or Z
operations to all spins simultaneously. The Z spin flip is a
special case of the Z rotation(s). The Y flip can be composed
out of X and Z flips, so we only need consider the X flip.
Consider the quantum circuit in Fig. 7.

-14

| | | |

[ [ = =

[o0] ~ [e)] w
'/

Energy (a. u.)

|
[
©

|
N
o

=21 w w w w w w w
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Jz

FIG. 9. Ground-state energy estimate for the XX Z model found
in VQE sweeps. Filled (empty) arrows guide the eye along the
“up” (“down”) sweep. The best solution out of two sweeps was
subsequently used to train the classifier.
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FIG. 10. Seventy-five-parameter ten-qubit circuit representing the classifier Ug,es. Here R, = R, (6) = ¢ and Ry, = Ry6 (0) = €

oe{l,X,Y,Z).

Let us use the fact that the X and Z Pauli matrices anticom-
mute and push the X gates to the front:

X% = cosOX +isinXZ
= (cosO1 —isin0Z)X = e ¥%X. (A2)

Thus, if we push the X gates to the left and invert the
angles of the Z rotations, the circuit remains invariant. Now,
the next gate is the Z ® Z rotation. [X ® X,Z ® Z] = 0;
therefore, the X gates can go through the Rz, gate without
any changes. Finally, the X gates merge with the X rotations
by incrementing the angle by 7 /4. Thus, to augment the data
with the spin-flipped states, one inverts the angles of the Z
rotations in the last layer and increases the angles of the X
rotations in the last layer by 7 /4.

APPENDIX B: TESTING THE PROCESSOR ON A MODEL
WITHOUT STRUCTURE

As pointed out in the main text, simpler toy models may
have simple classification criteria which do not require the
application of machine learning. In this section, we classify
the solutions of a randomized model: H(x) = (1 — a)H; +
aH,, o € [0, 1], where H; and H, are random Hermitian
matrices pulled from a Gaussian unitary ensemble. We split
the solutions into two classes: (i) @ < 0.5 and (i1) « > 0.5.
Then, we run the optimization routine to train the learning
circuit to discern between the two classes.

T (LR [
mH R
o mH o HE
i Ny
]
R Ny
o {mH o HE]
[ARES Yy Wy
]
- E{E R

—ifo®c
5

The approach was tested for six qubits, n = 100, where
Niain = 70, nest = 30. The depth of the VQE circuit and the
classifier circuit were both set to four layers.

The results are shown in Fig. 8. For this configuration,
the accuracy of 93% was reached. This shows that the
algorithm works even for such a low-structured problem,
although the factors affecting the performance still require
further investigation.

APPENDIX C: ON CONVERGENCE OF VARIATIONAL
QUANTUM EIGENSOLVER WITH WARM STARTS

To save time on VQE computations we used the previously
found solution for H(h) as a starting point for the VQE
process on the next Hamiltonian H(h + Ay) (this approach
is also known as adiabatic-assisted VQE [41]). Since the
Hamiltonian is deformed only slightly, the previous point is
a good guess for the new minimum. Unfortunately, if during
the deformation of the Hamiltonian this local minimum stops
being a global one, the solver gets stuck in the wrong solution
for a while. This is exactly what happens in the vicinity of
the phase transition. Figure 9 demonstrates the behavior of
the VQE solution for the XXZ model. We ran VQE in two
sweeps: J; swept from O to 2 in the “up” sweep and from 2 to
0 in the “down” sweep. As a result, VQE shows a hysteresis.

APPENDIX D: A DETAILED DEPICTION OF THE
QUANTUM CIRCUIT

Figure 10 shows the classifier circuit (four layers) in full
detail for ten qubits. A full circuit (VQE + classifier) can be
obtained by concatenating two copies of that circuit.
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