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Relating spin squeezing to multipartite entanglement criteria for particles and modes
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Entanglement witnesses based on first and second moments exist in the form of spin squeezing criteria for
the detection of particle entanglement from collective measurements, and in the form of modified uncertainty
relations for the detection of mode entanglement or steering. By revealing a correspondence between them, we
show that metrologically useful spin squeezing reveals multimode entanglement in symmetric spin states that are
distributed into addressable modes. We further derive tight state-independent multipartite entanglement bounds
on the spin squeezing coefficient and point out their connection to widely used entanglement criteria that depend
on the state’s polarization. Our results are relevant for state-of-the-art experiments where symmetric entangled
states are distributed into a number of addressable modes, such as split spin squeezed Bose-Einstein condensates.
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I. INTRODUCTION

Quantum entanglement describes nonclassical correlations
of multipartite quantum systems [1]. It can appear between
the parties’ internal (e.g., spin) degree of freedom (DOF), or
between their external (e.g., spatial modes) DOF. One usually
refers to these two cases as particle or mode entanglement, re-
spectively. Apart from its fundamental interest, entanglement
is a key resource in quantum information science and quantum
technologies [2,3]. This is evidenced, for instance, in the
context of quantum sensing and metrology, where quantitative
relations between metrological sensitivity and the number of
entangled particles in Ramsey interferometers exist [4]. In
atomic ensembles, entangled multipartite quantum states with
the potential to enhance interferometric measurements can
be prepared by controlling the interactions between particles,
which is a well-established technique in today’s experiments
[5].

Most experiments on ultracold atomic ensembles focus on
quantum states where particles share the same external mode,
and can thus only be addressed and measured collectively. In
recent years, new technologies, such as quantum gas micro-
scopes [6], optical tweezer traps [7,8], and split Bose-Einstein
condensates (BECs) [9–11], have enabled the investigation of
spatially distributed, entangled atomic ensembles (see Fig. 1).
In such systems, on top of the entanglement among the
particles, we can study the entanglement of spatially sepa-
rated modes [12,13]. On the one hand, this is interesting for
practical applications such as spatially resolved metrology
[14–17], optical clocks [18], and quantum information tasks
[19]. On the other hand, it allows us to investigate fundamental
concepts such as the extraction of entanglement from a system
of indistinguishable particles [20–24].
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Particle entanglement can be revealed experimentally
through spin squeezing coefficients [25–31]. Among several
methods to quantify spin squeezing [26], the Wineland et al.
spin squeezing coefficient [27] has the advantage of establish-
ing a link between the entanglement detected in a quantum
state and its quantum gain for interferometric measurements,
thereby detecting metrologically useful entanglement [3].
Moreover, this spin squeezing coefficient expresses a sensitiv-
ity gain that can be reached by a simple parameter estimation
protocol after sufficiently many experimental repetitions [27].
Being a function of averages and variances of linear operators
only, spin squeezing coefficients are particularly suitable to
detect multiparticle entanglement of spin states that can be
approximated as Gaussian quantum states.

While particle entanglement can be detected with collec-
tive measurements, standard methods to reveal mode entan-
glement require local measurements on each mode. Criteria
based on variances and mean values can be found in the
form of modified uncertainty relations that hold for arbitrary
separable states, but can be violated through entanglement
[32–36]. These approaches are powerful tools to detect entan-
glement in arbitrary-dimensional systems with high flexibility.
They allow us to study entanglement between specific parti-
tions of a composite system, thereby providing precise mi-
croscopic information about which subsystems share quantum
correlations [37,38]. These criteria exist for both discrete and
continuous variables, and they can be extended to study the
stronger class of quantum correlations known as steering that
is at the heart of the Einstein-Podolsky-Rosen (EPR) paradox
[39,40].

In this paper, we show that under conditions that hold
for a wide range of systems the uncertainty-type mode-
entanglement criteria coincide with the Wineland et al. spin
squeezing coefficient, which detects particle entanglement
and quantifies the metrological quantum gain. This allows us
to establish a direct relation between the detected entangle-
ment of particles and modes, as well as the sensitivity of spin

2469-9926/2020/102(1)/012412(14) 012412-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3653-0030
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.012412&domain=pdf&date_stamp=2020-07-10
https://doi.org/10.1103/PhysRevA.102.012412


MATTEO FADEL AND MANUEL GESSNER PHYSICAL REVIEW A 102, 012412 (2020)

FIG. 1. By spatially splitting an entangled ensemble of N iden-
tical particles into M external modes, we generate entanglement
between addressable modes.

states. While this does not replace the need for multimode
entanglement witnesses, our results reveal the required level
of spin squeezing for the generation of multimode entangle-
ment by distributing the spins into addressable modes, e.g.,
by splitting a BEC into individually addressable ensembles.
By linking these quantities to the spin squeezing coefficient,
we further relate mode entanglement and EPR steering to the
quantum advantage in metrology measurements. Finally, we
improve the best known bounds on the number of entangled
particles that can be identified from the spin squeezing co-
efficient without knowledge of the average polarization, and
we clarify the connection to the spin squeezing multipartite
entanglement criterion by Sørensen and Mølmer [29].

II. MODE VS PARTICLE ENTANGLEMENT

A collection of systems (labeled 1, . . . , �) is entangled if
their quantum state cannot be written as

ρ =
∑

γ

pγ ρ (1)
γ ⊗ · · · ⊗ ρ (�)

γ , (1)

where
∑

γ pγ = 1 is a probability distribution, and ρ (i)
γ are

density matrices for system i. The local systems may refer
either to the � = N particles or to the � = M modes that
they occupy, giving rise to particle or mode entanglement,
respectively. In practice, determining whether a given quan-
tum state allows for a decomposition of the form of Eq. (1) is
an extremely hard task. One therefore relies on entanglement
witnesses or, more generally, necessary conditions that any
separable state must satisfy [25,41]. A violation of these
criteria then represents a witness for entanglement.

A. Uncertainty-based mode-entanglement criterion

Criteria based on first and second moments of lin-
ear observables are powerful tools to detect entanglement
[25,32,33,42] and steering [39,40] in arbitrary-dimensional
systems with high flexibility. An important class of these cri-
teria takes on the form of Heisenberg-Robertson-type uncer-
tainty relations, with a modified lower bound on the variances
that can be violated by entangled states. The most general
formulation of these criteria for bipartite systems was given

by Giovannetti et al. in Ref. [36], where it was furthermore
shown that (nonlinear) product criteria are generally more
powerful than (linear) sum criteria (see also [35,40]). In the
context of atomic spin ensembles it is convenient to express
these criteria in terms of collective spin observables. For the
case of N spins distributed into M = 2 modes, labeled as
A, B, these take the form SA = ∑

i∈A s(i)/2, SB = ∑
i∈B s(i)/2,

where s(i) is the spin for particle i. The criterion expresses that
all mode-separable states satisfy

G2 := 4 Var
[
SA

z + SB
z

]
Var

[
SA

y − SB
y

]
(∣∣〈SA

x

〉∣∣ + ∣∣〈SB
x

〉∣∣)2 � 1. (2)

The choice of observables (e.g., local spin components) can
further be optimized to identify the most sensitive entangle-
ment criterion for a given quantum state. These criteria can
be generalized to study entanglement in specific multipar-
titions (with precise microscopic information about which
subsystems share quantum correlations) [37] as well as full
inseparability [43–46], i.e., the violation of these bounds in
all possible partitions.

B. Spin squeezing particle-entanglement criterion

In the case of a large number of spins, it becomes challeng-
ing to address each particle individually. Nevertheless, particle
entanglement among the individual spins can be detected from
collective measurements of the spin components through spin
squeezing criteria. For all fully separable spin-1/2 states it
holds that

ξ 2 := N Var[Sz]

|〈Sx〉|2 � 1, (3)

where ξ 2 is the Wineland et al. spin squeezing coefficient
[27]. States with ξ 2 < 1 are characterized by a variance of the
collective spin operator that is smaller than that of a coherent
spin state, while at the same time being strongly polarized
along the Sx direction.

The spin squeezing coefficient can be considered as a
simple Gaussian approximation of the full metrological sensi-
tivity that can be extracted from the quantum state [3,5,47].
For this reason, states with ξ 2 < 1 can achieve a quantum
enhancement beyond the standard quantum limit in metrol-
ogy measurements [27] and the entanglement revealed by
this condition is metrologically useful. This approach can
be extended to fluctuating particle numbers [30], multipartite
entanglement [4,48], Bell nonlocality [49], and analysis of the
multimode entanglement structure in addressable systems of
arbitrary dimension [37,38].

III. EQUIVALENCE OF MODE AND PARTICLE
ENTANGLEMENT: TWO-MODE CASE

In the following we prove that, if the state of the system is
symmetric under the exchange of particle labels and of modes,
the two criteria (2) and (3) are equivalent, namely, that

G2 = ξ 2. (4)

To show this, imagine a system of i = 1, . . . , N particles
with an internal (spin) and an external (mode) DOF. We
associate to each particle the operator s(i)

�u �I,(i), where s(i)
�u is
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the spin operator along direction �u, and �I,(i) is the projection
operator of the external DOF onto one of the M = 2 modes
labeled as I = 1 ≡ A and I = 2 ≡ B. Let us now assume the
following properties valid for all i, j = 1, . . . , N , and I, J =
1, . . . , M � 2.

(i) DOF’s factorize: there are no correlations between
the spin and the spatial DOF, e.g., 〈s(i)

�u �I,(i)〉 = 〈s(i)
�u 〉〈�I,(i)〉,

〈s(i)
�u �I,(i)s( j)

�v �J,( j)〉 = 〈s(i)
�u s( j)

�v 〉〈�I,(i)�J,( j)〉.
(ii) Particle symmetry: the state is invariant under

permutations of the particle labels, e.g., 〈s(i)
�u 〉 = 〈s(1)

�u 〉,
〈s(i)

�u s( j)
�v 〉 = 〈s(1)

�u s(2)
�v 〉 and 〈�I,(i)〉 = 〈�I,(1)〉, 〈�I,(i)�J,( j)〉 =

〈�I,(1)�J,(2)〉, for i �= j.
(iii) Symmetric splitting: (a) there is equal probabil-

ity for a particle to be found in any of the modes, i.e.,
〈�I,(i)〉 = 1/M, and (b) these probabilities are independent,
i.e., 〈�I,(i)�J,( j)〉 = 〈�I,(i)〉〈�J,( j)〉.

Let us mention that these assumptions are relevant for a
number of experimental systems. For example, they apply to
an ensemble of identical atoms distributed symmetrically in a
set of external modes, as in Refs. [9–11].

Exploiting assumptions (i) and (ii), we can now compute
expectation values of collective spin observables as

〈
SI

�u
〉 =

N∑
i=1

〈
s(i)
�u �I,(i)〉 = 〈�I〉N〈s�u〉. (5)

Note that here, and in the following, we use the shorthand
notation 〈s(1)

�u 〉 = 〈s�u〉 and 〈�I,(1)〉 = 〈�I〉.
Similarly, we obtain that correlators take the form (see

Appendix A1 for details)〈
SI

�uSJ
�v
〉 = δI,J〈�I〉N 〈

s(1)
�u s(2)

�v
〉 + 〈�I〉〈�J〉N (N − 1)

〈
s(1)
�u s(2)

�v
〉
.

(6)

To prove now the relation Eq. (4), we use Eqs. (5) and
(6) to rewrite the variance appearing in Eq. (2) as (see
Appendix A 2 for a detailed derivation)

Var
[
SA

y − SB
y

] = 2〈�A〉N

4
= N

4
using (iii). (7)

For the other variance in Eq. (2) we can simply write

Var
[
SA

z + SB
z

] = Var[Sz]. (8)

The same holds also for the denominator, which can be written
as (∣∣〈SA

x

〉∣∣ + ∣∣〈SB
x

〉∣∣)2 = |〈Sx〉|2, (9)

since symmetry implies that 〈SA
x 〉 and 〈SB

x 〉 have the same sign.
It is now straightforward to combine the results of Eqs. (7)–
(9) to see that, under the assumptions introduced before, we
obtain Eq. (4).

This result highlights a correspondence of the detected
mode entanglement in two addressable modes and the de-
tected particle entanglement in fully symmetric many-body
quantum states. In the following we further generalize this
criterion to an arbitrary number of modes M, and show how
full multipartite inseparability can be detected with these
methods.

IV. GENERALIZATION TO MULTIPARTITE
ENTANGLEMENT

When considering a collection of systems, entanglement
can emerge in different partitions of the ensemble, i.e., across
any separation of the ensemble into groups of systems. Let
us denote one specific partition as � = {A1, . . . ,Ak}, where
the A’s are nonoverlapping groups of 1 � |Aq| � � systems,
such that

∑k
q=1 |Aq| = �. An �-partite quantum state ρ is

called � separable if it can be written as

ρ�−sep =
∑

γ

pγ ρ (A1 )
γ ⊗ · · · ⊗ ρ (Ak )

γ , (10)

where the ρ
(Aq )
γ are quantum states of the subsystem Aq.

For an overview of different classes of entangled states in
multipartite systems, we refer to Appendix B.

A. Inseparability of M modes

The entanglement criterion (2) can be generalized to yield
a criterion for �-separable states of an M-mode system as
follows [37]: Any �-separable state must satisfy

GM
� (�g, �h)2 := Var

[ ∑M
I=1 gI SI

z

]
Var

[ ∑M
I=1 hI SI

y

]
BM

� (�g, �h)2
� 1, (11)

where

BM
� (�g, �h) := 1

2

k∑
q=1

∣∣∣∣∣∣
∑
I∈Aq

gI hI
〈
SI

z

〉∣∣∣∣∣∣. (12)

This bound holds for arbitrary choices of the coefficient
vectors �g = (g1, . . . , gM ) and �h = (h1, . . . , hM ), which can be
optimized to obtain the strongest possible witness. A violation
of Eq. (11) witnesses inseparability in the partition �.

We may further exclude separability in all partitions � that
contain at most k subsystems by observing a violation of the
single condition

GM
k (�g, �h) := max

�: l�k
GM

� (�g, �h) � 1, (13)

where the maximization runs over all partitions that consist of
l � k subsystems. A violation of the above bound with k =
M, where each mode is treated as an individual subsystem,
indicates that there is entanglement somewhere in the system
without specifying how many subsystems are entangled. If
the bound is violated for k = 2, this means that we cannot
identify even two separable groups, and we must thus consider
the ensemble of all spins as a single entangled system. We
remark here that this criterion analyzes each partition on
a one-by-one basis, but it does not exclude arbitrary mix-
tures of separable models for different partitions, which is
known as genuine multipartite entanglement [25,35,45] (see
Appendix B for details).

It is evident that the computation of the bound (13) be-
comes very demanding since the number of possible partitions
increases exponentially with M. Moreover, identifying a suit-
able choice for the {�g, �h} introduces additional complexity. A
special case of Eq. (11) is obtained for the choice of {�g, �h}
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given by

g∗
I = 1, h∗

1 = 1, h∗
J = − 1

M − 1
, (14)

for all I = 1, . . . , M and J = 2, . . . , M. With this choice we
note that g∗

1h∗
1 = 1, and g∗

I h∗
I = −(M − 1)−1 for I > 1.

Since for the symmetric spin states considered here the
variances in Eq. (11) do not depend on the partition �, the
maximization in Eq. (13) affects only the bound (12). We thus
obtain that GM

k (�g, �h) = GM
�min

(�g, �h), where �min is the partition
that achieves the minimum

βM
k (�g, �h) =

∣∣〈SA
z

〉∣∣
2

min
�:l�k

βM
� (�g, �h), (15)

and βM
� (�g, �h) := ∑k

q=1 | ∑I∈Aq
gI hI |. In writing Eq. (15), we

made use of the symmetry property (5) to limit the optimiza-
tion procedure to the coefficients {�g, �h}. Next, we observe
that all contributions of terms from sets with I > 1 will
increase βM

� (�g∗, �h∗) whenever they appear in a partition � that
distinguishes them from mode I = 1, whereas these terms will
decrease βM

� (�g∗, �h∗) when in a partition � that lumps them
into the set A1 together with mode 1. From this argument
we also see that it is advantageous to pick a partition that
splits the system in as few subsystems as possible. Since for
a given k at least k subsystems must be formed, the optimal
partition describes k − 1 single-mode subsystems (with I >

1) and places all other modes (including I = 1) into a single
subsystem. The minimum bound is thus given by

βM
� (�g∗, �h∗) = |g∗

1h∗
1 + · · · + g∗

M−(k−1)h
∗
M−(k−1)︸ ︷︷ ︸

M−k terms

|

+ |g∗
M−(k−2)h

∗
M−(k−2)| + · · · + |g∗

Mh∗
M |︸ ︷︷ ︸

k−1 terms

= 2(k − 1)

M − 1
. (16)

In summary, the minimum bound at the denominator of
Eq. (11) takes the form

BM
k (�g∗, �h∗) = 1

2

(
2(k − 1)

M − 1

)∣∣〈SA
x

〉∣∣. (17)

The choice given in Eq. (14) gives for the variances

Var

[
M∑

I=1

gI S
I
z

]
= Var[Sz], (18)

and, using again Eqs. (5) and (6) with 〈�I〉 = 1/M,

Var

[
M∑

I=1

hI S
I
y

]
= N

4(M − 1)
. (19)

A detailed calculation is given in Appendix C.

FIG. 2. Bounds for mode and particle entanglement from col-
lective spin measurements. We compare the Wineland et al. spin
squeezing coefficient to the limits on particle entanglement (28) (red
lines) and mode entanglement for splitting into M modes (21) (blue
lines) as a function of M. For values of ξ 2 below the top black
line (where k = M), mode entanglement is revealed. Upon crossing
additional blue lines, the entanglement does not allow us to split the
system into more than k separable sets of modes, where k is indicated
in blue next to the lines. The yellow region corresponds to k = 2, and
it indicates where all modes must be treated as one entangled entity
that cannot be partitioned into separable groups.

Using the definition of ξ 2 (3), together with Eqs. (17)–(19),
we can express Eq. (11) as

GM
k (�g∗, �h∗)2 = ξ 2 M2(M − 1)

4(k − 1)2
� 1. (20)

From this, we conclude that any state that is separable into k
subsystems or more must satisfy

ξ 2 � 4(k − 1)2

M2(M − 1)
. (21)

Therefore, observing ξ 2 < 4(k − 1)2/[M2(M − 1)] implies
more than k partite inseparability (see blue lines in Fig. 2).
This is the main result of this section. It implies, e.g., that
mode entanglement (k = M ) is observed among M modes
whenever M < 2(1 +

√
1 − ξ 2)/ξ 2 (black line in Fig. 2).

Since any state can be considered as a single indivisible
system, the bound becomes trivial for k = 1 and it can never
be violated in this case. Generally, meaningful values for k
range from 2 to M, and, the smaller k is, the more modes are
recognized as entangled. If the bound is violated for k = 2 this
implies that there is no separable partition at all, and hence all
M modes must be entangled. For M = 2, the criterion Eq. (20)
reduces to Eq. (4), as expected.

We recall that our conclusions are based on specific entan-
glement witnesses, i.e., sufficient conditions for entanglement.
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Hence, these results only put a lower bound on the actual
number of entangled modes.

B. Limits on global and local spin squeezing

Let us now investigate the lower bound for the spin squeez-
ing coefficient ξ 2. As we show in Appendix D 1, an arbitrary
spin-S system always satisfies the bound

ξ 2 � 1

1 + S
, (22)

where the equality can be approached asymptotically in the
limit S → ∞.

Furthermore, we can define the local spin squeezing coef-
ficient

ξ 2
I := NI Var

[
SI

z

]
∣∣〈SI

x

〉∣∣2 , (23)

and show that there exists a limit on the squeezing that can be
achieved locally from the splitting of a symmetric squeezed
state. Under the assumptions (i), (ii), and (iiib) of Sec. III, the
local squeezing obeys the bound

ξ 2
I � 1 − 〈�I〉, (24)

where the equality can be approached asymptotically in the
limit S → ∞ (see Appendix D 2). Let us emphasize that
in the derivation of Eq. (24) we did not use assumption
(iiia), meaning that the inequality holds even for asymmetric
splittings into M modes, i.e., for more general cases where
〈�I〉 depends on I .

To conclude, we can also show that there is an exact
relation between the global and the local spin squeezing
coefficients, namely (see Appendix D 3),

ξ 2 =
M∑

I=1

ξ 2
I − N2(M − 1)

4〈Sx〉2 . (25)

Also here, analogously to Eq. (24), it is worth emphasizing
that Eq. (25) holds even for asymmetric splitting where 〈�I〉
depends on I . However, in the case where 〈�I〉 = 1/M,
Eq. (25) can be used in conjunction with Eq. (21) to relate
local squeezing and collective polarization to mode insepara-
bility.

C. Multipartite entanglement detection from spin squeezing

1. State-independent multipartite entanglement bounds

Spin squeezing provides quantitative bounds on the num-
ber of entangled particles from collective measurements.
Furthermore, the detected entanglement is relevant for the
improvement of measurement precision in quantum metrol-
ogy. To see this, recall that the quantum Fisher information
FQ[ρ, H] [50] quantifies the metrological sensitivity of a
quantum state ρ under an evolution generated by the Hamil-
tonian H [5,51,52]. By virtue of the inequality [3]

ξ−2 � FQ[ρ, Sy]

N
, (26)

the inverse spin squeezing coefficient ξ−2 can be interpreted
as a Gaussian approximation to the full sensitivity, normal-
ized by the total number of particles [47]. The detection of

FIG. 3. Detecting multiparticle entanglement from spin squeez-
ing. A number p of entangled particles is detected when the Wineland
et al. spin squeezing coefficient is lower than the respective lines.
The solid blue lines are the constant bounds obtained from the
Fisher information, Eq. (27). The solid red lines are improved bounds
obtained from minimizing ξ 2 for fixed S = p/2, Eq. (28). These
bounds are independent of the polarization 〈Sx〉/S. In contrast, the
dashed lines are state-dependent bounds obtained from the Sørensen-
Mølmer relation Eq. (30), where ξ 2 is minimized numerically for a
fixed S = p/2 and polarization [29]. The state-independent bounds
(28) can be recovered from this approach in the limit of vanishing
contrast.

metrologically useful entanglement makes use of the fact that
p-producible N-qubit quantum states (i.e., states that contain
at most p entangled particles; see Appendix B) can only
achieve sensitivities up to FQ[ρp, Sy] � pN [3,4]. Combining
this bound with the inequality (26), we find that a violation of
[48]

ξ 2 � 1

p
(27)

implies the presence of entanglement among more than p
particles (see blue lines in Fig. 3). For noninteger N/p a small
improvement of this bound can be achieved using a more
general expression [4].

Interestingly, we can derive a much tighter bound than
Eq. (27). This is possible because the limit 1/p arises from
the bound on the quantum Fisher information that is achieved
only by products of maximally entangled Greenberger-Horne-
Zeilinger states [4], for which ξ 2 actually diverges, so that
Eq. (27) can never be saturated. Instead, by making use of
the asymptotically achievable limit (22), we can show that a
violation of

ξ 2 � 1

1 + p/2
(28)

implies entanglement of more than p spins among the total
number of N spin-1/2 particles. This is the central result
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of this section and it follows as a consequence of convexity
and subadditivity properties of the inverse spin squeezing
coefficient ξ−2. The details can be found in Appendix E,
where we also demonstrate that for noninteger N/p the bound
(28) can be improved to the expression

ξ 2 � N

Np
p2

2 + r2

2 + N
, (29)

with Np = �N/p
 and r = N − pNp. We emphasize that, con-
trary to Eq. (27), this bound can be (asymptotically) saturated,
and for p large it is higher than Eq. (27) by a factor of 2 (see
red solid lines in Fig. 3).

In a system with p spin-1/2 particles, the bound (28)
can be approached asymptotically in the limit of infinite
squeezing and vanishing polarization 〈Sx〉. Such states are
known as twin-Fock states |
TF〉 (see, e.g., [53] for an ex-
perimental study of their metrological entanglement) and the
bound (28) expresses their full sensitivity as quantified by
the quantum Fisher information FQ[|
TF〉, Sy] = p(1 + p/2)
[compare Eqs. (28) and (26)]. By quantifying the maximum
sensitivity achievable with Gaussian measurements, the result
(28) implies that any sensitivity of p spin-1/2 particles that
exceeds this bound, i.e., any state with FQ[ρ, Sy] > p(1 +
p/2), must necessarily be non-Gaussian in the sense that
its metrological features cannot be captured through spin
squeezing coefficients.

2. State-dependent multipartite entanglement bounds

In practice, in order to access ξ 2 one actually measures
Var[Sz] and 〈Sx〉 separately, rather than the ratio Var[Sz]/〈Sx〉2

itself. Having independent knowledge of these two quantities,
it is possible to construct a stronger multipartite entanglement
witness than Eq. (28). Sørensen and Mølmer [29] showed that
states with no more than p-partite entanglement satisfy

Var[Sz] � S FSp

[ 〈Sx〉
S

]
, (30)

where Sp = p/2, and the functions FS[x] are obtained (e.g.,
numerically) by minimizing the variance Var[Sz] of a spin
S as a function of its mean spin 〈Sx〉 [29]. This approach is
constructed such that it detects the largest family of entangled
states on the basis of Var[Sz] and 〈Sx〉. However, since the
metrological sensitivity is determined only by the ratio of
these two quantities, the multipartite entanglement detected
by this approach is not immediately linked to a metrologi-
cal advantage. Yet, the criterion (30) is more powerful than
Eq. (28), since it makes use of the additional information
provided by 〈Sx〉. Indeed, we demonstrate in Appendix F 3
that in the limit 〈Sx〉 → 0 the condition (30) coincides with
(28). Since this corresponds to the limit in which the criterion
(30) is least effective, we can interpret this limit as ignoring
the additional information that is provided by the mean spin
length, assuming the worst-case scenario. This can be seen
in Fig. 3, where we compare the constant bound for p-partite
entanglement obtained from Eq. (28) (red continuous lines) to
the state-dependent bound from Eq. (30) (red dashed lines).

We show in Appendix F 2 how condition (30) can
be improved for noninteger N/p, and how the resulting

expression reproduces the bound (29) in the limit of vanishing
polarization 〈Sx〉. Condition (30) also allows us to identify
genuine p-partite entanglement [58], meaning that one can
exclude convex combinations of (p − 1)-producible states
(see Appendix B and F 4). Moreover, it can be generalized
to systems with fluctuating particle numbers [31].

V. RELATION WITH TWO-WAY EPR STEERING

For a bipartite scenario (M = 2) the criterion Eq. (2) can
be extended to detect also a stronger form of entanglement,
namely, EPR steering. Specifically, states that do not allow
for steering of system B by A satisfy the condition [40,54,55]

R2 := 4 Var
[
SA

z + SB
z

]
Var

[
SA

y − SB
y

]
∣∣〈SB

x

〉∣∣2 � 1. (31)

Therefore, a violation of Eq. (31) reveals steering of B by A.
A similar criterion holds for steering of A by B.

In the following we will focus on the symmetric scenario,
where measurements in system A and B yield the same results.
In this case we have 〈SA

x 〉 = 〈SB
x 〉, which allows us to express

the condition (31) equivalently as

R2 = 4G2 = 4ξ 2 � 1. (32)

Because of symmetry, a violation of this relation directly
implies two-way steering between modes A and B.

Combined with our results from the previous section, we
conclude that if we want to observe steering through Eq. (31)
we need to satisfy the condition ξ 2 < 1/4, which implies
entanglement of p > 6 particles. However, note that Eq. (31)
can be generalized by including free coefficients in front
of the spin operators, similarly to Eq. (11). This allows us
to detect EPR correlations with less squeezing [9], but the
correspondence given in Eq. (32) is lost.

Interestingly, a bipartite EPR criterion can also be derived
from the Sørensen-Mølmer bounds Eq. (30). We show in
Appendix F 5 that a violation of

Var[Sz] � SB FSB

[〈
SB

x

〉
SB

]
(33)

implies steering of B by A. This criterion is easier to violate

than the condition Var[Sz] � S FSB [ 〈SB
x 〉
S ] that was derived in

Ref. [58]. However, it is still very demanding to witness
steering with this approach, since no assumptions can be made
about the properties of system A.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper we established relations between criteria for
multipartite entanglement of particles and modes based on the
measurement of first and second moments of collective spin
observables. In the case of symmetric spin states, we found
that the Wineland et al. spin squeezing coefficient [27] coin-
cides with a witness of mode entanglement that is based on
Heisenberg-Robertson-type uncertainty relations with modi-
fied bounds [36]. This correspondence can be extended to
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reveal a direct relation between the spin squeezing coefficient
of symmetric spin states and a two-way EPR-steering criterion
of two addressable modes.

We further revealed the relation between different multi-
partite entanglement criteria based on spin squeezing. The
Wineland et al. spin squeezing coefficient [27] captures
the metrological sensitivity gain and can be used to study
multiparticle entanglement. The approach by Sørensen and
Mølmer [29] makes use of the independent knowledge of the
spin polarization to derive optimized state-dependent bounds
on the spin squeezing coefficient for multipartite entangled
states. Alternatively, state-independent bounds can be derived
by exploiting the relation between spin squeezing and the
Fisher information [3], but these bounds are not saturable by
Gaussian states [4]. We addressed this limitation by deriving
state-independent bounds that can be asymptotically satu-
rated. This provides the tightest state-independent bounds on
the spin squeezing coefficient for the detection of multipartite
entangled states. Interestingly, we observe that these bounds
coincide with those of Sørensen and Mølmer [29] in the limit
of vanishing polarization.

Moreover, we identified a simple expression for the max-
imum spin squeezing that can be achieved locally from the

splitting of a squeezed state. Our results provide bounds on
the amount of addressable multimode entanglement that can
be generated by distributing identical particles into external
modes. For example, they apply to nonclassical states of BECs
that are split into different spatial modes, as in Refs. [9–11].
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APPENDIX A: DETAILED CALCULATIONS
FOR PROVING EQ. (4)

Here we show the detailed calculations for the results
presented in the paper.

1. Proof of Eq. (6)

〈
SI

�uSJ
�v
〉 =

N∑
i, j=1

〈
s(i)
�u s( j)

�v �I,(i)�J,( j)
〉

(A1a)

=
N∑

i=1

〈
s(i)
�u s(i)

�v �I,(i)�J,(i)
〉 + N∑

i, j = 1
i �= j

〈
s(i)
�u s( j)

�v �I,(i)�J,( j)
〉

(A1b)

=
N∑

i=1

〈
s(i)
�u s(i)

�v
〉〈�I,(i)�J,(i)〉 +

N∑
i, j = 1
i �= j

〈
s(i)
�u s( j)

�v
〉〈�I,(i)�J,( j)〉 using (i) (A1c)

=
N∑

i=1

〈
s(i)
�u s(i)

�v
〉
δI,J〈�I,(i)〉 +

N∑
i, j = 1
i �= j

〈
s(i)
�u s( j)

�v
〉〈�I,(i)�J,( j)〉 projectors are orthogonal (A1d)

= δI,J〈�I〉
N∑

i=1

〈
s(i)
�u s(i)

�v
〉 + 〈�I〉〈�J〉

N∑
i, j = 1
i �= j

〈
s(i)
�u s( j)

�v
〉

using (ii, iiib) (A1e)

= δI,J〈�I〉N 〈
s(1)
�u s(1)

�v
〉 + 〈�I〉〈�J〉N (N − 1)

〈
s(1)
�u s(2)

�v
〉
. (A1f)

Moreover, if �u = �v we obtain 〈
SI

�uSJ
�u
〉 = δI,J〈�I〉N 1

4 + 〈�I〉〈�J〉N (N − 1)
〈
s(1)
�u s(2)

�v
〉
. (A2)

2. Proof of Eq. (7)

Let us first express the variance and covariance of collective spins under the assumptions of symmetry. We obtain

Var
[
SA

�u
] = 〈(

SA
�u
)2〉 − 〈

SA
�u
〉2 = (〈�A〉N 1

4 + 〈�A〉2N (N − 1)
〈
s(1)
�u s(2)

�v
〉) − (〈�A〉N 〈

s(1)
�u

〉)2
(A3)
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and

Cov
[
SA

�u , SB
�u
] = 〈

SA
�u SB

�u
〉 − 〈

SA
�u
〉〈

SB
�u
〉 = (〈�A〉〈�B〉N (N − 1)

〈
s(1)
�u s(2)

�v
〉) − (〈�A〉N 〈

s(1)
�u

〉)(〈�B〉N 〈
s(1)
�u

〉)
= (〈�A〉2N (N − 1)

〈
s(1)
�u s(2)

�v
〉) − (〈�A〉N 〈

s(1)
�u

〉)2
. (A4)

Combining these expressions, we obtain

Var
[
SA

y − SB
y

] = Var
[
SA

y

] + Var
[
SB

y

] − 2 Cov
[
SA

y , SB
y

] = 2〈�A〉N

4
. (A5)

APPENDIX B: DEFINITIONS OF MULTIPARTITE
ENTANGLEMENT

We briefly review different inequivalent notions of entan-
glement in multipartite systems. The definition provided in
Eq. (10) of the main text describes separability in a specific
partition � = {A1, . . . ,Al}, where each Aq is a group of |Aq|
systems. Such a partition � can be characterized either by
the size of its largest group w(�) := maxq |Aq| or by the
number of groups it contains, h(�) := l (these two quantities
correspond to width w and height h of the Young diagram
associated with � [56]). Separable models with w(�) � p
are called p producible and those with h(�) � k are called
k separable. These definitions can be applied to classify the
type of correlations in the context of particle entanglement,
where each particle is considered as a system, and mode
entanglement, where each mode is considered as a system.

In the context of this paper, we provide criteria for “k-
inseparable” states of modes, i.e., states that are incompatible
with all mode-separable models (10) with h(�) � k. In the
above definition, all separable models are excluded individu-
ally, i.e., we verify incompatibility with all descriptions of the
kind (10) for each � in Lk−sep = {� | h(�) � k}. A stronger
condition requires the exclusion of all convex combinations of
a specific family of separable models, and it is usually empha-
sized by the term “genuine” (see, e.g., [45]). For instance, we
would call a state genuine k inseparable if it is incompatible
with any description of the kind

ρ =
∑

�∈Lk−sep

P�ρ�−sep, (B1)

where P� is a probability distribution and the ρ�−sep are of
the form (10). In the context of particle entanglement, we
further say that a state has [genuine] p-partite entanglement
if it excludes all [convex combinations of] (p − 1)-producible
models (recall that p-producible models are described by the
set Lp−prod = {� | w(�) � p}).

APPENDIX C: DETAILED CALCULATIONS
FOR PROVING EQ. (20)

1. Proof of Eq. (15)

For a given k, one has to find the minimum among the
bounds given by each partition. However, we can easily see
that, because of the signs, the minimum bound will come from
terms of the form

B(M, k) = |g∗
1h∗

1 −g∗
2h∗

2 − · · ·︸ ︷︷ ︸
M−k terms

| + |g∗
I h∗

I | + · · · + |g∗
Mh∗

M |︸ ︷︷ ︸
k−1 terms

.

(C1)

This is because g∗
1h∗

1 = 1 is the largest term, that can be
minimized by subtracting as many terms g∗

I h∗
I with I > 0 as

possible.
Our choices give, for 0 � c, d � M − 1,

|g∗
1h∗

1 + c g∗
2h∗

2| = M − 1 − c

M − 1
, (C2a)

|d g∗
2h∗

2| = d

M − 1
, (C2b)

and, with c = M − k, d = k − 1, we get βM
k .

2. Proof of Eq. (19)

Var

[
M∑

I=1

hI S
I
�u

]
=

M∑
I,J=1

Cov
[
hI S

I
�u, hJSJ

�u
]

=
M∑

I=1

h2
I Var

[
SI

�u
] +

M∑
I �=J=1

hI hJ Cov
[
SI

�u, SJ
�u
]

= T1

(
M∑

I=1

h2
A

)
+ T2

⎛
⎝ M∑

I=1

h2
I +

M∑
I �=J=1

hI hJ

⎞
⎠

(C3)

with

T1 = 〈�I〉N

4
, (C4)

T2 = 〈�I〉2N (N − 1)
〈
s(1)
�u s(2)

�v
〉 − (〈�I〉N 〈

s(1)
�u

〉)2
. (C5)

With the choice h∗
1 = 1 and h∗

I = (M − 1)−1 for I > 1, we
have

M∑
I=1

h∗
I

2 = M

M − 1
,

M∑
I �=J=1

h∗
I h∗

J = − M

M − 1
(C6)

and, therefore, taking 〈�I〉 = 1/M, we have

Var

[
M∑

I=1

h∗
I SI

�u

]
= N

4(M − 1)
, (C7)

a result that is independent of the state and of the direction �u.

APPENDIX D: LIMITS ON SPIN SQUEEZING

1. Ultimate limit on spin squeezing

For a given integer spin length S, we determine the min-
imum possible value of ξ 2 attainable by any quantum state.
Our aim is to identify states with minimal Var[Sz] with
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fixed 〈Sx〉. Sørensen and Mølmer [29] pointed out that these
states satisfy 〈Sz〉 = 0 and can therefore be found as the
ground states of the Hamiltonian H = λSx + S2

z , where λ

takes on the role of a Lagrange multiplier (see also [57]).
We use first-order perturbation theory to determine the value
of ξ 2 for the ground state in the presence of some small
but finite λ, and then take the limit λ → 0. We start from
the ground state of the (unperturbed) Hamiltonian H0 = S2

z ,
which is the state |S, mz〉 = |S, 0〉. Considering Sx as the
perturbation, the ground state of H to first order in λ is (up to
normalization)

|ψ̃〉 = |S, 0〉 + λ
∑
m �=0

〈m, S|Sx|S, 0〉
E0 − Em

|S, m〉 (D1)

= |S, 0〉 − λ
1

2

√
S(S + 1)(|S,−1〉 + |S,+1〉), (D2)

where Em = 〈S, m|H0|S, m〉, and given the form of Sx the
summation effectively runs only over m = ±1. We use this
expression (plus normalization) to evaluate the expectation
values

〈Sx〉 = − 2S(S + 1)λ

2 + S(S + 1)λ2
, (D3)

〈
S2

z

〉 = 1 − 2

2 + S(S + 1)λ2
. (D4)

The spin squeezing coefficient obtained from these expres-
sions reads

ξ 2 = 1

S + 1
+ S

2
λ2. (D5)

We conclude that, in any spin-S system, we have

ξ 2 � 1

S + 1
. (D6)

As explained in the main text, this limit corresponds to the
sensitivity of a twin-Fock state |S, 0〉 (as expressed by its
quantum Fisher information).

2. Limit on local spin squeezing after splitting

Let us now identify the limit of the local spin squeezing
coefficient in one of the modes after splitting an ensemble
described by the global coefficient ξ 2 into M modes. We can
define the local spin squeezing coefficient as

ξ 2
I := NI Var

[
SI

z

]
∣∣〈SI

x

〉∣∣2 , (D7)

where NI = N〈�I〉 and, using Eqs. (5) and (A3), we find that
the relation with the total squeezing ξ 2 is

ξ 2
I = ξ 2〈�I〉 + (1 − 〈�I〉)

(
N〈�I〉/2〈

SI
x

〉
)2

. (D8)

Because ξ 2 � 0 and N〈�I〉/2〈SI
x〉 � 1, we obtain that

ξ 2
I � 1 − 〈�I〉. (D9)

This expression tells us that, even if the initial state comes
close to the limit ξ 2 → 0 and 〈SI

x〉 → N〈�I〉/2 (which can be
approached in the limit N → ∞ with optimized squeezing),

after the splitting the squeezing will always be limited by
(D9). If 〈�I〉 = 1/2, one obtains locally at most −3 dB of
spin squeezing. If 〈�I〉 = 1/3, ξ 2

I � −1.76 dB.

3. Relation between global and local squeezing

To relate the global squeezing ξ 2 to the sum of local
squeezing coefficients ξ 2

I , we make use of Eq. (5) to rewrite
Eq. (D8) as

ξ 2〈�I〉 = ξ 2
I − (1 − 〈�I〉)

(
N

2〈Sx〉
)2

. (D10)

Summing both sides over all modes I = 1, . . . , M, and using
the fact that

∑M
I=1 〈�I〉 = 1, we obtain Eq. (25).

APPENDIX E: DERIVATION OF SHARPER
MULTIPARTITE ENTANGLEMENT BOUNDS ON ξ2

Our derivation of the criterion for p-partite entanglement
(28) makes use of the ultimate limit on the spin squeezing
coefficient ξ 2 in arbitrary quantum states of a spin-S system
that was derived in Appendix D 1. We further use convexity
and subadditivity of the inverse spin squeezing coefficient,
which we demonstrate below. Finally, we combine these
results to derive the bound (28) on p-producible states.

1. Convexity and subadditivity of (2S)ξ−2

Consider an arbitrary linear combination of quantum states
ρ = ∑

γ pγ ργ . The inverse spin squeezing coefficient satis-
fies the convexity property [47]

ξ−2
ρ �

∑
γ

pγ ξ−2
ργ

. (E1)

Let us demonstrate that (2S)ξ−2
ρ is also subadditive, where

S is the total spin of the system described by ρ. To this
end, we consider a product state ρ = ρ1 ⊗ · · · ⊗ ρM and we
decompose the total spin S into its local components as S�u =∑M

I=1 SI
�u. We write

(2S)ξ−2
ρ = 〈Sx〉ρ

Var[Sz]ρ
, (E2)

and the absence of correlations in ρ implies that

〈Sx〉ρ =
M∑

I=1

〈
SI

x

〉
ρI

, (E3a)

Var[Sz]ρ =
M∑

I=1

Var
[
SI

x

]
ρI

. (E3b)

The Cauchy-Schwarz inequality leads to(
M∑

I=1

〈
SI

x

〉
ρI

)2

�
M∑

I=1

Var
[
SI

z

]
ρI

M∑
I=1

〈
SI

x

〉2
ρI

Var
[
SI

z

]
ρI

, (E4)

and we obtain the subadditivity

(2S)ξ−2
ρ1⊗···⊗ρM

�
M∑

I=1

(2SI )ξ−2
ρI

. (E5)
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2. Limits on spin squeezing for p-producible states

Consider a separable state of the form ρ = ∑
γ pγ ρ1

γ ⊗
· · · ⊗ ρM

γ , where the ρI
γ are density matrices of spin-SI sub-

systems with
∑M

I=1 SI = S. We obtain

(2S)ξ−2
ρ �

∑
γ

pγ (2S)ξ−2
ρ1

γ ⊗···⊗ρM
γ

using Eq. (F3) (E6a)

�
∑

γ

pγ

M∑
I=1

(2SI )ξ−2
ρI

γ
using Eq. (E5) (E6b)

�
∑

γ

pγ

M∑
I=1

(2SI )(SI + 1) using Eq. (D6) (E6c)

= 2
M∑

I=1

S2
I + 2S. (E6d)

Now we assume that the state ρ is a p-producible state of N
spin-1/2 particles (S = N/2), i.e., that each of its subsystems
contains at most p spin-1/2 particles. This sets the upper limit
SI � p/2 on the maximum spin length of each subsystem.
Under this constraint, the function

∑M
I=1 S2

I is maximized by
creating the largest possible number of Np = �N/p
 groups of
the maximal size p, and a single group of size r = N − pNp

containing the remaining particles. This yields

M∑
I=1

S2
I � Np

(
p

2

)2

+ 1

4
r2. (E7)

Inserting this into Eq. (E6d) leads to the following condition
for arbitrary p-producible N-qubit states:

Nξ−2 � Np
p2

2
+ r2

2
+ N. (E8)

We may equivalently write this condition as

ξ 2 � N

Np
p2

2 + r2

2 + N
. (E9)

Note that, whenever N/p is an integer, we have Np = N/p,
and thus r = 0, and the bound simplifies to

ξ 2 � 1

1 + p/2
. (E10)

According to Eq. (D6) this corresponds to the limit on spin
squeezing for the largest entangled subsystem with spin S =
p/2.

APPENDIX F: RELATION BETWEEN THE SPIN
SQUEEZING ENTANGLEMENT WITNESSES OF

WINELAND et al. [27] AND SØRENSEN and MØLMER [29]

The Wineland et al. spin squeezing coefficient [27] ex-
presses the ratio mean spin length and minimal variance in
an orthogonal direction. This ratio has a clear metrological
interpretation and, as we have discussed in Appendix E, it
can be related to multiparticle entanglement. An alternative
approach has been proposed by Sørensen and Mølmer [29],
who use the combined information of mean spin length and

(
)/

FIG. 4. The Sørensen-Mølmer functions FS[x], Eq. (F1), for dif-
ferent S as a function of the polarization x = 〈Sx〉/S [29].

minimal variance (beyond only their ratio) to derive limits on
multiparticle entanglement.

Here, we demonstrate that the entanglement witness that is
given by the Wineland et al. spin squeezing coefficient can be
recovered from the approach of Sørensen and Mølmer in the
limit of vanishing mean spin length, which corresponds to the
scenario where their criterion is least effective.

1. Properties of the functions FS[x]

We first review and generalize the approach of Sørensen
and Mølmer [29]. We define FS as the minimum variance of
Sz divided by S for a spin-S system as a function of 〈Sx〉, i.e.,

Var[Sz]

S
� FS

[ 〈Sx〉
S

]
(F1)

holds for all states and can be saturated. A graphical illustra-
tion of these bounds is given in Fig. 4 and in Ref. [29].

Here FS[x] with x ∈ [−1, 1] is a function with the fol-
lowing properties (we assume S is an integer; see [29] for a
discussion of noninteger cases).

(0) FS[x] is symmetric in x, i.e., FS[−x] = FS[x], with
FS[0] = 0 and F [±1] = 1/2.

(1) FS[x] is convex in x, i.e., pFS[x1] + (1 − p)FS[x2] �
FS[px1 + (1 − p)x2] for 0 � p � 1.

(2) For x ∈ [0, 1], FS[x] is strictly increasing, i.e., for x1 <

x2 we have FS[x1] < FS[x2].
(3) For S1 < S2 we have FS1 [x] > FS2 [x].
(4) The FS[x] satisfy limx→0

FS[x]
x2 = 1

2+2S + O(x2).
(5) For x � 0 and λ > 1 it holds that FS[λx] � λFS[x].
The symmetry of property 0 follows directly from the

definition Eq. (F1), where the x axis can always be chosen
such that 〈Sx〉 � 0. The value at x = 0 follows from property
4, while the value at x = 1 is attained by a spin-coherent state,
with variance Var[Sz] = S/2. Properties 1 and 2 are proven
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in Ref. [29]. Property 3 can be proven for large S using the
analytical expression [29]

FS[x] = 1
2 {1 + S(1 − x2) −

√
(1 − x2)[(1 + S)2 − S2x2]},

(F2)

valid for S � 1, while for smaller S property 3 is confirmed
numerically. Property 4 can be proven using the results
Eqs. (D3) and (D4) obtained from perturbation theory (note
that the limit x = 〈Sx〉/S → 0 corresponds to the limit λ →
0). In this case, ξ 2/2 � FS[x]/x2, with equality when Eq. (F1)
is saturated, and we obtain from Eq. (D6) the desired limit.
Note that if we were to take the limit using the expression
Eq. (F2) we would have obtained 1/(4 + 4S). The factor 2
difference is attributed to the fact that Eq. (F2) is an approx-
imation that differs from the true bound by a factor 2 in the
limit of small x, as mentioned in Ref. [29]. Finally, to prove
property 5 we first use that the convexity of FS[x] is equivalent
to the condition

FS[x] � F ′
S [x0](x − x0) + FS[x0] (F3)

for all x, x0 ∈ [0, 1]. Using FS[0] = 0, we obtain at x = 0

F ′
S [x0]x0 � FS[x0]. (F4)

At x = λx0 with λ > 1, we can rewrite (F3) as

FS[λx0] � F ′
S [x0](λ − 1)x0 + FS[x0]

= (λ − 1)(F ′
S [x0]x0 − FS[x0]) + λFS[x0]

� λFS[x0], (F5)

where in the last step we used (F4).

2. Generalization of the Sørensen-Mølmer
bound to noninteger N/p

Sørensen and Mølmer proved their criterion for a decom-
position of the total spin S into N/p subgroups of size p,
assuming that N/p is integer. Here, we generalize their result
by considering a separation of the total system into as many
groups as possible of maximal size p plus a remaining group.
More precisely, call Np = �N/p
 the number of partitions into
groups of p particles. Each group has spin Sp = p/2 (for
spin-1/2 particles). If N/p is not an integer, there will be
an additional group of r = N − pNp particles, labeled r(est),
with spin Sr = r/2. We obtain

Var[Sz] �
∑

γ

pγ

⎛
⎝ Np∑

i=1

Var
[
S(i)

z

]
γ

+ Var
[
S(r)

z

]
γ

⎞
⎠ concavity of the variance

�
∑

γ

pγ

⎛
⎝ Np∑

i=1

Sp FSp

[〈
S(i)

x

〉
γ

Sp

]
+ Sr FSr

[〈
S(r)

x

〉
γ

Sr

]⎞
⎠ using Eq. (F 1)

�
∑

γ

pγ

⎛
⎝(SpNp) FSp

⎡
⎣ 1

SpNp

Np∑
i=1

〈
S(i)

x

〉
γ

⎤
⎦ + Sr FSr

[〈
S(r)

x

〉
γ

Sr

]⎞
⎠ using property 1

� (SpNp) FSp

⎡
⎣ 1

SpNp

Np∑
i=1

∑
γ

pγ

〈
S(i)

x

〉
γ

⎤
⎦ + Sr FSr

[∑
γ

pγ

〈
S(r)

x

〉
γ

Sr

]
using property 1

= (SpNp) FSp

⎡
⎣ 1

SpNp

Np∑
i=1

〈
S(i)

x

〉⎤⎦ + Sr FSr

[〈
S(r)

x

〉
Sr

]
. (F6)

This bound is the tightest formulation of the multipartite entanglement criterion first proposed by Sørensen and Mølmer in
Ref. [29]. It can be further simplified under the assumption of symmetric spin states. If property (ii) (see Sec. III in the main
text) is granted, we may write 〈S(i)

x 〉 = p〈Sx〉/N and 〈S(r)
x 〉 = r〈Sx〉/N . This yields

Var[Sz] � (SpNp) FSp

[
1

SpNp
Np

p

N
〈Sx〉

]
+ Sr FSr

[
1

Sr

r

N
〈Sx〉

]
= (SpNp) FSp

[ 〈Sx〉
S

]
+ Sr FSr

[ 〈Sx〉
S

]
, (F7)

where S = N/2 is the total spin.
By explicitly considering a subgroup of size r when the

distribution of N particles into subgroups of size p cannot
account for all particles, this bound is stronger than the well-
known bounds derived in Ref. [29]. To see this, notice that
Sr < Sp and by virtue of property 3 we can thus derive the

weaker bound

Var[Sz] � (SpNp) FSp

[ 〈Sx〉
S

]
+ Sr FSp

[ 〈Sx〉
S

]
= S FSp

[ 〈Sx〉
S

]
,

(F8)
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with S = SpNp + Sr . This is the standard formulation of the
Sørensen-Mølmer multiparticle entanglement criterion [29]
and we observe that the condition (F7) is indeed stronger.
If Np is an integer, both criteria coincide, since Sr = 0 and
SpNp = S.

3. Relation between different spin squeezing multiparticle
entanglement criteria

Since the functions FS[x] are strictly increasing, the entan-
glement criterion (30) detects the largest number of entangled
states when 〈Sx〉 is large. If, however, the value of 〈Sx〉 is
not known separately from Var[Sz]/〈Sx〉2, we must assume
the “worst-case scenario,” which consequently is given in
the limit of 〈Sx〉 → 0. Here, we show that in this limit the
Sørensen-Mølmer approach to witnessing entanglement be-
comes equivalent to the bound (28) on the Wineland et al.
spin squeezing coefficient. We first demonstrate this corre-
spondence for the simple bounds, i.e., Eqs. (28) and (30),
and then generalize our result to the tighter expressions (E9)
and (F6).

Note that the condition (30) for states with at most p-partite
entanglement can be equivalently stated as

N Var[Sz]

〈Sx〉2
� 2

FSp

[ 〈Sx〉
S

]
( 〈Sx〉

S

)2 . (F9)

Making use of properties 2 and 4, we further obtain that

2
FSp

[ 〈Sx〉
S

]
( 〈Sx〉

S

)2 � 1
p
2 + 1

. (F10)

Combining these two bounds, we can derive the multiparticle
spin squeezing condition (28) in the “worst-case” limit of the
approach of Eq. (30).

Let us now demonstrate that the same correspondence
holds for the most general formulation of the respective
criteria for noninteger N/p. Using properties 2 and 4 in
Eq. (F6) implies that in the limits 〈S(i)

x 〉 → 0 and 〈S(r)
x 〉 → 0

the following condition holds for states with no more than
p-partite entanglement:

Var[Sz] �
( ∑Np

i=1

〈
S(i)

x

〉)2

Np
p2

2 + pNp

+
〈
S(r)

x

〉2
r2

2 + r
. (F11)

We now demonstrate that the following statement holds for
arbitrary A, B, a, b ∈ R with a, b > 0:

A2

a
+ B2

b
� (A + B)2

a + b
. (F12)

This relation follows immediately from

0 � (Ab − aB)2

ab(a + b)
= A2

a
+ B2

b
− (A + B)2

a + b
. (F13)

Using Eq. (F12) with A = ∑Np

i=1 〈S(i)
x 〉, B = 〈S(r)

x 〉, a =
Np

p2

2 + pNp, and b = r2

2 + r, we obtain from Eq. (F11) that

Var[Sz] �
〈Sx〉2

Np
p2

2 + r2

2 + N
, (F14)

where we have used that A + B = ∑Np

i=1〈S(i)
x 〉 + 〈S(r)

x 〉 = 〈Sx〉
and pNp + r = N . Multiplying both sides of (F14) by N
and dividing by 〈Sx〉2, we recover the condition (E9). This
generalizes the correspondence between the two approaches
to the stronger conditions, valid in the case of noninteger N/p.

4. Detecting genuine p-partite entanglement

Detecting genuine (p + 1)-partite entanglement (recall
Appendix B) requires us to exclude not only each p-
producible model individually but also all convex combina-
tions of the kind

ρ =
∑

�∈Lp−prod

P�ρ�−sep, (F15)

where each ρ�−sep is of the form of Eq. (10). From the convex-
ity of the spin squeezing coefficient ξ−2

ρ [see Eq. (F3)] we can
immediately conclude that the bounds for p-producible states
[see, e.g., Eq. (29)] also hold for arbitrary linear combinations
of p-producible states, since the bounds are state independent.

This is not the case for the tighter bounds proposed by
Sørensen and Mølmer, Eq. (30): These depend on the po-
larization, which could be in principle different in each of
the states ρ�−sep. The convexity property of the functions FS

nevertheless allows us to interpret Eq. (30) as a criterion for
genuine multipartite entanglement [58].

We first establish the following property: Assuming S2 >

S1, from the properties of the FS function we can write

S1FS1 [x1] + S2FS2 [x2]

� S1FS2 [x1] + S2FS2 [x2] using 3 (F16a)

= (S1 + S2)

(
S1

S1 + S2
FS2 [x1] + S2

S1 + S2
FS2 [x2]

)
(F16b)

� (S1 + S2)FS2

[
S1x1 + S2x2

S1 + S2

]
. using 1 (F16c)

Consider the state Eq. (F15) that is a convex combination
of arbitrary p-producible models. Recall that each decompo-
sition of the form of Eq. (10) depends on �, even though we
do not make this dependence explicit below to simplify our
notation. We further denote the total spin of subsystem Aq as
Sq = |Aq|/2. Using the concavity of the variance, we obtain

Var[Sz] �
∑
�

∑
γ

P� pγ

⎛
⎝ k∑

q=1

Var
[
S(k)

z

]
γ

⎞
⎠

�
∑
�

∑
γ

P� pγ

⎛
⎝ k∑

q=1

Sq FSq

[〈
S(q)

x
〉
γ

Sq

]⎞
⎠. (F17)

Noticing that the largest possible value of all Sq is determined
by Sp = p/2, we can apply property (F16) successively to
bound the sum over q, which gives

Var[Sz] �
∑
�

∑
γ

P� pγ S FSp

[ 〈Sx〉γ
S

]
, (F18)

where S = ∑k
q=1 Sq and 〈Sx〉γ = ∑k

q=1〈S(q)
x 〉γ . Finally, using

convexity of the FS functions (property 1), we obtain the
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bound

Var[Sz] � S FSp

[∑
�

∑
γ

P� pγ

〈Sx〉γ
S

]

= S FSp

[ 〈Sx〉
S

]
. (F19)

Therefore, finding the maximum integer p for which this
inequality is violated allows us to conclude that the state of
the system is genuine (p + 1)-partite entangled.

5. EPR steering criterion based on the Sørensen-Mølmer
bounds Eq. (30)

Consider a fixed bipartition of the system into NA, NB =
N − NA particles. Steering of party B by A can be detected
from the following criterion based on the Sørensen-Mølmer
bounds Eq. (30). We first use the concavity of the variance to
obtain

Var[Sz] �
∑

γ

pγ

(
Var

[
SA

z

]
γ

+ Var
[
SB

z

]
γ

)
(F20a)

�
∑

γ

pγ Var
[
SB

z

]
γ

(F20b)

�
∑

γ

pγ SB FSB

[〈
SB

x

〉
γ

SB

]
(F20c)

� SB FSB

[∑
γ

pγ

〈
SB

x

〉
γ

SB

]
(F20d)

= SB FSB

[〈
SB

x

〉
SB

]
. (F20e)

In the second step, we used the fact that in absence of a
local quantum description of system A we can only assume
that Var[SA

z ] � 0, and the following steps follow from the
properties of the FS functions.

in Ref. [58], it was shown that steering is detected by a
violation of the bound

Var[Sz] � S FSB

[〈
SB

x

〉
S

]
. (F21)

We now show that our condition (F20a) implies Eq. (F21) and
is therefore a stronger steering witness. To see this, we denote

λ = S/SB > 1 and write SB FSB [ 〈SB
x 〉

SB
] = (S/λ)FSB [λ 〈SB

x 〉
S ] �

SFSB [ 〈SB
x 〉
S ], where in the last step we used the superlinear

scaling of the FS[x], property 5 in Appendix F 1.
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