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Quantum coherence with respect to orthonormal bases has been studied extensively in the past few years.
Recently, Bischof, Kampermann, and Bruß [Phys. Rev. Lett. 123, 110402 (2019)] generalized it to the case
of general positive operator-valued measure (POVM) measurements. Such POVM-based coherence, including
the block coherence as a special case, have significant operational interpretations in quantifying the advantage
of quantum states in quantum information processing. In this work we first establish an alternative framework
for quantifying the block coherence and provide several block coherence measures. We then present several
coherence measures with respect to POVM measurements, and prove a conjecture on the l1-norm related POVM
coherence measure.
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I. INTRODUCTION

Quantum coherence is a characteristic feature of quan-
tum mechanics, with wide applications in superconductivity,
quantum thermodynamics, and biological processes. From a
resource-theoretic perspective the quantification of quantum
coherence has attracted much attention and various kinds of
coherence measures have been proposed [1–15]. Let ρ be a
density operator in d-dimensional complex Hilbert space H .
Under a fixed orthonormal basis {|i〉}d

i=1 of H , the state ρ is
called incoherent if 〈i|ρ| j〉 = 0 for any i �= j [1]. Otherwise ρ

is called coherent. The coherence theory has achieved fruitful
results in the past few years (for recent reviews see, e.g.,
[16,17]).

From another perspective, the orthonormal basis {|i〉}d
i=1

corresponds to a rank-1 projective measurement (von Neu-
mann measurement) {|i〉〈i|}d

i=1, and 〈i|ρ| j〉 = 0 is equivalent
to |i〉〈i|ρ| j〉〈 j| = 0. This observation leads one to view the
coherence with respect to the orthonormal basis {|i〉}d

i=1 as the
coherence with respect to the rank-1 projective measurement
{|i〉〈i|}d

i=1. Along this idea, the concept of coherence can be
generalized to the cases of general measurements. Recently,
Bischof et al. [18] have generalized the concept of coherence
to the case of general quantum measurements, i.e., positive
operator-valued measures (POVMs), and established the re-
source theory of coherence based on POVMs. One motivation
of this generalization is due to the fact that POVMs may be
more advantageous compared to von Neumann measurement
in many applications [19]. Moreover, the coherence of a state
with respect to a POVM can be interpreted as the crypto-
graphic randomness generated by measuring the POVM on
the state [20]. Namely, the amount of POVM coherence in a
state is equal to the unpredictability of measurement outcomes
relative to an eavesdropper with maximal information about
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the state, which generalizes the results from [2]. It has been
shown that the relative entropy of POVM coherence is equal
to the cryptographic randomness gain [20]. It provides an
important operational meaning to the concept of coherence
with respect to a general measurement. Generalizing the usual
coherence theory from an orthonormal basis to a generic
POVM had been also the efforts made in Refs. [21,22].

After establishing a framework for quantifying the POVM
coherence [18,20], Bischof et al. developed [18,20] a scheme
by employing the Naimark extension to embed the POVM
coherence into the block coherence proposed in Ref. [23] in
a lager Hilbert space. The Naimark extension [24,25] states
that any POVM can be extended to a projective measurement
in a larger Hilbert space. The block coherence was defined
with respect to projective measurements, not necessarily rank
1. With this scheme, the relative entropy of POVM coherence
Crel and the robustness POVM coherence Crot were proposed.
Recently, the structures of different incoherent operations for
POVM coherence were investigated [26]. For simplicity, we
call the coherence theory with respect to fixed orthonormal
bases the standard coherence theory. As the generalizations
of the standard coherence, both the block coherence and the
POVM coherence reduce to the standard coherence in the case
of the von Neumann measurement.

In the present work, we establish an alternative framework
for quantifying the block coherence and provide several block
coherence measures. We then present several POVM coher-
ence measures. Meanwhile, we also prove a conjecture raised
recently.

II. ALTERNATIVE FRAMEWORK FOR QUANTIFYING
BLOCK COHERENCE

A. Block incoherent states and block incoherent channels

The block coherence theory was introduced in Ref.
[23]. We adopt the framework proposed in Ref. [20] for
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quantifying the block coherence. Consider a quantum system
A associated with an m-dimensional complex Hilbert space
H . One has partition H = ⊕n

i=1πi into orthogonal subspaces
πi of dimension dimπi = mi,

∑n
i=1 mi = m. Correspondingly,

one gets a projective measurement P = {Pi}n
i=1, with each

projector satisfying Pi(H ) = πi. A state ρ on H is called block
incoherent (BI) with respect to P if

PiρPj = 0, ∀i �= j, (1)

or

ρ =
n∑

i=1

PiρPi. (2)

We denote the set of all quantum states in H by S (H ), and the
set of all block incoherent quantum states by IB(H ). It is easy
to check that

IB(H ) =
{

n∑
i=1

PiρPi|ρ ∈ S (H )

}
. (3)

A quantum channel is a completely positive and trace pre-
serving (CPTP) linear map of quantum states [27]. A quantum
channel φ is often expressed by the Kraus operators {Kl}l

satisfying
∑

l K†
l Kl = Im, where Im is the identity operator on

H and † stands for the adjoint. A quantum channel φ is called
block incoherent if it admits an expression of Kraus operators
φ = {Kl}l such that

PiKlρK†
l Pj = 0, ∀l, ∀i �= j (4)

for any ρ ∈ IB(H ). Such an expression φ = {Kl}l is called a
block incoherent decomposition of φ. We denote the set of
all quantum channels on H by C(H ), and the set of all block
incoherent quantum channels by CBI(H ).

The concept of block coherence can be properly extended
to the multipartite systems via the tensor product of the Hilbert
spaces of the subsystems, similar to the case of standard
coherence theory [16]. For bipartite systems, let A′ be another
quantum system associating with the m′-dimensional complex
Hilbert space H ′. Partitioning H ′ = ⊕n′

i=1π
′
i into orthogonal

subspaces π ′
i of dimension dimπ ′

i = m′
i, m′ =∑n′

i=1 m′
i, one

gets a projective measurement P′ = {P′
i }n′

i=1 with each pro-
jector P′

i satisfying P′
i (H ′) = π ′

i . Correspondingly one has
concepts such as S (H ′), IB(H ′), C(H ′), and CBI(H ′). For
the composite Hilbert space HAA′ = HA ⊗ HA′

associating to
the bipartite system AA′, we have the projective measurement
P ⊗ P′ = {Pi ⊗ P′

i′ }ii′ . A state ρAA′
on HAA′

is called block
incoherent with respect to the projective measurement P ⊗ P′
if

(Pi ⊗ P′
i′ )ρ

AA′
(Pj ⊗ P′

j′ ) = 0, ∀(i, i′) �= ( j, j′), (5)

where (i, i′) �= ( j, j′) means that i �= j or i′ �= j′.
We denote the set of all states on HAA′

by S (HAA′
) and

the set of all channels on S (HAA′
) by C(HAA′

). A quantum
channel φAA′

on C(HAA′
) is called block incoherent if it admits

an expression of Kraus operators φAA′ = {KAA′
l }l such that

(Pi ⊗ P′
i′ )K

AA′
l ρAA′(

KAA′
l

)†
(Pj ⊗ P′

j′ ) = 0 (6)

for all l and (i, i′) �= ( j, j′). We denote the set of all block
incoherent channels on C(HAA′

) by CBI(HAA′
) and call such an

expression φAA′ = {KAA′
l }l a block incoherent decomposition

of φAA′
.

B. An alternative framework for quantifying
the block coherence

A framework for quantifying the block coherence has been
established in Ref. [20]: any valid block coherence measure
C(ρ; P) with respect to the projective measurement P should
satisfy the conditions (B1)–(B4) here:

(B1) Faithfulness: C(ρ; P) � 0 with equality if ρ ∈ IB(H ).
(B2) Monotonicity: C(φBI(ρ); P) � C(ρ; P) for any φBI ∈

CBI(H ).
(B3) Strong monotonicity:

∑
l plC(ρl ; P) � C(ρ; P) for

any block incoherent decomposition φBI = {Kl}l ∈ CBI(H ) of
φBI, pl = tr(KlρK†

l ), ρl = KlρK†
l /pl .

(B4) Convexity: C(
∑

j p jρ j ; P) �∑ j p jC(ρ j ; P) for any
states {ρ j} j and any probability distribution {p j} j .

This framework coincides with the one in the standard
coherence theory [1] if all {Pi}n

i=1 are rank 1. Note that (B3)
and (B4) together imply (B2).

The framework of the standard coherence theory [1] had
been modified by adding an additivity condition in Ref. [28].
For the block coherence theory, we add the following condi-
tion:

(B5) Block additivity:

C(p1ρ1 ⊕ p2ρ2; P) = p1C(ρ1; P) + p2C(ρ2; P), (7)

where p1 > 0, p2 > 0, p1 + p2 = 1, ρ1, ρ2 ∈ S (H ), and for
any partition P = {Pk1}k1 ∪ {Pk2}k2 such that {k1}k1 ∪ {k2}k2 =
{k}n

k=1, {k1}k1 ∩ {k2}k2 = ∅, and ρ1Pk2 = ρ2Pk1 = 0 for any k1

and k2.

With condition (B5), we have the following theorem,
which establishes an alternative framework for quantifying the
block coherence.

Theorem 1. The framework given by conditions (B1) to
(B4) is equivalent to the one given by the conditions (B1),
(B2), and (B5).

Proof. We first prove that conditions (B1) to (B4) imply
(B1), (B2), and (B5). Suppose that (B1) to (B4) are fulfilled.
For the state p1ρ1 ⊕ p2ρ2 as given in (B5), we construct the BI
channel φBI = {K1, K2} with K1 =∑k1

Pk1 , K2 =∑k2
Pk2 . We

have K1(p1ρ1 ⊕ p2ρ2)K†
1 = p1ρ1 and K2(p1ρ1 ⊕ p2ρ2)K†

2 =
p2ρ2. Then from (B3) we get

C(p1ρ1 ⊕ p2ρ2; P) � p1C(ρ1; P) + p2C(ρ2; P). (8)

On the other hand, since p1ρ1 ⊕ p2ρ2 = p1ρ1 + p2ρ2, from
(B4) we get

C(p1ρ1 ⊕ p2ρ2; P) � p1C(ρ1; P) + p2C(ρ2; P). (9)

Combining (8) and (9) we get the condition (B5).
Next we prove that (B1), (B2), and (B5) imply (B1) to

(B4). Suppose conditions (B1), (B2), and (B5) are satisfied.
Let {Kl}n′

l=1 ∈ CBI(H ) be a BI decomposition associated to
the system A. Consider the bipartite system AA′ with the
aforementioned notation and ρ ∈ S (H ). Let the state ρAA′ =
ρ ⊗ |1〉〈1| undergo a BI channel such that

φAA′
BI (ρAA′

) =
∑

l

(Kl ⊗ Ul )(ρ ⊗ |1〉〈1|)(K†
l ⊗ U †

l )

=
∑

l

KlρK†
l ⊗ |l〉〈l|, (10)
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where

Ul =
n′∑

k=1

|k + l − 1〉〈k|

are the unitary operators on A′. From (B5), Eq. (10) gives rise
to

C

(∑
l

KlρK†
l ⊗ |l〉〈l|; P ⊗ P′

)
=
∑

l

plC(ρl ; P), (11)

where P and P′ are rank-1 projective measurements, pl =
tr(KlρK†

l ), ρl = KlρK†
l /pl , and we have used

C(ρl ⊗ |l〉〈l|; P ⊗ P′) = C(ρl ; P). (12)

According to (B2), Eqs. (10) and (12) together imply (B3).
Now consider the state

ρAA′ =
n′∑

l=1

plρl ⊗ |l〉〈l|, (13)

with {pl}n′
l=1 a probability distribution and {ρl}n′

l=1 ⊂
S (H ), {|l〉}n′

l=1 orthonormal basis of H ′. According to (B5),
we have

C

(∑
l

plρl ⊗ |l〉〈l|; P ⊗ P′
)

=
∑

l

plC(ρl ; P). (14)

Let ρAA′
undergo a BI channel as

φAA′
BI (ρAA′

) =
n′∑

k=1

(IA ⊗ |1〉〈k|)ρAA′
(IA ⊗ |k〉〈1|)

=
∑

j

p jρ j ⊗ |1〉〈1|. (15)

Similarly, (B2), (B5), and Eqs. (15) and (16) together imply
(B4). �

We have provided an alternative framework for block
coherence by proving that the conditions (B1) to (B4) are
equivalent to the conditions (B1), (B2), and (B5). The sim-
ilar condition (B5) in the standard coherence has particular
advantages in calculating coherence of block diagonal states
[29]. The condition (B5) in the block coherence may also
simplify the calculations of the block coherence for certain
block diagonal states.

C. Several block coherence measures

Under the framework of block coherence above, we
now provide several block coherence measures. Denote P =
{Pi}n

i=1 a projective measurement on the Hilbert space H .
Propositions 1–5 provide block coherence measures; see the
detailed proofs in the Appendix.

Proposition 1. l1 norm of coherence

Cl1 (ρ, P) =
∑
i �= j

‖PiρPj‖tr (16)

is a block coherence measure, where ‖M‖tr = tr
√

M†M de-
notes the trace norm of the matrix M.

Proposition 2. For α ∈ (0, 1) ∪ (1, 2], coherence based on
Tsallis relative entropy

CT,α (ρ, P) = 1

α − 1

{∑
i

tr[(Piρ
αPi )

1/α] − 1

}
(17)

is a block coherence measure.
In particular, we have
Corollary 1.

lim
α→1

CT,α (ρ, P) = (ln 2)Crel(ρ, P), (18)

where

Crel(ρ, P) = tr(ρ log2 ρ) −
∑

i

tr[(PiρPi ) log2(PiρPi )], (19)

and ln is the natural logarithm.
Proposition 3. Modified trace norm of coherence

Ctr(ρ, P) = min
λ>0,σ∈IB (H )

‖ρ − λσ‖tr (20)

is a block coherence measure.
Proposition 4. Coherence weight

Cw(ρ, P)

= min
σ,τ

{s � 0|ρ = (1 − s)σ + sτ, σ ∈ IB(H ), τ ∈ S (H )}
= min

σ
{s � 0|ρ � (1 − s)σ, σ ∈ IB(H )} (21)

is a block coherence measure.
Proposition 5. For α ∈ [ 1

2 , 1), coherence based on sand-
wiched Rényi relative entropy

CR,α (ρ, P) = 1 − max
σ∈IB(H )

({
tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]} 1
1−α
)

(22)

is a block coherence measure.
When P is a rank-1 projective measurement, Cl1 (ρ, P)

recovers the standard coherence measure Cl1 (ρ) proposed in
Ref. [1], CT,α (ρ, P) recovers the standard coherence measure
proposed in Refs. [9,13,30], Ctr(ρ, P) recovers the standard
coherence measure proposed in Ref. [28], Cw(ρ, P) recovers
the standard coherence measure Cw(ρ) proposed in Ref. [31],
and CR,α (ρ, P) recovers the standard coherence measure pro-
posed in Ref. [14]. In particular, when α = 1

2 ,

CR, 1
2
(ρ, P) = 1 − max

σ∈IB(H )
(tr
√√

ρσ
√

ρ)2 (23)

recovers the standard coherence measure proposed in
Ref. [32] when P is a rank-1 projective measurement.

III. COHERENCE MEASURES WITH RESPECT TO
GENERAL QUANTUM MEASUREMENTS

We study now the coherence measures with respect to gen-
eral quantum measurements [20]. A general measurement or a
POVM on d-dimensional Hilbert space H is given by a set of
positive-semidefinite operators E = {Ei}n

i=1 with
∑n

i=1 Ei =
Id the identity on H . Projective measurement and rank-1
projective measurement are the special cases of POVM. Sup-
pose Ei = A†

i Ai for any i. We also denote E = {Ai}n
i=1 with∑n

i=1 A†
i Ai = Id . Note that Ei = (UiAi )†(UiAi ) for any unitary

{Ui}n
i=1.
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A state ρ is called an incoherent state with respect to E if
[18]

EiρEj = 0, ∀i �= j. (24)

Note that this is equivalent to [18]

AiρA†
j = 0, ∀i �= j. (25)

The POVM incoherent channel is defined via the canonical
Naimark extension [20]. For POVM E = {Ei = A†

i Ai}n
i=1 on

d-dimensional Hilbert space H , introduce an n-dimensional
Hilbert space HR with {|i〉}n

i=1 an orthonormal basis of HR.
A canonical Naimark extension P = {Pi}n

i=1 of E = {Ei}n
i=1 is

described by a unitary matrix V on Hε = H ⊗ HR as [20]

V =
n∑

i j=1

Ai j ⊗ |i〉〈 j|, (26)

P = {Pi = Id ⊗ |i〉〈i|}n
i=1, (27)

Pi = V †PiV, (28)

with {Ai j}n
i j=1 satisfying

n∑
i=1

A†
i jAik = δ jkId ,

n∑
k=1

AikA†
jk = δi j Id ,

Ai1 = Ai.

A channel φ ∈ C(H ) is called a POVM incoherent (PI)
channel if [20] φ allows a Kraus operator decomposition
φ = {Kl}l with

∑
l K†

l Kl = Id and there exists a BI channel
φ′ = {K ′

l }l ∈ CBI(Hε ) with respect to a canonical Naimark
extension P = {Pi}n

i=1 such that

KlρK†
l ⊗ |1〉〈1| = K ′

l (ρ ⊗ |1〉〈1|)K ′†
l , ∀l, (29)

where {K ′
l }l is a BI decomposition of φ′. For such case we call

{Kl}l a PI decomposition of φ.

We denote the set of all PI states as IP(H ), and the set of
all PI channels as CPI(H ). Note that IP(H ) may be empty for
some POVMs. Note also that such definition of PI operation
does not depend on the choice of Naimark extension [20].

A coherence measure for states in Hilbert space H with re-
spect to a general quantum measurement E = {Ei}n

i=1 should
satisfy conditions (P1)–(P4) [20]:

(P1) Faithfulness: C(ρ, E ) � 0, with equality if ρ ∈
IP(H ).

(P2) Monotonicity: C(φPI(ρ), E ) � C(ρ, E ), ∀φPI ∈
CPI(H ).

(P3) Strong monotonicity:
∑

l plC(ρl , P) � C(ρ, P),
where {Kl}l is a PI decomposition of a PI channel,
pl = tr(KlρK†

l ), ρl = KlρK†
l /pl .

(P4) Convexity: C(
∑

j p jρ j, E ) �∑ j p jC(ρ j, E ),
{ρ j} j ⊂ S (H ), {p j} j a probability distribution.

Note that the definitions of PI states and PI channels and
the conditions (P1)–(P4) all include the projective measure-
ments and the rank-1 projective measurements as special cases
[20]. We emphasize that the framework of POVM coherence

measure is about POVM E = {Ei}n
i=1. Hence, any valid coher-

ence measure in terms of {Ai}i should be invariant under the
unitary transformation {Ai}i → {UiAi}i for any unitary {Ui}n

i=1
[20].

An efficient scheme for constructing POVM coherence
measures is as follows [18,20]:

C(ρ, E ) = C(ε(ρ), P), (30)

where

ε(ρ) =
n∑

i j=1

AiρA†
j ⊗ |i〉〈 j|. (31)

It can be checked that if C(ρε, P) is a unitarily invariant
block coherence measure satisfying conditions (B1) to (B4),
then C(ρ, E ) defined above is a POVM coherence measure
satisfying conditions (P1) to (P4) [20]. Here ρε is any state on
Hε = H ⊗ HR. The unitary invariance means that

C(ρε, P) = C(UρεU
†,UPU †) (32)

for any unitary transformation U on Hε. Employing this
scheme and using Propositions 1 to 5, we obtain the following
theorem:

Theorem 2. Let E = {Ei = A†
i Ai}n

i=1 be a POVM on the
Hilbert space H . The following quantities given in (1)–(5) are
all POVM coherence measures with respect to E .

(1) l1 norm of coherence

Cl1 (ρ, E ) =
∑
i �= j

‖AiρA†
j‖tr. (33)

(2) For α ∈ (0, 1) ∪ (1, 2], coherence based on Tsallis
relative entropy

CT,α (ρ, E ) = 1

α − 1

{∑
i

tr[(Aiρ
αA†

i )1/α] − 1

}
(34)

and

lim
α→1

CT,α (ρ, E ) = (ln 2)Crel(ρ, E ), (35)

where

Crel(ρ, E ) = tr(ρ log2 ρ) −
∑

i

tr[(AiρA†
i ) log2(AiρA†

i )].

(36)

(3) Modified trace norm of coherence

Ctr(ρ, E ) = min
λ>0,σ∈IB (Hε )

‖ε(ρ) − λσ‖tr. (37)

(4) Coherence weight

Cw(ρ, E ) = min
σ∈IB(Hε )

{s � 0|ε(ρ) � (1 − s)σ }. (38)

(5) For α ∈ [ 1
2 , 1), coherence based on sandwiched Rényi

relative entropy

CR,α (ρ, E )

= 1 − max
σ∈IB

(
Hε )

{
tr
[(

ε
(
ρ

1−α
2α

)
σε
(
ρ

1−α
2α

))α]} 1
1−α . (39)

Proof. To prove the results of Theorem 2, we need to
use the results of Propositions 1 to 5. Let {|i〉}n

i=1 be an
orthonormal basis for the Hilbert space HR, and P and ε(ρ)
be defined in Eqs. (27) and (31), respectively. Since C(ρ, E )
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is a POVM coherence measure satisfying conditions (P1)
to (P4) if C(ρε, P) is a unitarily invariant block coherence
measure satisfying conditions (B1) to (B4), we only need
to prove the unitary invariance Eq. (32) and show that
Cl1 (ρ, E ), CT,α (ρ, E ), Ctr(ρ, E ), Cw(ρ, E ), and CR,α (ρ, E )
take the forms of Eqs. (33), (34), and (37)–(39) under Eq. (30),
respectively.

(1) We prove that Cl1 (ρε, P) is unitarily invariant. For any
unitary U on Hε, we have

Cl1 (UρεU
†,UPU †)

=
∑
i �= j

‖UPiU
†UρεU

†UP jU
†‖tr

=
∑
i �= j

‖PiρεP j‖tr = Cl1 (ρε, P),

where we have used the fact that the trace norm is unitarily
invariant. It is easy to see that Cl1 (ρ, E ) have the form of
Eq. (33).

(2) It is easy to see that CT,α (ρε, P) is unitarily invariant.
Now we prove that CT,α (ρ, E ) has the form of Eq. (34) under
Eq. (30).

For the unitary transformation V defined in Eq. (26),

εV (ρ) = V (ρ ⊗ |1〉〈1|)V † =
∑

i j

AiρA†
j ⊗ |i〉〈 j| = ε(ρ).

As a result,

tr[(Pi(εV (ρ))αPi )
1/α]

= tr[(PiV (ρα ⊗ |1〉〈1|)V †
i P)1/α]

= tr

⎡
⎣
⎛
⎝Pi

⎛
⎝∑

jk

A jρ
αA†

k ⊗ | j〉〈k|
⎞
⎠Pi

⎞
⎠

1/α⎤
⎦

= tr[(AiρA†
i ⊗ |i〉〈i|)1/α]

= tr[(AiρA†
i )1/α].

Hence, CT,α (ρ, E ) has the form of Eq. (34). Equation (35) can
be proved as Corollary 1.

(3) It is easy to see that Ctr(ρ, E ) has the form of Eq. (37).
Now we show that Ctr(ρε, P) is unitarily invariant. Note that

Ctr(ρε, P) = min
λ>0,σ

∣∣∣∣∣
∣∣∣∣∣ρε − λ

n∑
i=1

PiσPi

∣∣∣∣∣
∣∣∣∣∣
tr

,

where σ is any density operator on Hε.

For any unitary U on Hε, we have

Ctr(UρεU
†,UPU †)

= min
λ>0,σ

∣∣∣∣∣
∣∣∣∣∣UρεU

† − λ

n∑
i=1

UPiU
†σUPiU

†

∣∣∣∣∣
∣∣∣∣∣
tr

= min
λ>0,σ

∣∣∣∣∣
∣∣∣∣∣ρε − λ

n∑
i=1

PiU
†σUPi

∣∣∣∣∣
∣∣∣∣∣
tr

= min
λ>0,σ

∣∣∣∣∣
∣∣∣∣∣ρε − λ

n∑
i=1

PiσPi

∣∣∣∣∣
∣∣∣∣∣
tr

= Ctr(ρε, P),

where we have used the facts that the trace norm is unitarily
invariant and {σ : σ ∈ S (H )} = {U †σU : σ ∈ S (H )}.

(4) It is easy to see that Cw(ρ, E ) has the form of Eq. (38).
Next we show that Cw(ρε, P) is unitarily invariant. Note that

Cw(ρε, P) = min
σ

{
s � 0|ρε � (1 − s)

n∑
i=1

PiσPi

}
,

where σ is any density operator on Hε.

For any unitary U on Hε, we have

Cw(UρεU
†,UPU †)

= min
σ

{
s � 0|UρεU

† � (1 − s)
n∑

i=1

UPiU
†σUPiU

†

}

= min
σ

{
s � 0|ρε � (1 − s)

n∑
i=1

PU †σUPi

}

= min
σ

{
s � 0|ρε � (1 − s)

n∑
i=1

PiσPi

}

= Cw(ρε, P),

which completes the proof.
(5) It is easy to see that CR,α (ρ, E ) has the form of Eq. (39).

Similarly to the proof of (3), one can show that Cw(ρε, P) is
unitarily invariant. �

We remark that the coherence measure Cl1 (ρ, P) was pro-
posed in Ref. [23]. in Ref. [20] the authors conjectured that
Cl1 (ρ, E ) is a well-defined POVM coherence measure satis-
fying the conditions (P1)–(P4). Combining with our result
of Proposition 1, we have strictly proved in Theorem 2 that
Cl1 (ρ, E ) is indeed a well-defined POVM coherence measure.

IV. SUMMARY

We have established an alternative framework for quanti-
fying the coherence with respect to projective measurements,
and provided several coherence measures with respect to
projective measurements. We then obtained several coherence
measures with respect to general POVM measurements, from
which a conjecture has been verified concerning the coherence
measure Cl1 (ρ, E ). The coherence with respect to POVM
measurements has operational significance. Similarly to the
robustness of coherence and the maximum relative entropy
of coherence which characterize the success probability of
subchannel discrimination [4,8], it would be also an interest-
ing issue to explore the operational meanings of the POVM
coherence measures given in Theorem 2. Our results may
highlight further investigations on the coherence of quantum
states and the applications in quantum information processing.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation of China (Grant No. 11675113), the Key Project
of Beijing Municipal Commission of Education (Grant
No. KZ201810028042), Beijing Natural Science Foundation
(Grant No. Z190005), Young Talent Fund of University As-
sociation for Science and Technology in Shaanxi (Grant No.

012411-5



JIANWEI XU, LIAN-HE SHAO, AND SHAO-MING FEI PHYSICAL REVIEW A 102, 012411 (2020)

20190111), and Academy for Multidisciplinary Studies, Cap-
ital Normal University.

APPENDIX

1. Proof of Proposition 1

From the definition of the BI state and the properties of the
trace norm, Cl1 (ρ, P) satisfies the condition (B1). It satisfies
the conditions (B4) and (B5) due to the properties of the trace

norm. Since (B3) and (B4) imply (B2), we only need to prove
that Cl1 (ρ, P) fulfills (B3).

For any BI channel φ with BI decomposition φBI = {Kl}l ,∑
l K†

l Kl = Id , each Kl has the form [20]

Kl =
n∑

i=1

Pfl (i)MlPi, (A1)

where fl (i) is a function on {i}n
i=1, and Ml is a matrix on H .

Denote pl = tr(KlρK†
l ), ρl = KlρK†

l /pl . We have

∑
l

plCl1 (ρl , P) =
∑
l,i �= j

‖PiKlρK†
l Pj‖tr =

∑
l,i �= j

∣∣∣∣∣∣
∣∣∣∣∣∣PiKl

∑
i′ �= j′

Pi′ρPj′K
†
l Pj

∣∣∣∣∣∣
∣∣∣∣∣∣
tr

(A2)

�
∑

l,i j,i′ �= j′
‖PiKl Pi′ρPj′K

†
l Pj‖tr =

∑
l,i′ �= j′

∥∥Pfl (i′ )Kl Pi′ρPj′K
†
l Pfl ( j′ )

∥∥
tr (A3)

=
∑

l,i′ �= j′

∣∣∣∣∣
∣∣∣∣∣Pfl (i′ )Kl

∑
k

si′ j′k|ψi′ j′k〉〈ψ i′ j′k|K†
l Pfl ( j′ )

∣∣∣∣∣
∣∣∣∣∣
tr

(A4)

�
∑

lk,i′ �= j′
si′ j′k

∥∥Pfl (i′ )Kl |ψi′ j′k〉〈ψ i′ j′k|K†
l Pfl ( j′ )

∥∥
tr

=
∑

k,i′ �= j′
si′ j′k

∑
l

√
〈ψi′ j′k|K†

l Pfl (i′ )Kl |ψi′ j′k〉〈ψ i′ j′k|K†
l Pfl ( j′ )Kl |ψ i′ j′k〉 (A5)

�
∑

k,i′ �= j′
si′ j′k

√∑
l

〈ψi′ j′k|K†
l Pfl (i′ )Kl |ψi′ j′k〉

√∑
l ′

〈ψ i′ j′k|K†
l ′ Pfl′ ( j′ )Kl ′ |ψ i′ j′k〉 (A6)

=
∑

k,i′ �= j′
si′ j′k

√
〈ψi′ j′k|

∑
l

K†
l Pfl (i′ )Kl |ψi′ j′k〉

√
〈ψ i′ j′k|

∑
l ′

K†
l ′ Pfl′ ( j′ )Kl ′ |ψ i′ j′k〉

�
∑

k,i′ �= j′
si′ j′k

√〈ψi′ j′k|Im|ψi′ j′k〉
√

〈ψ i′ j′k|Im|ψ i′ j′k〉 =
∑

k,i′ �= j′
si′ j′k =

∑
i′ �= j′

‖Pi′ρPj′ ‖tr = Cl1 (ρ, P). (A7)

In Eq. (A2) we have used the property that {Kl}l is a
BI decomposition, that is, PiKl (

∑
i′ Pi′ρPi′ )K

†
l Pj = 0 for any

i �= j. In Eq. (A3) we have used PiKlPi′ = PiPfl (i′ )KlPi′ =
δi, fl (i′ )Pfl (i′ )KlPi′ which is a result of Eq. (A1). In Eq. (A4)
we have used the singular value decomposition, Pi′ρPj′ =∑

k si′ j′k|ψi′ j′k〉〈ψ i′ j′k| with {si′ j′k}k the singular values,
{|ψi′ j′k〉}k ({|ψ i′ j′k〉}k) a set of orthonormal vectors. In Eq. (A5)
we have taken into account the fact that ‖|ψ〉〈ϕ‖|tr =√〈ψ |ψ〉〈ϕ|ϕ〉 for any pure states |ψ〉 and |ϕ〉. In Eq. (A6)
we have used the Cauchy-Schwarz inequality

∑
l

√
albl �√∑

l al

√∑
l ′ bl ′ with al � 0 and bl � 0. In Eq. (A7) we have

used the fact that
∑

l K†
l Pfl (i′ )Kl � Im since Pfl (i′ ) � Im and∑

l K†
l Kl = Im.

2. Proof of Proposition 2

For α > 0, the quantum Tsallis relative entropy is defined
as

DT,α (ρ‖σ ) = tr(ρασ 1−α ) − 1

α − 1
, ρ, σ ∈ S (H ),

supp(ρ) ⊂ supp(σ ) when α � 1, (A8)

where supp(ρ) = {|ψ〉|ρ|ψ〉 �= 0} is the support of ρ.

It is shown that for α > 0 [33],

DT,α (ρ‖σ ) � 0, DT,α (ρ‖σ ) = 0 ⇔ ρ = σ. (A9)

Also, Dα (ρ‖σ ) is monotonic under CPTP maps for α ∈ (0; 2]
[33],

DT,α (φ(ρ)‖φ(σ )) � DT,α (ρ‖σ ). (A10)

Define

DT,α (ρ) = min
σ∈IB(H )

DT,α (ρ‖σ ). (A11)

We now prove that

DT,α (ρ) =
{∑

i tr
[
(Piρ

αPi )
1
α

]}α − 1

α − 1
. (A12)

To go ahead, we need the lemmas below.
Lemma 1. Hölder inequality. Suppose {ai}n

i=1, {bi}n
i=1, are

all positive real numbers, then
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(1) when α ∈ (0, 1),

n∑
i=1

aibi �
(

n∑
i=1

a
1
α

i

)α( n∑
i=1

b
1

1−α

i

)1−α

, (A13)

and the equality holds if and only if a
1
α

i /b
1

1−α

i = a
1
α

j /b
1

1−α

j for
any i, j;

(2) when α > 1,

n∑
i=1

aibi �
(

n∑
i=1

a
1
α

i

)α( n∑
i=1

b
1

1−α

i

)1−α

, (A14)

and the equality holds if and only if a
1
α

i /b
1

1−α

i = a
1
α

j /b
1

1−α

j for
any i, j.

Lemma 2 (Ref. [34]). For r × r positive-semidefinite ma-
trices M and N , it holds that

r∑
j=1

λ
↓
r+1− j (M )λ↓

j (N ) � tr(MN ) �
r∑

j=1

λ
↓
j (M )λ↓

j (N ),

(A15)

where {λ↓
j (M )} j are the eigenvalues of M in decreasing order.

Now for α ∈ (0, 1) and σ ∈ IB(H ), we have

tr(ρασ 1−α ) = tr

[
ρα

n∑
i=1

(PiσPi )
1−α

]

=
n∑

i=1

q1−α
i tr

(
ρασ 1−α

i

)

�
{

n∑
i=1

[
tr
(
ρασ 1−α

i

)] 1
α

}α

,

(A16)

where qi = tr(PiσPi ), σi = PiσPi/qi, the Hölder inequality
has been used, and the equality holds if and only if there
exists constant C � 0 such that qi = C[tr(ρασ 1−α

i )]
1
α for any

i. Furthermore,

tr
(
ρασ 1−α

i

) = tr
(
ραPiσ

1−α
i Pi

)
�

mi∑
j=1

λ
↓
j (Piρ

αPi )λ
↓
j

(
σ 1−α

i

)

=
mi∑
j=1

λ
↓
j (Piρ

αPi )[λ
↓
j (σi )]

1−α

�

⎧⎨
⎩

mi∑
j=1

[λ↓
j (Piρ

αPi )]
1
α

⎫⎬
⎭

α⎧⎨
⎩

mi∑
j=1

[(λ↓
j (σi ))1−α]

1
1−α

⎫⎬
⎭

1−α

= {
tr
[
(Piρ

αPi )
1
α

]}α
, (A17)

where Lemma 1 and Lemma 2 have been used. It is easy to
check that when

σ =
∑n

i=1(Piρ
αPi )

1
α∑n

i=1 tr
[
(PiραPi )

1
α

] , (A18)

Eq. (A11) achieves Eq. (A12). As a result we get Eq. (A12).

For α > 1, we have

tr(ρασ 1−α ) = tr

[
ρα
∑

i

(PiσPi )
1−α

]

=
∑

i

q1−α
i tr

(
ρασ 1−α

i

)

�
{∑

i

[
tr
(
ρασ 1−α

i

)] 1
α

}α

, (A19)

and the equality holds if and only if there exists a constant
C � 0 such that qi = C[tr(ρασ 1−α

i )]
1
α for any i. Moreover,

tr
(
ρασ 1−α

i

)
= tr

(
ραPiσ

1−α
i Pi

)
�

mi∑
j=1

λ
↓
j (Piρ

αPi )λ
↓
mi+1− j

(
σ 1−α

i

)

=
mi∑
j=1

λ
↓
j (Piρ

αPi )
[
λ

↓
mi+1− j (σi)

]1−α

�

⎧⎨
⎩

mi∑
j=1

[λ↓
j (Piρ

αPi )]
1
α

⎫⎬
⎭

α⎧⎨
⎩

mi∑
j=1

[(
λ

↓
mi+1− j (σi )

)1−α] 1
1−α

⎫⎬
⎭

1−α

= {
tr
[
(Piρ

αPi )
1
α

]}α
. (A20)

In the above derivation, we have used Lemma 1 and Lemma
2. Again, when σ takes the value in Eq. (A18), Eq. (A11)
achieves Eq. (A12). As a result we get Eq. (A12).

From Eqs. (A11) and (A16) we see that DT,α (ρ) � 0 and
DT,α (ρ) = 0 if and only if ρ ∈ IB(H ). Then from Eq. (A12)
we have {∑

i tr
[
(Piρ

αPi )
1
α

]}α − 1

α − 1
� 0,

namely, ∑
i tr
[
(Piρ

αPi )
1
α

]− 1

α − 1
� 0,

with the equality holding if and only if ρ ∈ IB(H ), which
proves that CT,α (ρ, P) satisfies (B1).

For any φBI ∈ CBI(H ), from Eqs. (A15) and (A16) we have

DT,α (ρ) = min
σ∈IB(H )

DT,α (ρ‖σ ) = DT,α (ρ‖σ ∗)

� DT,α (φBI(ρ)‖φBI(σ
∗))

� min
σ∈IB(H )

DT,α (φ BI(ρ)‖σ )

= DT,α (φBI(ρ)), (A21)

where σ ∗ ∈ IB(H ) such that minσ∈IB(H ) DT,α (ρ‖σ ) =
DT,α (ρ‖σ ∗).

From Eq. (A12), Eq. (A21) is equivalent to{∑
i tr
[
(Piρ

αPi )
1
α

]}α − 1

α − 1

�
{∑

i tr
[(

Pα
i (φBI(ρ))αPi

) 1
α
]}α − 1

α − 1
,
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which is further equivalent to∑
i tr
[
(Piρ

αPi )
1
α

]− 1

α − 1

�
∑

i tr
[(

Pα
i (φBI(ρ))αPi

) 1
α
]− 1

α − 1
.

We then proved that CT,α (ρ, P) satisfies (B2).
Now we prove that CT,α (ρ, P) also satisfies (B5). Suppose

ρ = p1ρ1 ⊕ p2ρ2 as described in (B5). Then

n∑
i=1

tr
[
(Piρ

αPi )
1
α

]

= p1

∑
k1

tr
[(

Pk1ρ
α
1 Pk1

) 1
α
]+ p2

∑
k2

tr
[(

Pk2ρ
α
2 Pk2

) 1
α
]

= p1

n∑
i=1

tr
[(

Piρ
α
1 Pi
) 1

α
]+ p2

n∑
i=1

tr
[(

Piρ
α
2 Pi
) 1

α
]
. (A22)

Substituting (A22) into Eq. (17), we then proved that
CT,α (ρ, P) satisfies (B5).

3. Proof of Corollary 1

Set α = 1 + ε. Consider the Taylor expansions around ε =
0,

M1+ε = M + εM ln M + o(ε2),

ln(M + εN ) = ln M + o(ε),

1

1 + ε
= 1 − ε + o(ε2),

where M, N are Hermitian matrices, and o(ε) denotes the
infinitesimal term with the order ε or higher around ε = 0.

We have Piρ
αPi = Pi(ρ + ερ ln ρ + o(ε2))Pi. Therefore,

tr
[
(Piρ

αPi )
1
α

]
= tr

[
(Piρ

αPi )
1−ε+o(ε2 )

]
= tr[(Piρ

αPi ) − ε(Piρ
αPi ) ln(Piρ

αPi ) + o(ε2)]

= tr[PiρPi + εPi(ρ ln ρ)Pi − ε(PiρPi ) ln(PiρPi )

+o(ε2)].

Applying L’Hospital’s rule to Eq. (17), we have

lim
α→1

CT,α (ρ, P)

= lim
α→1

d

dα

∑
i

tr[(Piρ
αPi )

1/α]

=
∑

i

tr[Pi(ρ ln ρ)Pi − (PiρPi ) ln(PiρPi )]

= tr(ρ ln ρ) −
∑

i

tr[(PiρPi ) ln(PiρPi )]

= (ln 2)Crel(ρ, P).

4. Proof of Proposition 3

Obviously, the condition (B1) is satisfied. (B2) is also
satisfied as a consequence of the fact that ‖M‖tr � ‖φ(M )‖tr

for any CPTP map φ and any Hermitian matrix M [35].
Concerning (B5), we consider ρ = p1ρ1 ⊕ p2ρ2 as described
in (B5). Any σ ∈ IBI(H ) can be written as

σ = q1σ1 ⊕ q2σ2, (A23)

with q1 � 0, q2 � 0, q1 + q2 = 1, and σ1, σ2 ∈ S (H ),
σ1Pk2 = σ2Pk1 = 0 for any k1 and k2. It follows that

C(p1ρ1 ⊕ p2ρ2, P)

= min
λ>0,q1,σ1,σ2

‖p1ρ1 ⊕ p2ρ2 − λ(q1σ1 ⊕ q2σ2)‖tr

= min
λ>0,q1,σ1,σ2

(
p1

∣∣∣∣
∣∣∣∣ρ1 − λq1

p1
σ1

∣∣∣∣
∣∣∣∣
tr

+ p2

∣∣∣∣
∣∣∣∣ρ2 − λq2

p2
σ2

∣∣∣∣
∣∣∣∣
tr

)

= p1 min
λ1>0,σ1

∣∣∣∣
∣∣∣∣ρ1 − λq1

p1
σ1

∣∣∣∣
∣∣∣∣
tr

+ p2 min
λ2>0,σ2

∣∣∣∣
∣∣∣∣ρ2 − λq2

p2
σ2

∣∣∣∣
∣∣∣∣
tr

= p1C(ρ1) + p2C(ρ2, P),

where we have used the facts that σ1, σ2 ∈ S (H ), {q1, q2} is
a probability distribution, λ1 = λq1

p1
and λ2 = λq2

p2
.

5. Proof of Proposition 4

It can be proved that Cw(ρ, P) fulfills the conditions (B1),
(B3), and (B4) by using a way similar to that adopted in
Ref. [31]. Here we equivalently prove that Cw(ρ, P) fulfills
(B1), (B2), and (B5). (B1) is evidently satisfied. To prove
(B2), suppose {Kl}l ∈ CBI(H ) with {Kl}l a BI decomposition.
Then there exists σ ∈ IB(H ) such that

ρ � [1 − Cw(ρ, P)]σ,∑
l

KlρK†
l � [1 − Cw(ρ, P)]

∑
l

KlσK†
l .

Since
∑

l KlσK†
l ∈ IB(H ), we obtain Cw(

∑
l KlρK†

l , P) �
Cw(ρ, P), which proves that (B2) is satisfied.

To prove (B5), let us consider again ρ = p1ρ1 ⊕ p2ρ2 as
described in (B5). Then there exists σ ∈ IB(H ) such that

ρ � [1 − Cw(ρ, P)]σ,∑
k1

Pk1ρPk1 � [1 − Cw(ρ, P)]
∑

k1

Pk1σPk1 ,

∑
k2

Pk2ρPk2 � [1 − Cw(ρ, P)]
∑

k2

Pk2σPk2 .

Denote
∑

k1
Pk1σPk1 = q1σ1,

∑
k1

Pk1σPk1 = q2σ2, with
{q1, q2} a probability distribution, σ1, σ2 ∈ IB(H ). Since
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∑
k1

Pk1ρPk1 = p1ρ1,
∑

k2
Pk2ρPk2 = p2ρ2, we have

ρ1 � [1 − Cw(ρ, P)]q1

p1
σ1,

ρ2 � [1 − Cw(ρ, P)]q2

p2
σ2,

Cw(ρ1, P) � 1 − [1 − Cw(ρ, P)]q1

p1
, (A24)

Cw(ρ2, P) � 1 − [1 − Cw(ρ, P)]q2

p2
,

p1Cw(ρ1, P) + p2Cw(ρ2, P) � Cw(ρ, P).

Conversely, there exist σ ′
1, σ

′
2 ∈ IB(H ) such that

ρ1 � [1 − Cw(ρ1, P)]σ ′
1,

ρ2 � [1 − Cw(ρ2, P)]σ ′
2.

It follows that

p1ρ1 ⊕ p2ρ2

� p1[1 − Cw(ρ1, P)]σ ′
1 + p2[1 − Cw(ρ2, P)]σ ′

2,

Cw(ρ, P) � p1Cw(ρ1, P) + p2Cw(ρ2, P). (A25)

Equations (A26) and (A27) imply (B5), which completes the
proof.

6. Proof of Proposition 5

This proof is a generalization of the proof for Theorem 1
in Ref. [14]. For α ∈ [ 1

2 , 1), σ, ρ ∈ S (H ), the sandwiched
Rényi relative entropy is defined as [36,37]

Fα (σ‖ρ) = ln tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]
α − 1

.

It is shown that [37,38] for α ∈ [ 1
2 , 1), Fα (σ‖ρ) � 0,

where the equality holds if and only if σ = ρ. This is equiva-
lent to that

tr
[(

ρ
1−α
2α σρ

1−α
2α

)α] � 1,

and to that {
tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]} 1
1−α � 1,

with the equality holding if and only if σ = ρ. This says that
CR,α (ρ, P) satisfies (B1).

For α ∈ [ 1
2 , 1), it has been shown that [37,39] for σ, ρ ∈

S (H ), and any CPTP map φ,

Fα (φ(σ )‖φ(ρ)) � Fα (σ‖ρ).

This implies

tr
[(

(φ(ρ))
1−α
2α φ(σ )(φ(ρ))

1−α
2α

)α]
� tr

[(
ρ

1−α
2α σρ

1−α
2α

)α]
,{

tr
[(

(φ(ρ))
1−α
2α φ(σ )(φ(ρ))

1−α
2α

)α]} 1
1−α

�
{
tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]} 1
1−α .

For any BI map φBI, there exists σ ∗ ∈ IB(H ) such that

max
σ∈IB(H )

{
tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]} 1
1−α

= {
tr
[(

ρ
1−α
2α σ ∗ρ

1−α
2α

)α]} 1
1−α

� {tr[((φBI(ρ))
1−α
2α φBI(σ

∗)(φBI(ρ))
1−α
2α

)α]} 1
1−α

� max
σ∈IB(H )

{
tr
[(

(φBI(ρ))
1−α
2α σ (φBI(ρ))

1−α
2α

)α]} 1
1−α .

This proves that CR,α (ρ, P) satisfies (B2).
Next we prove CR,α (ρ, P) satisfies (B5). Consider ρ =

p1ρ1 ⊕ p2ρ2 as described in (B5). As any σ ∈ IBI(H ) can be
written as Eq. (A23), it follows that

max
σ∈IB(H )

tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]
= max

q1,q2

{(
p1−α

1 qα
1

)
max

σ1

tr
[(

ρ
1−α
2α

1 σ1ρ
1−α
2α

1

)α]
+(p1−α

2 qα
2

)
max

σ2

tr
[(

ρ
1−α
2α

2 σ2ρ
1−α
2α

2

)α]}
= max

q1,q2

{
p1−α

1 qα
1 t1 + p1−α

2 qα
2 t2
}

= p1−α
1 p1−α

2 t1t2
(
p−1

1 t
1

α−1
1 + p−1

2 t
1

α−1
2

)1−α
,

where

t1 = max
σ1

tr
[(

ρ
1−α
2α

1 σ1ρ
1−α
2α

1

)α]
,

t2 = max
σ2

tr
[(

ρ
1−α
2α

2 σ2ρ
1−α
2α

2

)α]
,

and Lemma 1 (note here t1 > 0 and t2 > 0) has been taken
into account.

Consequently,

max
σ∈IB(H )

({
tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]} 1
1−α
)

=
{

max
σ∈IB(H )

tr
[(

ρ
1−α
2α σρ

1−α
2α

)α]} 1
1−α

= p1 p2t
1

1−α

1 t
1

1−α

2

(
p−1

1 t
1

α−1
1 + p−1

2 t
1

α−1
2

)
= p1t

1
1−α

1 + p2t
1

1−α

2 .

This shows that CR,α (ρ, P) satisfies (B5).
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