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Noise-adaptive test of quantum correlations with quasiprobability functions
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We introduce a method for testing quantum correlations in terms of quasiprobability functions in the presence
of noise. We analyze the effects of measurement imperfection and thermal environment on quantum correlations
and show that their noise effects can be well encapsulated into the change of the order parameter of the
generalized quasiprobability function. We then formulate a noise-adaptive entanglement witness in the form
of a Bell-type inequality by using the generalized quasiprobability function. Remarkably, it allows us to observe
quantum correlations under severe noise. Our method provides a useful tool to test quantum correlations in
near-term noisy quantum processors with continuous-variable systems.
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I. INTRODUCTION

Quantum correlations are essential resources for quantum
computation [1], communication [2–5], and cryptography [6].
Such quantum features, however, are fragile in the presence
of noise in the system or measuring device, and the noise
effects tend to become more severe as the size of the system
increases. One of the most important challenges in building a
scalable quantum processor [7,8] and network [9–13] is thus
an efficient identification of quantum correlations in noisy
quantum systems [14].

Meanwhile, a continuous variable (CV) system can be
effectively represented by quasiprobability functions in phase
space. The quasiprobability distribution such as the Glauber-
Sudarshan P function [15,16], the Wigner function [17], and
the Husimi Q function [18] can be used as an equivalent
description to the density matrix [19–21]. Nonclassical fea-
tures of quantum states, which are incompatible with clas-
sical counterparts, such as the negativity [22–24], nonlo-
cality [25,26], contextuality [27,28], entanglement [29–31],
and coherence [32] were studied in this formalism as useful
resources for quantum information processing [33–38]. Ver-
ifying quantum correlations in CV systems has thus been an
important issue in quantum technologies [39–41].

Methods to directly measure the quasiprobability func-
tion of a given quantum state has been actively devel-
oped [42–47], while a tomography by homodyne detection
has been typically used to reconstruct the quasiprobability
distribution [48–52]. If the field can be confined in a cavity,
the quasiprobability function is directly measurable by the
atom-field interaction because it provides useful means to
detect cavity quantum electrodynamic systems [46,47]. Re-
cent progress of the photon-number-resolving detectors [53],
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e.g., based on superconducting circuits [54–56], enhances the
possibility to directly measure the quasiprobability function as
well as the nonclassical features of a quantum state [57,58].
However, such a measurement is very sensitive to the noise
in the measured system or the measuring device. If the mea-
surement imperfection or environmental noise becomes sig-
nificant, observed quantum features tend to disappear sharply.
Entanglement witnesses formulated in an ideal situation with-
out noise may not be able to effectively detect quantum
correlations in the presence of noise.

Here we introduce a noise-adaptive method to detect quan-
tum correlations in terms of the generalized quasiprobability
function. We analyze the effects of measurement imperfection
and thermal effect by environment on quantum correlations in
phase space. It is shown that their noise effects can be well
encapsulated into the change of the order parameter of the
generalized quasiprobability function. In this formalism, we
formulate a noise-adaptive witness in the form of a Bell-type
inequality by the generalized quasiprobability function. A vi-
olation of the proposed inequality is a direct indication of the
existence of entanglement in the state of the measured system.
Remarkably, it allows us to observe quantum correlations in
a CV system even under a significant amount of noise. Our
work provides a useful tool to test quantum correlations in
near-term noisy quantum devices with CV systems.

II. GENERALIZED QUASIPROBABILITY FUNCTION

We start with briefly reviewing the generalized repre-
sentation of the quasiprobability distribution. As Cahill and
Glauber introduced in Refs. [19–21], the generalized parity
operator defined by

�̂(α; s) = 1

1 − s

∞∑
n=0

(
s + 1

s − 1

)n

|α, n〉〈α, n| (1)
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forms a complete set of operators so that every bounded
operator (i.e., the Hilbert-Schmidt norm of which is finite)
can be represented by its expansion with appropriate weight
functions. Here, |α, n〉 is the displaced number state produced
by applying the Glauber displacement operator D̂(α) to the
number basis, |α, n〉 ≡ D̂(α)|n〉 with a complex parameter α.
As every density matrix of a quantum state ρ̂ is bounded, we
can represent arbitrary quantum state in terms of the weight
function given as the expectation value of �̂(α; s),

W (α; s) = 2

π
Tr

[
ρ̂�̂(α; s)

]
, (2)

which is the so-called s-parametrized quasiprobability func-
tion [19,20]. This is the unified form of quasiprobability
functions with different orders parameter s: (i) If s tends
to one from the left, it becomes the Glauber-Sudarshan P
function [15,16],

P(α) = lim
s→1−

2

π
Tr

[
ρ̂�̂(α; s)

]
. (3)

Note that the expectation value of �̂(α; s) for |α, n〉
goes to infinity as s → 1, representing the singularity of
the P function [19,20]. (ii) If we set s = 0, �̂(α; 0) =∑∞

n=0(−1)n|α, n〉〈α, n| = D̂(α)(−1)n̂D̂(α), and the Wigner
function [17]

W (α) = 2

π
Tr

[
ρ̂�̂(α; 0)

] = 2

π

∞∑
n=0

(−1)n〈α, n|ρ|α, n〉 (4)

is obtained. (iii) If s = −1, �̂(α; −1) = |α〉〈α| so that the
Eq. (2) becomes the Husimi Q function [18] as

Q(α) = 1

π
Tr

[
ρ̂�̂(α; −1)

] = 1

π
〈α|ρ|α〉. (5)

In general, a quasiprobability distribution W (α; s′) can
be regarded as a smoothed quasiprobability distribution of
W (β; s) with an order parameter s > s′. This can be rep-
resented by the convolution of W (β; s) and a Gaussian
weight [19,20],

W (α; s′) = 2

π (s − s′)

∫
d2βW (β; s) exp

(
−2|α − β|2

s − s′

)
.

(6)
Because the effects of noise in the phase-space representation
can be modeled by Gaussian smoothing [42,44,45,48–52],
the decreasing s′ is often considered as a loss of nonclas-
sicality. For example, the negativity of W (β; s) is reduced
as s′ decreases, and the expectation value becomes non-
negative everywhere in phase space when it becomes the
Husimi Q function s′ = −1. This can be understood as the
smoothing of W (β; s) over the area satisfying the Heisenberg
minimum uncertainty, associated with the ideal simultaneous
measurements of position and momentum. Hence, the Husimi
Q function can often be interpreted as a proper probability
distribution.

The expectation value of the generalized parity operator
�̂(α; s) for a displaced number state |α, n〉 is bounded when
s � 0, while it diverges when s > 0. When s = 0, the ex-
pectation value is given as (−1)n. When s < 0, the absolute
value of the expectation value is always less than 1 and
becomes smaller with increasing n. For example, the change

FIG. 1. Change of the expectation value of the generalized parity
operator �̂(α; s) with n for a displaced number state |α, n〉 when
s = −0.1.

of the expectation value for |α, n〉 with s = −0.1 is plotted
in Fig. 1. We intend to use �̂(α; s) as an observable to test
quantum correlations so that we focus on the nonpositive s
region in the later part of this paper. Then, the s-parametrized
quasiprobability function W (α; s) covers from the Wigner
function with s = 0 to the Husimi Q function with s = −1.

III. EFFECT OF DETECTION NOISE

For the number-resolving detection of bosonic particles
(e.g., photons), the noise effect is mainly due to the loss of
particles by inefficient detectors. Such imperfection can be
modeled by the action of a beam-splitter with a transmittance
η. We do not consider here the dark counts since their effects
are relatively more minor than losses especially when the
detection efficiency is low. The probability of the detection
of each single particle is then η, and the overall effect on
the number distribution can be described by the Bernoulli
sampling. If the probability that the field contains n particles is
p(n), the probability for detecting m particles is given by [48]

pη(m) =
∞∑

n=m

(
n

m

)
(1 − η)n−mηm p(n), (7)

where
(n

m

) = n!/[m!(n − m)!] is the binomial coefficient.
The quasiprobability distribution reconstructed by ineffi-

cient detectors with η is then written by

Wη(α; s) = 2

π (1 − s)

∞∑
m=0

(
s + 1

s − 1

)m

pη,α (m), (8)

where pη,α (m) = ∑∞
n=m

(n
m

)
(1 − η)n−mηm pα (n) and pα (n) ≡

〈α, n|ρ|α, n〉 ≡ 〈n|D̂(α)ρD̂(α)|n〉. This can be then recast
into (see Appendix)

Wη(α; s) = 2

π (1 − s)

∞∑
n=0

(
1 − η + η

s + 1

s − 1

)n

P(α, n)

= 1

η
W

(
α; −1 − s − η

η

)
≡ 1

η
W

(
α; s′). (9)

Consequently, the generalized quasiprobability function mea-
sured with detection efficiency η can be identified with the
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quasiprobability function with a rescaled parameter

1 − s′ = 1 − s

η
. (10)

Note that the relation in Eq. (10) is generally valid for any re-
construction method of the quasiprobability distribution. For
example, the result is consistent with the analysis of the noise
effects when reconstructing the quasiprobability distribution
by homodyne detection [48–52].

IV. EFFECT OF NOISE FROM ENVIRONMENT

Let us first introduce the convolution law of the quasiprob-
ability distribution function [59]. Consider a beam splitter
with the transmissivity t and reflectivity r satisfying r2 +
t2 = 1. The P function (s = 1) of one output mode (de-
noted by mode d) is the simple convolution of the two
input modes (denoted by a and b modes) [19,20] so that
the characteristic functions of the input and output modes
are in the convolution relation as χd (α; s = 1) = χa(rα; s =
1)χb(tα; s = 1). As the generalized characteristic function
of a quantum state ρ̂ with an order parameter s can be
written by χ (α; s) = Tr[ρ̂ exp(αâ† − α∗â)] exp(s|α|2/2) =
χ (α; 1) exp[(s − 1)|α|2/2], we can obtain the convolution law
for the generalized characteristic function as

χd (α; s) = χd (α; 1) exp

(
s − 1

2
|α|2

)

= χa(rα; 1) exp

(
s − 1

2
|rα|2

)

×χb(tα; 1) exp

(
s − 1

2
|tα|2

)

= χa(rα; s)χb(tα; s). (11)

As a result, we can arrive at the convolution law for the
generalized quasiprobability distribution function,

Wd (α; s) = 1

t2

∫
d2βWa(β; s)Wb

(
α − rβ

t
; s

)
. (12)

Let us now analyze the effect of noise due to the environ-
ment. Since a dissipation induced by interaction with envi-
ronment tends to smooth the quasiprobability distribution, the
state evolution under environmental noise can be effectively
described by a dynamical change of the order parameter s.
This approach is also in agreement with the description of
the measurement imperfection given in the previous section,
since an attenuated dynamics can be also understood within
the framework of noisy measurements [60]. As an exemplary
model, we focus here on a noise model induced by the thermal
environment. Suppose that a quantum system encounters and
interacts with the thermal environment regarded as a reservoir.
The effect of the reservoir can be modeled by mixture of the
mode for the system and the mode of thermal fields by a
beam splitter. The evolution of the quasiprobability distribu-
tion can be described by the solution of the Fokker-Planck

equation [59],

∂W (α; s; τ )

∂τ
= κ

2

[
∂

∂α
α + ∂

∂α∗ α∗ + 2

(
1

2
+ n̄

)
∂2

∂α∂α∗

]

W (α; s; τ ). (13)

We then obtain the time evolution at time τ by means of the
convolution of the original field and thermal environment as

W (α; s; τ ) = 1

t2(τ )

∫
d2βW th(β; s)W

(
α − r(τ )β

t (τ )
; s; 0

)
,

(14)
where r(τ ) = (1 − e−γ τ )1/2 and t (τ ) = (e−γ τ )1/2 are given in
terms of the energy decay rate γ . Here,

W th(β; s) = 2

π (1 + 2n̄ − s)
exp

(
− 2|β|2

1 + 2n̄ − s

)
(15)

is the generalized quasiprobability function of the thermal
state with mean photon number n̄. By rescaling β and α with
respect to β ′ = r(τ )β/t (τ ) and α′ = α/t (τ ), Eq. (14) can be
recast into

2

π (1 + 2n̄ − s)r(τ )2

∫
d2β ′W

(
β ′; s

)

× exp

(
− 2t (τ )2|α′ − β ′|2

(1 + 2n̄ − s)r(τ )2

)
.

From Eq. (6), the effect of thermal environment can then
be identified with a temporal change of the quasiprobability
function as

W (α; s; τ ) = 1

t2(τ )
W

(
α

t (τ )
; s′(τ ); 0

)
, (16)

with an order parameter given by

s′(τ ) = s − r2(τ )(1 + 2n̄)

t2(τ )
. (17)

Therefore, we have found that the evolution of quasiproba-
bility distribution under the influence of thermal environment
noise can be effectively described by a dynamical change of
the order parameter s.

V. BELL INEQUALITIES WITH QUASIPROBABILITY
FUNCTIONS

In the following we formulate an entanglement witness
in the form of a Bell-type inequality [61] in terms of the
generalized quasiprobability function to test quantum cor-
relations under noise. Suppose that a two-mode system is
prepared to test. As the expectation value of the generalized
parity operator �̂(α; s) is bounded with a nonpositive s, we
can use �̂(α; s) to define an observable for testing quantum
correlations. Let us define the effective observable operator as

Ô(α; s) = X (s)�̂(α; s) + Y (s)1, (18)

where X (s) > 0 and Y (s) are arbitrary functions of the order
parameter s in the region −1 � s � 0 and 1 is the identity
operator. Under the circumstance, the eigenvalue spectrum of
the observable operator (18) is given as

en(s) = X (s)

1 − s

(
s + 1

s − 1

)n

+ Y (s). (19)
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It is straightforward to see that the value of −(s + 1)n/(s −
1)n+1 takes the maximum when n = 0 and the minimum when
n = 1 in the region −1 � s � 0 (for example, see Fig. 1). The
maximum and minimum eigenvalues of the operator are thus
obtained as e0(s) = X (s)/(1 − s) + Y (s) and e1(s) = −(s +
1)X (s)/(1 − s)2 + Y (s), respectively. If we assume that the
observable operator (18) is bounded by

|〈Ô(α; s)〉| � 1, (20)

the conditions we can take are X (s)/(1 − s) + Y (s) = 1 and
−(s + 1)X (s)/(1 − s)2 + Y (s) = −1. Hence, we arrive at a
solution X (s) = (1 − s)2 and Y (s) = s. As a result, the op-
erator has the form

Ô(α; s) = (1 − s)2�̂(α; s) + s1, (21)

with eigenvalues

en(s) = (1 − s)

(
s + 1

s − 1

)n

+ s. (22)

Note that when s = 0 it becomes Ô(α; 0) = �̂(α; 0) =∑∞
n=0(−1)n|α, n〉〈α, n|, and when s = −1, Ô(α; −1) =

2|α〉〈α| − 1. For the assignment s = 0 and s = 1, we can thus
recover the Wigner and Husimi Q functions, respectively.

Now we formulate a Bell-type inequality in terms of the
generalized quasiprobability function. Suppose that the two
local parties choose observables Âa and B̂b, where a, b ∈
{1, 2}. The measurement operators of the local observables are
defined as

Âa = Ô(αa; s), B̂a = Ô(βb; s), (23)

where −1 � s � 0. Let us then construct a Bell operator in
a similar way with the Clauser–Horne–Shimony–Holt-type
(CHSH-type) [62] as

B̂ = Â1 ⊗ B̂1 + Â1 ⊗ B̂2 + Â2 ⊗ B̂1 − Â2 ⊗ B̂2. (24)

Note that the expectation value of each term of
Eq. (24) for any separable states ρ = ∑

i Piρ
a
i ⊗ ρb

i with∑
i Pi = 1 is written by 〈Âa ⊗ B̂b〉 = Tr[ρ̂Âa ⊗ B̂b] =∑
i PiTr[ρ̂a

i Âa]Tr[ρ̂b
i B̂b] = ∑

i Pi〈Âa〉i〈B̂b〉i so that the
overall expectation value of the Bell operator is 〈B̂〉 = ∑

i Pi

(〈Â1〉i〈B̂1〉i + 〈Â1〉i〈B̂2〉i + 〈Â2〉i〈B̂1〉i − 〈Â2〉i〈B̂2〉i ). Since, in
our case, all local observables are bounded by |〈Âa〉i| < 1 and
|〈B̂b〉i| � 1 for any nonpositive s, the expectation value of
the Bell operator is bounded as |〈B̂〉| ≡ |B| � 2 by separable
states.

Finally, we can write a Bell function formulated by the
generalized quasiprobability function as

|B(s)| = |〈Ô(α1; s) ⊗ Ô(β1; s)〉 + 〈Ô(α1; s) ⊗ Ô(β2; s)〉
+ 〈Ô(α2; s) ⊗ Ô(β1; s)〉 − 〈Ô(α2; s) ⊗ Ô(β2; s)〉|

=
∣∣∣∣π

2(1 − s)4

4
[W (α1, β1; s) + W (α1, β2; s)

+ W (α2, β1; s) − W (α2, β2; s)]

+ πs(1 − s)2[W (α1; s) + W (β1; s)] + 2s2

∣∣∣∣ � 2,

(25)

for −1 � s � 0, where W (α, β; s) = (4/π2)〈�̂(α; s ⊗ �̂

(β; s)〉 is the two-mode quasiprobability function and W (α; s)
and W (β; s) are the marginal distribution functions. There-
fore, a violation of the inequality (25) guarantees that the state
is entangled. Note that this is not a test of quantum nonlocality,
which has a different criterion in terms of a local realistic
theory [61–63], but it is a method for witnessing entanglement
of a CV system in phase space.

VI. NOISE-ADAPTIVE TEST OF QUANTUM
CORRELATIONS

Let us now apply the formulated witness to test quantum
correlations of a CV system under noise. We shall consider a
two-mode squeezed vacuum state (TMSV) as a representative
example,

|TMSV〉 =
∞∑

n=0

tanhn ξ

coshξ
|n, n〉, (26)

with a squeezing parameter ξ > 0. TMSW can be generated,
e.g., by nondegenerate optical parametric amplifiers [64], and
has often been regarded as the normalized EPR states, i.e., the
maximally entangled CV state associated with position and
momentum [25]. For a nonpositive parameter s, its general-
ized quasiprobability distribution function is given by

W (α, β; s) = 4

π2R(s)
exp

(
− 2

R(s)
{S(s)(|α|2 + |β|2)

+ sinh 2ξ (αβ + α∗β∗)}
)

, (27)

where R(s) = s2 − 2s cosh 2ξ + 1 and S(s) = cosh 2ξ − s,
and its marginal single-mode distribution is W (α; s) =
[2/πS(s)] exp[−2|α|2/S(s)].

A. Quantum correlations under detection noise

We first consider a test of quantum correlations under
detection noise. Assuming that the detection efficiencies in
two modes are the same as η, the reconstructed s-parametrized
quasiprobability functions for two modes and a single mode
are given respectively by

Wη(α, β; s) = 1

η2
W (α, β; s′),

Wη(α; s) = 1

η
W (α; s′). (28)

Since η is assumed to be a known parameter here, we
can represent the reconstructed distributions in terms of the
quasiprobability function with a rescaled order parameter s′
given in Eq. (10),

W (α, β; s′) = η2Wη(α, β; s),

W (α; s′) = ηWη(α; s). (29)

Therefore, the Bell function with the reconstructed quasiprob-
ability distributions and the rescaled order parameter
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FIG. 2. The maximum expectation values of |B(s′)| with TMSV are plotted in the range of s and η for different squeezing ξ = 0.3, 0.6.
Quantum correlations are detected by the violations of the inequality |B(s′)| � 2 with detection efficiency as low as about η ≈ 0.36.

s′ = s/η + (1 − 1/η) is given as

|B(s′)| =
∣∣∣∣π

2(1 − s′)4

4
[W (α1, β1; s′) + W (α1, β2; s′)

+ W (α2, β1; s′) − W (α2, β2; s′)] + πs′(1 − s′)2

× [W (α1; s′) + W (β1; s′)] + 2s′2
∣∣∣∣

=
∣∣∣∣π

2(1 − s′)4η2

4
[Wη(α1, β1; s) + Wη(α1, β2; s)

+ Wη(α2, β1; s) − Wη(α2, β2; s)] + πs′(1 − s′)2η

× [Wη(α1; s) + Wη(β1; s)] + 2s′2
∣∣∣∣ � 2, (30)

for −1 � s′ � 0. We keep B(−1) for s′ <= −1. Notably, here
we choose the Bell inequality |B(s′)| � 2 as a noise-adaptive
witness by rescaling the order parameter as s′ = s/η + (1 −
1/η). This is in contrast with the approach in Ref. [26],
where the Bell inequality |B(s)| � 2 is used to test quantum
correlations without changing the given order parameter s,
even in the presence of noise. The inequality in Eq. (30) can
be considered as a generalized form of the noise-adaptive
entanglement witness with the Wigner function proposed in
Ref. [63].

In Fig. 2, we plot the violations of the Bell-type inequality
in Eq. (30) for TMSV by changing η and s with differ-
ent squeezing rates ξ . Remarkably, quantum correlations are

observed even when the detection efficiency is as low as
η ∼ 0.36 for ξ = 0.3 and η ≈ 0.37 for ξ = 0.6 when s =
0. This is a significant improvement over the test with
the other known entanglement witnesses, e.g., proposed in
Refs. [26,45,63], under the effect of noise.

We observe that the amount of violation shows different
tendencies depending on s, η, and the squeezing parameter
ξ . Peaks are observed at s′ = s/η + (1 − 1/η) = −1.0. It
shows that the dominant part of the violation in this region
comes from the vacuum-photon entanglement, because the
measurement operator in Eq. (21) becomes the photon on-off
detection when s′ = −1.0. Upon increasing ξ , a narrower
peak of violation appears at the region s = 0 and η = 1,
which is the detection of the entanglement between multiple
photons of two modes. The observable operator in Eq. (21)
becomes the parity operator when s′ = 0. Note that the parity
measurement can detect the correlation between a higher
number of photons than the on-off measurement but is more
fragile under detection noise.

B. Dynamical quantum correlations under thermal environment

We then test a dynamic behavior of quantum correlations
under the effect of thermal environmental noise. We assume
that the thermal noise in two modes is independent and has
same energy decay rate γ and average thermal photon number
n̄. Using the rescaled quasiprobability function in Eq. (16)
and the order parameter in Eq. (17), the evolution of the
quasiprobability distribution of the TMSV can be represented
in terms of

W (α, β; s; τ ) = 1

t4(τ )
W

(
α

t (τ )
,

β

t (τ )
; s′(τ ); 0

)

= 4

π2t4(τ )R′(s, τ )
exp

(
− 2

R′(s, τ )

{
S′(s, τ )

|α|2 + |β|2
t2(τ )

+ sinh 2ξ
αβ + α∗β∗

t2(τ )

})
, (31)

and the marginal distribution

W (α; s; τ ) = 1

t2(τ )
W

(
α

t (τ )
; s′(τ ); 0

)
= 1

πt2(τ )S′(s, τ )
exp

(
− 2|α|2

t2(τ )S′(s, τ )

)
, (32)

where R′(s, τ ) = s′(τ )2 − 2s′(τ ) cosh 2ξ + 1 and S′(s, τ ) = cosh 2ξ − s′(τ ) with the parameters s′(τ ) = [s − r2(τ )(1 +
2n̄)]/t2(τ ) and r(τ ) = (1 − e−γ τ )1/2 and t (τ ) = (e−γ τ )1/2. Therefore, we can set a Bell-type inequality by rescaling with respect
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to the dynamically changing parameters α′ = α/t (τ ), β ′ = β/t (τ ), and s′(τ ) as

|B(
s′(τ )

)| =
∣∣∣∣π

2
(
1 − s′(τ )

)4

4

[
W

(
α′

1, β
′
1; s′(τ )

) + W
(
α′

1, β
′
2; s′(τ )

) + W
(
α′

2, β
′
1; s′(τ )

)

−W
(
α′

2, β
′
2; s′(τ )

)]

+ πs′(τ )[1 − s′(τ )]2[W (
α′

1; s′(τ )
) + W

(
β ′

1; s′(τ )
)] + 2s′(τ )2

∣∣∣∣
=

∣∣∣∣π
2[1 − s′(τ )]4t (τ )4

4
[W (α1, β1; s; τ ) + W (α1, β2; s; τ ) + W (α2, β1; s; τ )

−W (α2, β2; s; τ )]

+ πs′(τ )[1 − s′(τ )]2t (τ )2[W (α1; s; τ ) + W (β1; s; τ )] + 2s′(τ )2

∣∣∣∣ � 2. (33)

In Fig. 3, we plot the dynamics of quantum correlations of
the TMSV detected by the witness in Eq. (33) under thermal
environmental noise. Remarkably, it is possible to observe
quantum correlations of the TMSV (ξ = 0.3) up to the dimen-
sionless time r(τ ) ≈ 0.8, 0.7, 0.5 under thermal environment
with the average photon number n̄ = 0, 0.5, 2, respectively.
Note that these are much longer than the time for which
one can detect quantum correlations by previous schemes.
For example, by the scheme in Ref. [65], quantum correla-
tions can be observed up to the time r(τ ) ≈ 0.35, 1.3, 0.6
under the same thermal environment noise with n̄ = 0, 0.5, 2,
respectively.

FIG. 3. The time evolution of the maximum expectation values
of |B(s′)| with TMSV under the effect of thermal environment is
plotted against the dimensionless time r(τ ), which is 0 when τ = 0
and 1 when τ = ∞ for different order parameters s with squeezing
ξ = 0.3. The average photon number of the thermal environment is
n̄ = 0 (solid line), n̄ = 0.5 (dashed line), and n̄ = 2 (dotted line).

VII. REMARKS

As proposed in the previous investigation, the formalism
can be generalized further for testing high-dimensional quan-
tum correlations. The observable operator �̂(α; s) in Eq. (1)
for s � 0 can be associated with a noisy measurement process
performed by a dichotomic (two-dimensional) binning into
the outcomes ±1 after number-resolving detection. Similarly,
we can map the number n into the discretized phases by ω =
exp(2π i/d ) for a measurement with arbitrary d outcomes.
The eigenvalue of the observable can be assigned as a com-
plex variable ωn. Therefore, the generalized quasiprobability
function with d-dimensional outcomes can be defined as

W (α; sd ) = 2

π (1 − sd )

∞∑
n=0

ωn〈α, n|ρ|α, n〉

= 2

π
Tr[ρ̂�̂(α; sd )], (34)

as the expectation value of the generalized parity operator

�̂(α; sd ) = 1

1 − sd

∞∑
n=0

(
sd + 1

sd − 1

)n

|α, n〉〈α, n|, (35)

with a complex order parameter sd = −i cot(π/d ). Note that
Eq. (34) becomes equivalent to Eq. (2) for d = 2. The op-
erator in Eq. (35) is associated with a measurement process
performed by a number-resolving detection and a subsequent
binning into the complex value ωn. By using Eq. (34), differ-
ent types of Bell inequalities can be tested with arbitrary d-
outcome measurements [66–70]. For example, see the results
in Refs. [71,72]. We can rewrite the d-dimensional quasiprob-
ability function under noise as

Wη(α; sd ) = 2

π (1 − sd )

∞∑
n=0

(1 − η + ηω)nP(α, n)

≡ W
(
α; s′

d

)
η

. (36)

Note that the relation in Eq. (10) is also valid here as

1 − s′
d = 1 − sd

η
. (37)

012408-6



NOISE-ADAPTIVE TEST OF QUANTUM CORRELATIONS … PHYSICAL REVIEW A 102, 012408 (2020)

Therefore, it would be possible to test high-dimensional quan-
tum correlations under noise likewise the method proposed
here. It may also be valuable to extend this method for testing
multimode quantum correlations of CV systems in phase
space [73–75].

Through a series of studies in recent years, a hypoth-
esis on the reason why quantum correlations disappear at
the macroscopic scale has been suggested based on coarse-
graining measurements [76,77]. A detection of quantum cor-
relation with an extremely coarse-graining measurement was
reported [78] but has been also understood within this hy-
pothesis, because its local measurement requires the Kerr
nonlinearity, implicating the use of a precision measurement.
A recent observation of the difficulty in detecting micro-
macro entanglement by coarse-graining measurements [79]
has strengthened the validity of this hypothesis. However, our
result clearly shows the possibility of direct observation of
quantum correlations by coarse-graining measurements when
the noise causing the coarse-graining can be identified. It im-
plicates that quantum correlations may not entirely disappear
in a macroscopic system but may be hidden to some extent
regardless of the effect of noise. Therefore, our approach may
provide an alternative way to explore the border between
quantum and classical at macroscopic scale as well as to
circumvent the difficulty in observing quantum correlations
in complex systems.

The proposed witness is formulated as a CHSH-type in-
equality so that its capability to detect quantum correlations
is inherited from the CHSH-type Bell inequality [25,26,62].
Therefore, it may be also valuable to analyze other crite-
ria, e.g., the Peres-Horodecki criterion for CV systems [80],
which is more efficient to test weakly entangled states, based
on our noise-adaptive approach.

In summary, we have proposed a method for testing quan-
tum correlations by quasiprobability functions in the presence
of noise. We have investigated the effects of measurement
imperfection and thermal environmental noise on quantum
correlations and shown that they can be encapsulated into the
change of the order parameter of the generalized quasiprob-

ability function. We have then formulated a noise-adaptive
witness of quantum correlations in the form of a Bell-type
inequality. Remarkably, it has been shown that the proposed
witness allows us to detect quantum correlations in CV sys-
tems under a significant amount of noise. As the scheme is
proposed based on current photonic detection technologies,
an immediate experimental demonstration is expected. We
believe that our method provides a useful tool to test quantum
correlations in various protocols in near-term noisy quantum
processors with CV systems.
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APPENDIX

Here, we would like to show how the noise factor η can be
translated into the order parameter s. We can rewrite Eq. (8)
with respect to the probability pα (n) by Eq. (7) as

∞∑
m=0

(
s + 1

s − 1

)m ∞∑
n=m

(
n

m

)
(1 − η)n−mηm pα (n)

=
∞∑

n=0

(1 − η)n
∞∑

m=0

(
(s + 1)η

(s − 1)(1 − η)

)m(
n

m

)
pα (n)

=
∞∑

n=0

(1 − η)n

(
1 + (s + 1)η

(s − 1)(1 − η)

)n

pα (n)

=
∞∑

n=0

(
1 − η + η

s + 1

s − 1

)n

Pα (n),

where we used
∑∞

n=m

(n
m

) = ∑∞
n=0

(n
m

)
as

(m−1
m

) = · · · =(0
m

) = 0 and the relation
∑∞

m=0 xm
(n

m

) = (1 + x)n.
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