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We study the entanglement distillation in continuous-variable systems when a photon replacement protocol
is employed. A cascaded protocol is studied and we find that the resultant entanglement increases by
increasing the number of repetitions. Interestingly, the entanglement enhancement is not sensitive to the
asymmetry of the protocol and gives the same result for any arrangement in the absence of loss. The non-
Gaussianity of the outcome state is also studied and it is found that the non-Gaussianity of the state dramatically
depends on the experimental arrangements. We also consider the case of imperfect detectors and show that the
main results are valid provided high-efficiency detectors are employed. By providing practical information on
photon replacement operation, this work is one step towards the realization of universal quantum computation;
in particular, in setups where de-Gaussifying protocols are only applicable to one of the parties.
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I. INTRODUCTION

Most quantum information processing protocols require
maximally entangled states or at least high entanglements
to guarantee fault-tolerant performance [1]. In real life, even
after the creation of such states, the entanglement is bound
to decrease due to the environmental effects. To retrieve the
entanglement that is lost into the reservoirs, entanglement dis-
tillation protocols must be invoked. Entanglement distillation
refers to the protocols that employ many copies of entangled
states to extract a smaller number of states with increased
degree of entanglement using local operations and classical
communications in quantum systems. It is usually decom-
posed into entanglement purification, which is to extract en-
tanglement from mixed states [2] and entanglement concen-
tration, that achieves a maximally entangled state from pure
lower entangled states [3]. The concept was first suggested for
discrete variable systems; nevertheless, it was later extended
to the continuous variable (CV) systems [4]. An important
issue that occurs regarding continuous-variable concentration
is that the Gaussian states cannot be distilled by only using
Gaussian operations and classical communications [5–7]. The
most well-known non-Gaussian operations in which their vital
role in the enhancement of entanglement has been proven are
photon subtraction [8–15], photon addition [16], and photon
replacement (PR) [17]. These operations distill input Gaussian
states into more entangled non-Gaussian states. Among them,
photon subtraction is one of the well-studied methods. It
has been proposed to use PS for enhancing the fidelity of
a coherent-state teleportation [9]. Moreover, inclusion of PS
is proven as an efficient de-Gaussification process that can
improve the fidelity in a noisy environment [10,11,15]. It is
worth mentioning that a scheme has recently been proposed
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to bypass the necessity of non-Gaussian states and operations
by employing assistant parties [18].

It has been shown that an ideal photon addition â† fol-
lowed by a subtraction â results in more entanglement than
a single ideal photon addition or subtraction when applied
to a two-mode squeezed vacuum (TMSV) state [19]. A co-
herent superposition of ideal photon addition and subtraction
c1â + c2â† gives even more entanglement for small original
entanglements [20]. Also, a generalized form of such op-
erations is capable of generating entangled coherent states
with a high degree of entanglement starting from coherent
states [21]. One then asks how a cascaded operation of such
distillation operations affects the outcome. The question was
thus thoroughly pursued for ideal photon addition and subtrac-
tion by Navarrete-Benlloch et al. in Ref. [22]. It was shown
that the entanglement, as well as the non-Gaussianity of the
output state, generally increase with the number of operations.
Also, for a given number of operations, the entanglement
enhancement resulting from photon addition is greater than
or equal to that of photon subtraction. In the symmetric case,
which is the optimal situation, photon addition and subtraction
lead to the same result.

The Gaussian entangled states can also be concentrated
into higher entangled non-Gaussian states via single- or two-
mode photon replacement operations [23–25]. These works
have considered the more practical case where the operation is
not ideal and occurs with a finite probability. The comparisons
to the photon addition and subtraction cases show that in the
small squeezing regime, the replacement scheme performs
better. And, importantly, while the success probabilities of the
maximum achievable entanglements in the photon addition
and subtraction cases are very low, a photon replacement
maximizes the entanglement at reasonable probabilities. The
other advantage of PR is its compatibility with the Gaus-
sification protocols that are widely acknowledged in CV
quantum repeaters [26–29]. In these protocols, the entangle-
ment is concentrated by a non-Gaussian operation after each
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swapping and Gaussified before getting swapped into the next
level [30]. Lund and Ralph have used Gaussification protocols
after applying PR on noisy Gaussian states and reached more
entangled Gaussian states [31]. As a generalization to the PR,
multiphoton replacement protocols, where more photons are
sent and reabsorbed from one or both modes of a TMSV state,
have also been considered [32,33]. The experimental feasibil-
ity, however, depends on the performance of photon number
resolving detectors with the desired number of photons.

In this paper, we study a cascaded photon replacement
(CPR) protocol and its effect on the entanglement distil-
lation of a two-mode squeezed vacuum state and its de-
Gaussification. This protocol has proven useful for prepa-
ration of Gottesman-Kitaev-Preskill states [34]. By starting
from an effective operator for the photon replacement, we
derive an analytical expression for the output state after a
series of cascaded PR operations. The expression is then used
to calculate the success probability of the CPR. We employ
logarithmic negativity as a measure of entanglement and pro-
vide an analytical expression for it. The results show that the
amount of entanglement increases by increasing the number
of operations and asymptotically saturates for a large number
of PR operations. Furthermore, the result is independent of the
mode to which the operation is applied. That is, one may opt
to apply CPR in fully symmetric or completely asymmetric
fashions as two extremes without any change in the outcome.
The comparison to the cascaded photon addition and subtrac-
tion protocols reveals better performance of CPR regarding
success probability at their respective maximum distillable
entanglement. The protocol is also practically implementable
as it relies on the single-photon states and detectors. The study
of non-Gaussianity shows an interesting behavior. Indeed, the
non-Gaussian nature of the outgoing state can be controlled
by engineering the setup properties. In order to include the
conditions of a realistic setup, we also consider imperfect
detectors and study the effect of detector efficiency on the
performance of our scheme.

The rest of the paper is organized as follows: In Sec. II, we
provide an effective operator for a single one-mode photon
replacement. The operator is used in Sec. III to study the
cascaded photon replacement on TMSV states and the entan-
glement properties of the outcome state. In Sec. IV, the en-
tanglement and non-Gaussianity properties of the protocol are
studied by numerical evaluations and the results are compared
to the cascaded PA and PS cases. In Sec. V, we study the
effect of imperfect detectors on the entanglement of TMSV.
The paper is concluded in Sec. VI.

II. PHOTON REPLACEMENT

We first review the physics and formulation of the pho-
ton replacement protocol, also called photon catalysis or
quantum-optical catalysis. In the PR scheme, the input mode
of one or all parties is mixed with a single-photon state
through a beam splitter, and one of the output ports of the
beam splitter is measured by a single-photon detector (SPD).
Once the single-photon detector is triggered (a single photon
is detected), the other output port is allowed to pass [Fig. 1(a)].
The setup of photon addition and subtraction protocols is very
similar to that of PR. However, the differences are in the input
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FIG. 1. (a) A photon replacement operation: One part of a bi-
or multipartite state, |ψ〉 is mixed with a single-photon state |1〉
via a beam splitter with transmissivity T . One of the beam-splitter
outputs is measured by a single-photon detector. The other output
is allowed to pass provided arrival of a single-photon is registered
by the detector. (b) The fully asymmetric CPR protocol applied to a
bipartite TMSV entangled state. Each green box incorporates a PR
operation that includes a single-photon source, a beam splitter, and
a single-photon detector. The output of a PR operation is set as the
input of the next one.

of the ancillary mode of the beam splitter or the conditional
measurement at the output ports. In the photon subtraction,
the beam-splitter port remains free (vacuum input), while in
the photon addition, the output is postselected, conditioned on
no detection in the SPD.

The effect of a beam splitter with transmissivity T on pure
input modes can be described by the operator B̂ such that [35]

B̂|n1〉⊗|n2〉 =
n1,n2∑

k1,k2=0

bn1,n2
k1,k2

|k1 +k2〉⊗|n1 +n2 −k1 −k2〉,

where the coefficients bn1,n2
k1,k2

are

bn1,n2
k1,k2

= 1√
n1! n2!

(
n1

k1

)(
n2

k2

)
T n2+k1−k2 Rk2 (−R)n1−k1

×
√

(k1 + k2)!(n1 + n2 − k1 − k2)! . (1)

Application of the PR protocol on a given state |ψ〉 is formu-
lated by

|ψ〉 PR−−→ N (1 ⊗ �̂1)(B̂|ψ〉⊗|1〉), (2)

where N is the normalization factor and is related to the
success probability (see the next section for the relation).
Also, 1 represents the identity operator and only operators
on the input. Note that the beam splitter only acts on two
modes: the one extracted from bi- or multipartite |ψ〉 and the
other mode that is coming from the single-photon source [see
Fig. 1(a)]. An ideal single-photon detector is described by the
projection operator �̂1 = |1〉〈1|. In this section, we assume
that all detectors are ideal. The case of imperfect detectors
will be discussed in Sec. V. By employing Eq. (2), one arrives
at the following effective operator that describes the effect of
photon replacement on a mode:

R̂ =
∞∑

n=0

T n−1[T 2 − n(1 − T 2)]|n〉〈n|, (3)

where T is the transmissivity of the beam splitter.
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III. CASCADED PHOTON REPLACEMENT

The CPR protocol is achieved by performing a sequence of
photon replacement operations on each or a few of the parties.
Figure 1(b) shows the setup of a CPR protocol symmetrically
applied to a bipartite entangled state. Here, we put our focus
to the two-mode squeezed-vacuum states. In Schmidt form,
these states are given by

|�TMSV〉 =
√

1 − λ2
∞∑

n=0

λn|n, n〉, (4)

where we have adapted the simple notation |n, n〉 ≡ |n〉1|n〉2

and λ = tanh(r), with r the squeezing parameter. TMSV
states are Gaussian, entangled, and physical for 0 < λ < 1.
From the photon replacement effective operator in (3), one
easily finds that for both symmetric and asymmetric cases, the
resulting states are of the following form:

|�〉 = N
∑

n

cn|n, n〉, (5)

where the expansion coefficients cn should be determined and
are such that N = (

∑
n c2

n )−1/2; hence, the state |�〉 remains
normalized. For calculating the outcome of each PR step, one
applies the effective operator (3) and normalizes the resulting
state. Then the sum over coefficients of the unnormalized
state P = ∑

n c2
n gives the success probability of the protocol.

In other words, the normalization constant is related to the
success probability by N = 1/

√
P. Application of k PR oper-

ations is mathematically equivalent to k times multiplication
of the effective operator, (1 ⊗ R̂k )|�TMSV〉. It can be proved by
mathematical induction that since PR conserves the photon
number of the input mode, the results do not depend on the
arrangement of the operations. That is, so long as TMSV
states are concerned, performing all of the PR operations on
one of the modes is equivalent to applying them equally on
both of the modes,

|�k〉 ≡ (1 ⊗ R̂k )|�TMSV〉 = (R̂l ⊗ R̂k−l )|�TMSV〉. (6)

After performing k PR operations on the TMSV state in
Eq. (4), we arrive at

|�k〉 = Nk

√
1 − λ2

∞∑
n=0

λnT k(n−1)[T 2 − n(1 − T 2)]k|n, n〉,

(7)

where Nk is the corresponding normalization factor. In cal-
culating the above equation, we have assumed that all beam
splitters have the same transmissivity T . The success proba-
bility of a CPR protocol consisting of k operations reduces to
a closed-form series,

Pk =
2k∑

m=0

(
2k

m

)
T 2k−2m(−1)m(1 − λ2)(1 − T 2)mam, (8)

where am is given by the following recursion relation:

am+1 = T

2k

∂am

∂T
, (9)

with a0 = (1 − λ2T 2k )−1. Therefore, one arrives at

am = am+1
0

m∑
i, j=0

i(λ2T 2k )i(1 − λ2T 2k ) j . (10)

It is straightforward to show that Pk is a decreasing function
of k, i.e., Pk+1 � Pk . Hence, the amount of success probability
descends by increasing the number of replacement operations.

In the remainder of this section, we derive analytical ex-
pressions for the quantum properties of the outcome states
given by Eq. (7).

A. Entanglement

We use logarithmic negativity [36,37] to quantify the de-
gree of entanglement. For a quantum state with density matrix
ρ, the logarithmic negativity EN is defined as

EN = log2(‖ρ�‖1), (11)

where ρ� denotes the partial transposition of ρ, while ‖ · ‖1

stands for the trace norm. Logarithmic negativity of a pure
state of the form of (5) is easily evaluated by

EN = 2 log2

(
N

∑
n

|cn|
)

. (12)

For a TMSV state, calculation of the logarithmic negativity is
straightforward as the series turns into a geometric sum. One,
therefore, arrives at

EN = log2

(
1 + λ

1 − λ

)
. (13)

For a k-step cascaded protocol, we derive the following for-
mula for the logarithmic negativity:

EN = log2

{[ ∑k
l=0

(k
l

)
T k−2l (−1)l (1 − T 2)l bl

]2∑2k
l=0

(2k
l

)
T 2k−2l (−1)l (1 − T 2)l al

}
, (14)

where b0 = (1 − λT k )−1 and bl+1 = T
k

∂bl
∂T , which give

bl = bl+1
0

l∑
i, j=0

i(λT k )i(1 − λT k ) j . (15)

In the next section, we show that the maximum entangle-
ment monotonically increases by increasing the number of
repetitions k. In other words, applying a larger number of
replacement operations increases the amount of entanglement
in the final state, provided an optimal value for T is chosen.
We also see that the maximum entanglement asymptotically
reaches to a saturation value.

B. Non-Gaussianity

Another quantum property of the output states of a CPR
protocol is the degree of their non-Gaussianity. This property
becomes important for universal quantum computation with
CV systems [38–40]. There are several methods for mea-
suring non-Gaussianity of a state. Here, we use the relative
entropy for convenience [41–43]. For a given quantum state
ρ, the non-Gaussianity G(ρ) is quantified by comparing its
entropy to the nearest Gaussian state ρG whose first and
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second moments in the system operators are the same as ρ.
Mathematically, it is

G(ρ) = S[ρG] − S[ρ], (16)

where S[ρ] = Tr{ρ log2ρ} denotes the von Neumann entropy.
Since the states we are working with are pure, entropy of the
original states is vanishing and the non-Gaussianity equals the
von Neumann entropy of the closest Gaussian state ρG. For a
Gaussian state, in turn, the entropy is given by [44]

G = g(ν+) + g(ν−), (17)

where ν± are the symplectic eigenvalues of the covariance
matrix of the state ρG, and we have introduced

g(z) = z + 1

2
log2

(
z + 1

2

)
− z − 1

2
log2

(
z − 1

2

)
. (18)

In order to evaluate the non-Gaussianity, we first obtain the
covariance matrix of the Gaussian state ρG. A two-mode state
has four quadrature operators r̂ = (x̂1, p̂1, x̂2, p̂2), which in
terms of the annihilation and creation operators are defined
as x̂i = âi + â†

i and p̂i = i(â†
i − âi ). The first moment vector

is simply attained by evaluating the expectation values of the
quadratures 〈r̂〉. Meanwhile, the elements of the covariance
matrix are the second statistical moments given by

Vi j = 1
2 〈
r̂ j
r̂k + 
r̂k
r̂ j〉, (19)

where 
r̂ j = r̂ j − 〈r̂ j〉. The states resulting from our protocol
are of the form of Eq. (5). Such states have zero first moments
〈r̂ j〉 = 0 and their covariance matrix is 4 × 4 in the following
form for a k times CPR:

Vk =
(

αkI γkσ

γkσ αkI

)
, (20)

where we have introduced the 2 × 2 matrices, I = diag(1, 1)
and σ = diag(1,−1). Moreover, the parameters αk and γk are
given by

αk = 1 + 2
∞∑

n=0

nc2
n, (21a)

γk = 2
∞∑

n=0

(n + 1)cncn+1. (21b)

The symplectic eigenvalues ν± are thus found as [44]

ν+ = ν− =
√

α2
k − γ 2

k . (22)

By substituting the eigenvalues ν± in Eq. (17), the amount of
non-Gaussianity can be computed.

IV. RESULTS

In this section, we study the performance of a cascaded
photon replacement protocol by investigating the enhance-
ment resulting in the output state as well as its success proba-
bility and non-Gaussianity. We explore the protocol properties
at various parameter values and compare it to the cascaded
photon addition and subtraction protocols.

FIG. 2. (a) The logarithmic negativity of a TMSV (gray trans-
parent surface) as well as the states resulting from applying CPR
protocols consisted of one (yellow), three (orange), and six (red)
replacement operations. (b) The plot of logarithmic negativity against
T for λ = 0.1. (c) The success probability of applying one, three, and
six PR operations for different values of T . The same colors are used
in the presentation of all diagrams.

A. Entanglement enhancement

The main goal of every entanglement distillation protocol
is to increase the entanglement of the state. Therefore, we first
examine the degree of enhancement achievable after applying
our CPR protocol. Figure 2(a) shows logarithmic negativity
of the output state after one, three, and six CPR operations
as a function of initial entanglement λ and the filtering
transmissivity T . In the figure, the original entanglement of
the initial TMSV state is also shown as a reference. It can
be seen that the maximum distillable entanglement is higher
than the original value only for weakly entangled initial states
(λ � 0.6) and in an optimal range of T . The optical range and
the value of transmissivity that maximizes the entanglement
depends on the number of protocol repetitions k, so we call
it Tk,max. By increasing the number of operations, the amount
of maximum entanglement increases. However, the range of
transmissivity values in which the distillable entanglement
overtakes that of the original state gets narrower. One also no-
tices that the maximum reachable entanglement increases for
a higher number of repetitions and approaches a 50:50 beam
splitter for a very large number of operations. At the same
time, the bandwidth decreases to zero. Figure 2(b) illustrates
a cross section of the surfaces at λ = 0.1. For T = 0, where
the incident mode does not pass through the beam splitter, the
entanglement is always vanishing regardless of the number
of operations. On the other hand, at T = 1, the incident
single photon cannot pass the beam splitter, and thus does not
mix up with the mode. Therefore, the entanglement always
equals the original value, as one would expect. Remarkably,
for a 50:50 beam splitter (T = 0.5), the entanglement values
are independent of the number of replacement operations
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FIG. 3. Trend of the entanglement in a CPR: The maximum
distillable entanglement (solid red line) and its success probability
(dashed blue line) as a function of number of repetitions.

and equal to that of the original state. Figure 2(c) shows
the success probability of a state resulting from one, three,
and six PR operations. For a cascaded PR, the maximum
of the entanglement coincides with the success probability
minimum whose value falls exponentially with the number of
operations.

In order to study the trend of enhancement in the entangle-
ment due to our CPR protocol, in Fig. 3 we plot the logarith-
mic negativity of the CPR output state against the number of
replacement operations. As anticipated in Sec. III A, it clearly
shows that the amount of entanglement increases by the num-
ber of operations. However, the enhancement is attained with
the cost of lower success probabilities, as the dashed blue line
suggests in Fig. 3. The entanglement monotonically increases
and asymptotically approaches a saturating value. Meanwhile,
the probability that determines the entanglement rate drops
down as Pk ∝ 10− 2

3 k . As it will become clear later in this
section, this is still a higher value compared to the cascaded
photon addition and subtraction success probabilities.

B. Non-Gaussianity

We next study the detailed behavior of the quantum proper-
ties for a fixed number of operations. Figure 4 shows the den-
sity plots of entanglement, probability, and non-Gaussianity
of a four-step CPR. First, the entanglement is enhanced only
around a 50:50 beam splitter (the green bold line) and, as
stated before, is only efficient for weak initial entanglements.
One notices that the minimum probability follows the same
line. However, the success probability increases as the initial
entanglement is increased. This, indeed, indicates that the
cost of entanglement enhancement becomes quite affordable
and the entanglement rate becomes reasonably high when λ

approaches the limit of enhancement.
The rightmost panel in Fig. 4 illustrates the non-

Gaussianity of the state resulting from applying a CPR pro-
tocol consisting of four replacement operations on a TMSV.
It can be inferred from the plot that the non-Gaussianity of
the output state experiences a sudden change where the beam-
splitter transmissivity maximizes the entanglement, while the
non-Gaussianity in other areas is almost constant. For T =
1, the amount of the non-Gaussianity measure is vanishing.
However, as the probability of single-photon mixing gets
increased, the state begins to de-Gaussify until it jumps to
a plateau. This property can be a benefit in the quantum
protocols, where the amount of non-Gaussianity needs fine
tuning. In particular, the linewidth of the entanglement with
respect to T is larger than the slope of G at small-entanglement
regimes. Therefore, one switches from an almost Gaussian
state to a highly non-Gaussian one without too much change
in the entanglement.

C. Comparison with cascaded photon addition
and photon subtraction

We devote this section to the comparison of CPR with
cascaded photon addition (PA) and subtraction (PS) protocols.
The PA and PS cases have been studied for ideal operations

FIG. 4. Contour plots of logarithmic negativity, success probability, and non-Gaussianity of a state distilled by four photon replacement
operations against the transmissivity of the beam splitters T and the parameter λ that represent the initial squeezing of the TMSV. The green
line illustrates the locus of the points with maximum entanglement.
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FIG. 5. (a) Logarithmic negativity, (b) success probability, and
(c) entanglement rate of the cascaded entanglement distillation proto-
cols: photon replacement (solid line), photon addition (dashed line),
and photon subtraction (dotted line). The results are compared for a
four-step protocol.

in Ref. [22] and the nonideal case of single- and two-mode
operations in Ref. [23]. Here, we assume that each operation
is performed with finite transmissivity for the beam splitters.
The results are summarized in Fig. 5, where we show the
entanglement and success probabilities for four-step cascades
of PR, PA, and PS. Since for the addition and subtraction
protocols the arrangement of operations is important, here we
only consider the symmetric case. That is, two operations on
each mode. For this case, the variations of entanglement with
T are the same for both cascaded addition and subtraction.
The entanglement reaches its maximum value only at the
full beam-splitter transmissivity T = 1. Note that close to
this point, the success probability is very small and there is
a very small probability for the SPD of giving the favored
output (no-click for PA and click for PS). Hence, the entan-
glement rates (product of the amount of entanglement and the
success probability) assume very small values. The success
probability is the lowest where the maximum entanglement
is achieved in all cases. Nevertheless, the multiplication of
logarithmic negativity and the success probability, which is a
measure of the entanglement rate, gives a better understanding
about the three protocols. Therefore, in Fig. 5(c), we plot this
quantity. We exclude the parameter region around T � 1 in
the following analysis because the output of a CPR is the
same as the input. In a wide parameter region where the
non-Gaussianity is higher, the CPR dominates the other two.
Meanwhile, the cascaded photon addition provides a better
performance result over the rest of the region, up to the
values close to unity, where onwards (0.9 � T < 1) the CPR
overtakes again.

V. IMPERFECT DETECTORS

Despite the ever-growing efficiency of the single-photon
detectors [45,46], it is still an experimental challenge to
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FIG. 6. (a) Logarithmic negativity and (b) success probability of
a two-mode squeezed-vacuum state after a six-step cascaded photon
replacement (k = 6) as a function of transmissivity T for detectors
with different efficiencies. The case of ideal detectors is shown by
the solid black line, while the finite efficiencies are η = 0.9 red (dark
gray), η = 0.8 orange (gray), and η = 0.7 yellow (light gray) solid
lines.

perform the exact projective measurements. To show the com-
patibility of our scheme even with employing imperfect detec-
tors, in this section we analyze the effect of finite efficiency on
the performance of a CPR, its entanglement enhancement, and
success probability. An imperfect SPD can be modeled as the
combination of a beam splitter of transmissivity T = √

η and
an ideal detector, where η reflects the efficiency of the realistic
detector. Therefore, the quantum operation of the detector is
described by a binomial distribution over a set of projective
measurements [27,47],

�̂1 =
∞∑

m=1

mη(1 − η)m−1|m〉〈m|. (23)

By plugging this into Eq. (2) and applying it to a two-mode
squeezed vacuum, we arrive at a cumbersome equation for
the output state which is reported in the Appendix. We,
however, numerically compute the logarithmic negativity of
the resulting state as well as its success probability. The
numerical results are summarized in Fig. 6, where we compare
the performance of an ideal CPR with the one that operates
with imperfect SPDs for different efficiencies. The depth
of the cascade is fixed at k = 6 in this analysis. Here, for
the sake of faster computations, we only assume symmetric
cases where all detectors have the same efficiencies. The
entanglement curves confirm that the deviation from an ideal
detector has a small effect on the entanglement enhancement,
provided detectors with high efficiencies are employed. To
compare the numbers, the fall in the maximum entanglement
is only 2.4% when the efficiency reduces from unity to 0.7.
Remarkably, the deficiency even increases the bandwidth with
respect to the beam-splitter transmissivity T . Nonetheless, the
success probability dramatically falls when the efficiency of
the detector deviates from the ideal case. For example, in the
case of the six-step CPR, we notice a success rate that is two
orders of magnitude lower for detectors with η = 0.7.

VI. CONCLUSION

In summary, we have studied the performance of a cas-
caded photon replacement protocol. We have shown that
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a cascade of PR operations can enhance the entanglement
of an input TMSV state, provided the initial squeezing is
not strong (λ � 0.6). The maximum available entanglement
saturates to an asymptotical value as the number of opera-
tions increases. The success probability, however, decreases
exponentially. The non-Gaussian properties of the resulting
states exhibit sensitivity to the beam-splitter transmissivity
T , which is significant for weak initial entanglements. The
value of non-Gaussianity of the output state drops down from
a plateau to almost a Gaussian state over a short range around
Tmax, while the entanglement retains its value. We have also
considered the case of nonideal detectors. Our studies show
that even though the enhancement in the entanglement is not
appreciably affected, the success probability can reduce by a
few orders of magnitude when low-efficiency single-photon
detectors are employed. Our studies show that CPR for pure
states is insensitive to the arrangement of the PR operations on
the modes. This asymmetric nature of our protocol allows for
enhancing the entanglement by only operating on one of the
modes. This can prove beneficial for setups where all or parts
of the PR operation are not experimentally feasible for one
of the modes while it is available for the other mode. For ex-
ample, one enhances the microwave-optical entanglement in
a hybrid system [48,49] or the optomechanical entanglement
[50–53] only by operating on the optical parties.
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APPENDIX: PHOTON REPLACEMENT WITH
IMPERFECT DETECTORS

In this Appendix, we derive the explicit form of the out-
going state after performing PR operations. The imperfect
photodetection is modeled as [47]

�̂1 =
∞∑

m=1

mη(1 − η)m−1|m〉〈m|. (A1)

To derive an effective operator for the photon replacement
protocol with a nonideal detector, we consider an arbitrary
one-mode pure state |ψ〉 = ∑∞

m=0 cm|m〉. Nonetheless, the
effective operator that will be obtained remains valid for
multimode states. By applying the PR protocol as given in
(2) on |ψ〉, we have

|ψ〉 PR−−→ |ψ ′〉 ≡ N
∑

m

cm(1 ⊗ �̂1)B̂(|m〉 ⊗ |1〉). (A2)

After some lengthy calculations, we arrive at

|ψ ′〉 = N
∑

m

cm

m+1∑
n=1

nη(1 − η)n−1T m−n(−1)n
√

(1 − T 2)n−1

×
[√

m!(m − n + 1)

n!(m − n)!
(1 − T 2) −

√
m!n

(m − n + 1)!(n − 1)!
T 2

]
|m − n + 1〉, (A3)

for the outgoing state of the concern. Using the annihilation operator â, we replace the number of states appearing in the sum
with

|m − n + 1〉 =
√

(m − n + 1)!

m!
ân−1|m〉. (A4)

One thus is able to introduce the effective operator R̂imp for an imperfect photon replacement,

R̂imp =
∞∑

m=0

m+1∑
n=1

nη(1 − η)n−1T m−n(−1)n
√

(1 − T 2)n−1

[√
(m − n + 1)!(m − n + 1)

n!(m − n)!
(1 − T 2) −

√
n

(n − 1)!
T 2

]
ân−1|m〉〈m|.

(A5)

As an example, by applying this operation on both modes of the two-mode vacuum state (4), we arrive at

|�2〉 = N
∞∑

n=0

n∑
l1=0

n∑
l2=0

√
1 − λ2λn(−1)l1+l2

n!(l1 + 1)(l2 + 1)√
(n − l1)!(n − l2)!(l1 + 1)!(l2 + 1)!

T 2n−l1−l2−2(
√

1 − T 2)l1+l2

× η2(1 − η)l1+l2 [(l1 + 1)T 2 − (n − l1)(1 − T 2)][(l2 + 1)T 2 − (n − l2)(1 − T 2)]|n − l1, n − l2〉. (A6)

The task is easily generalized to an arbitrary number of operations.
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