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Hilbert-Schmidt distance is one of the prominent distance measures in quantum information theory which
finds applications in diverse problems, such as construction of entanglement witnesses, quantum algorithms in
machine learning, and quantum-state tomography. In this work, we calculate exact and compact results for the
mean-square Hilbert-Schmidt distance between a random density matrix and a fixed density matrix, and also
between two random density matrices. In the course of derivation, we also obtain corresponding exact results for
the distance between a Wishart matrix and a fixed Hermitian matrix, and two Wishart matrices. We verify all our
analytical results using Monte Carlo simulations. Finally, we apply our results to investigate the Hilbert-Schmidt
distance between reduced density matrices generated using coupled kicked tops.
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I. INTRODUCTION

The statistical investigation of random density matrices is
a very active area of research [1–34]. It not only touches upon
some of the fundamental issues in quantum mechanics, but
is also crucial to various applications in quantum information
processing devices, such as quantum computers, teleporters,
cloners, etc. [34–49]. One of the important aspects in this
context concerns with various distance measures between
quantum states [27–36,50–52]. A very important example of
practical applicability of these distance measures is in quanti-
fying the accuracy of a signal transmission in quantum com-
munication, wherein one measures the distance between the
transmitted and received states [49]. Some examples of widely
used distance measures are the trace distance (dtr), Hilbert-
Schmidt distance (dHS), Bures distance (dB), and Hellinger
distance (dH). For given two density matrices ρ1, ρ2, these are
defined, respectively, as [34–36,53–60]

dtr = tr|ρ1 − ρ2|,
dHS =

√
tr|ρ1 − ρ2|2,

dB =
√

2 − 2tr(
√

ρ1ρ2
√

ρ1)1/2,

dH =
√

2 − 2tr(
√

ρ1
√

ρ2).

Here, “tr” represents trace and |A| for a given matrix or
operator A is defined as the positive square root of A†A, i.e.,
|A| =

√
A†A. Often, some additional numerical factors are in-

troduced in the above definitions to fix desired normalizations.
It may be noted that for density matrices we have |ρ1 − ρ2|2 =
(ρ1 − ρ2)2 since they are Hermitian. Trace distance possesses
the contractivity property, however, it is non-Riemannian.
Hilbert-Schmidt distance is Riemannian, but not contractive
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(or, equivalently, monotone) in general. Bures and Hellinger
distances are both Riemannian and monotone. These and
other properties exhibited by these distance measures lead
to corresponding interesting physical consequences, and ac-
cordingly their suitability for various applications in quantum
information theory is decided [33–36,49,53–62].

Hilbert-Schmidt distance has been one of the prominent
and natural choices for quantifying the separation between
given two quantum states [33,49,60–80]. It provides a direct
interpretation as an information distance between quantum
states [63]. It plays a crucial role in connection to entangle-
ment witness operators [64–66], being equal to the maximal
violation of the associated inequality. A recent example in this
context is its implementation in the Gilbert algorithm [81]
to construct entanglement witnesses for unextendible prod-
uct basis bound entangled states [67,68]. Moreover, Hilbert-
Schmidt distance has been utilized as a cost function in
variational hybrid quantum-classical algorithms in machine
learning and other applications [49,69–72]. It has been regu-
larly employed as an estimator in the precision quantum-state
tomography [73–76]. It also finds applications in the calcu-
lation of nonclassical correlations between quantum states
other than entanglement, such as quantum discord [33,77–80].
As far as distinguishability criterion is concerned, Hilbert-
Schmidt distance does have its limitations since it does not
possess contractivity property in general [34–36,82,83]. How-
ever, archetype quantum systems such as qubits constitute
useful exceptions where contractivity is retained and the
Hilbert-Schmidt distance equals the trace distance up to a
constant factor [57]. Finally, a strong bound between trace
distance and Hilbert-Schmidt distance is now known due to
Ref. [51].

Several researchers have worked on the aforementioned
distance measures, including Hilbert-Schmidt, in the context
of random density matrices. For instance, in Refs. [30,32]
the authors have derived, inter alia, averages of the above
distances between two Hilbert-Schmidt distributed random
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density matrices in large matrix-dimension limit using free
probability techniques [84,85]. The average distance of ran-
dom states from maximally entangled and coherent states
has been calculated in Ref. [31]. These results involving
the random density matrices serve as references with which
one can compare the distances between quantum states of
interest [30–32]. This kind of statistical approach is adequate
in view of the typicality exhibited by various quantities in
quantum information theory. An example is the typicality of
quantum entanglement exhibited by random bipartite pure
states sampled using the unitarily invariant Haar measure
[10,27,86–88]. The underlying phenomenon is that of concen-
tration of measure and such typical behavior conforms to the
equal a priori postulate of the statistical physics [89–92].

Exact and finite Hilbert-space dimension results hold a spe-
cial place in quantum information theory and are especially
suited for dealing with real-world experiments [37,38,44–49].
A prominent example is the seminal result of Page for the
average von Neumann entropy associated with the subsystems
of a composite bipartite system [10]. This result has found
application in diverse problems, including many-body local-
ization in spin systems [93], entanglement in neural network
states [94], and information in black-hole radiation [95].

In this work, we derive exact and compact results for the
mean-square Hilbert-Schmidt distance, i.e., the average of
squared Hilbert-Schmidt distance,

D2 := E
[
d2

HS] = E
[
tr(ρ1 − ρ2)2],

where the average E[ · ] is with respect to the probability
measure governing the random density matrices. To this end,
we use the relationship between the Wishart random matrix
ensemble and the corresponding fixed trace variant. The latter
serves as a model for describing random density matrices. To
begin with, in Sec. II, we derive exact results for the average
of squared Hilbert-Schmidt distance between a random matrix
taken from the Wishart ensemble and a fixed Hermitian ma-
trix, and also between two Wishart random matrices. These
results are then used in Sec. III to compute exact results for
the mean-square Hilbert-Schmidt distance between a random
density matrix taken from the set of density matrices equipped
with the Hilbert-Schmidt measure [1,2] and a fixed density
matrix, and also between two random density matrices. We
verify all our analytical results using Monte Carlo simulations.
In Sec. IV, we evaluate the mean-square Hilbert-Schmidt
distance using random density matrices generated via coupled
kicked top systems and compare with our analytical results.
Finally, we conclude with a brief summary and outlook in
Sec. V.

II. MEAN-SQUARE HILBERT-SCHMIDT DISTANCE
FOR WISHART MATRICES

The probability density function associated with the
Wishart (or Wishart-Laguerre) random matrices is given by
[96–99]

P(W ) = C(det W )αe− β

2 trW , (1)

where “det” represents determinant and, as mentioned earlier,
“tr” is the trace. The parameter α is decided by the Dyson
index β, the dimension n, and the number of degrees of

freedom m:

α = β

2
(m − n + 1) − 1. (2)

For β = 1 the random matrix W is real positive definite
and for β = 2 it is complex-Hermitian positive definite. The
inverse of the normalization constant C (partition function) is
given by

C−1 =
(

2

β

)βnm/2

πβn(n−1)/4
n∏

i=1

�

[
β

2
(m − i + 1)

]
. (3)

The Wishart matrix W of Eq. (1) can be constructed as

W = GG†, (4)

where G is an (n × m)-dimensional real (for β = 1) or com-
plex (for β = 2) Ginibre-Gaussian random matrix from the
distribution

PG(G) =
(

β

2π

)βnm/2

e− β

2 tr(GG† ). (5)

Here, “†” represents transpose and conjugate transpose for
β = 1 and 2, respectively.

In the following sections, we derive the desired averages
for squared Hilbert-Schmidt distance.

A. Wishart matrix and a fixed matrix

Let W be an n-dimensional Wishart random matrix from
the distribution given in Eq. (1). Also, consider X to be a
fixed n-dimensional real-symmetric (for β = 1) or complex-
Hermitian (for β = 2) matrix. We are interested in calculating
the average of the squared Hilbert-Schmidt distance between
W and X . It can be calculated as

D2
W,X =

∫
d[W ] P(W )tr(W − X )2

=
∫

d[W ] P(W )trW 2 +
∫

d[W ]P(W )trX 2

− 2
∫

d[W ] P(W )tr(W X ). (6)

Here, d[W ] represents the differential of all the independent
components in W , i.e., d[W ] = ∏

j�k dWjk for β = 1 and
d[W ] = ∏

i Wii
∏

j<k d Re(Wjk )d Im(Wjk ) for β = 2. Here, in
the β = 2 case, “Re” and “Im” represent the real and imagi-
nary parts of the off-diagonal elements of W , which happen to
be complex variables. The average of trW 2 is well known in
the existing literature for both real and complex cases; see,
for example, Refs. [100,101]. Alternatively, it can be also
obtained by calculating the corresponding average using the
eigenvalues of W with the aid of Selberg integrals [99,102].
We obtain∫

d[W ] P(W )trW 2 = nm(n + m + 2/β − 1). (7)

We note that trW 2 is the second spectral moment of the
random matrix W , and therefore the above integral gives its
mean value. It is also known that [100,101]∫

d[W ]P(W )tr(W X ) = m trX. (8)
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The above can be viewed as the mean scalar (inner) product
between the random matrix W and the fixed matrix X . Now,
we have

D2
W,X = nm(n + m + 2/β − 1) + trX 2 − 2m trX

= nm(n + m + 2/β − 1) +
n∑

i=1

χi(χi − 2m), (9)

where χi are the eigenvalues of X . The above result holds even
if we consider X → zX , with z being some complex scalar. It
should be noted, however, that in this case zX is not a real-
symmetric or complex-Hermitian matrix in general.

We compare the above analytical result with averages
obtained using Monte Carlo simulation involving 105 Wishart
matrices for both β = 1 and 2 cases. We consider n = 2, 5,
and m varying from n to n + 3. The fixed matrix X chosen in
the n = 2 and 5 cases are(

2 1
1 −1/2

)
, β = 1,

(
2 1 + 3i

1 − 3i −1/2

)
, β = 2,

and⎛
⎜⎜⎜⎝

3 1 4 6 8
1 −5 4 7 −1
4 4 2 1 3
6 7 1 9 0
8 −1 3 0 −2

⎞
⎟⎟⎟⎠, β = 1,

⎛
⎜⎜⎜⎜⎝

3 1 + i 4 − i/2 6 + √
3 i 8 − i

1 − i −5 4 + 3i 7 −1
4 + i/2 4 − 3i 2 2 − 3i 3

6 − √
3 i 7 2 + 3i 9 i/5

8 + i −1 3 −i/5 −2

⎞
⎟⎟⎟⎟⎠, β =2,

respectively. The comparison is shown with the aid of various
symbols in Fig. 1 and we observe that the analytical and
simulation-based results agree very well.

B. Two Wishart matrices

We now consider two n-dimensional Wishart-Laguerre
matrices W1 and W2 but with different choices for the num-
ber of degrees of freedom in general, say m1 and m2, i.e.,
we consider the respective probability densities as Pj (Wj ) =
Cj (det Wj )

β

2 (mj−n+1)−1e− β

2 trWj ; j = 1, 2. The average of the
squared Hilbert-Schmidt distance between W1 and W2 then
follows as

D2
W1,W2

=
∫

d[W1]
∫

d[W2]P1(W1)P2(W2)tr(W1 − W2)2.

(10)

We can evaluate the W2 integral first by keeping W1 fixed and
using Eq. (9). This gives us

D2
W1,W2

=
∫

d[W1]P1(W1)
[
nm2(n + m2 + 2/β − 1)

+ trW 2
1 − 2m2 trW1

]
. (11)

FIG. 1. Mean-square Hilbert-Schmidt distance between a
Wishart matrix and a fixed matrix for (a) n = 2 and (b) n = 5. The m
(number of degrees of freedom) value for the Wishart matrix varies
from n to n + 3 in both cases.

Now, the integral over the first term in the above expression
is trivial, the second term can be integrated using Eq. (7), and
the third term can be integrated using Eq. (8) with X = 1n.
We obtain the desired expression as

D2
W1,W2

= nm1(n + m1 + 2/β − 1)

+ nm2(n + m2 + 2/β − 1) − 2nm1m2

= n[(m1 + m2)(n + 2/β − 1) + (m1 − m2)2]. (12)

The above result is verified using Monte Carlo simulations
involving 105 pairs of Wishart matrices. In Fig. 2, we show
the comparison for n = 2 and 5 with various combinations of
m1 and m2 as indicated. We can see a very good agreement in
all cases.

III. MEAN-SQUARE HILBERT-SCHMIDT DISTANCE
FOR RANDOM DENSITY MATRICES

We now focus on random density matrices taken from the
set equipped with the Hilbert-Schmidt measure. The corre-
sponding probability density function is given by [1]

P (ρ) = C(det ρ)αδ(trρ − 1). (13)
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FIG. 2. Mean-square Hilbert-Schmidt distance between two in-
dependent Wishart matrices of dimension (a) n = 2 and (b) n = 5.
In both cases, various combinations of the numbers of degrees of
freedom m1 and m2 have been considered.

As shown in the Appendix, the normalization factor C in this
case is related to the one in Eq. (3) as

C =
(

2

β

)βnm/2

�(βnm/2)C. (14)

The β = 1 case here can be associated with real random
states, while β = 2 corresponds to the usual scenario of
complex states [1].

The above-described measure over random density ma-
trices arises in the following way. Consider a random pure
state |ψ〉 belonging to the Hilbert space Hn ⊗ Hm which is
associated with a composite bipartite system of size nm with
n � m. This random pure state may be represented as |ψ〉 =
U |ψ0〉, where U is a global random unitary matrix distributed
according to the Haar measure, and |ψ0〉 is an arbitrary state
in Hn ⊗ Hm. Upon partial tracing over the m-dimensional
environment part, one obtains the reduced density matrix of
dimension n:

ρ = trm(|ψ〉〈ψ |)
〈ψ |ψ〉 . (15)

FIG. 3. Mean-square Hilbert-Schmidt distance between a ran-
dom density matrix and a fixed density matrix for (a) n = 2 and (b)
n = 5. The m (Hilbert space dimension of the environment) value
varies from n to n + 3 in both cases.

This reduced density matrix is then distributed as described
by the probability density in Eq. (13) [1]. The n = m case
is identified as the standard Hilbert-Schmidt measure and is
also induced by the Hilbert-Schmidt distance metric [1]. The
construction appearing in Eq. (15) maps to the random matrix
model [1–3,15]

ρ = W/trW = GG†/tr(GG†), (16)

where W and G are matrices as in Eqs. (1) and (5). Evidently,
this results in the random matrix ρ having a fixed trace 1
and, therefore, in the random matrix theory terminology, it is
said to belong to the fixed trace Wishart-Laguerre ensemble
[1–3,15,99]. We exploit the above relationship between the
random density matrix ρ and the Wishart matrix W to obtain
the mean-square Hilbert-Schmidt distances for the former
with the help of results derived in the preceding section.

A. A random density matrix and a fixed density matrix

Let ρ be a random density matrix from the distribution
given in Eq. (13) and σ be a fixed density matrix. We need
to calculate average of the squared Hilbert-Schmidt distance
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between ρ and σ ,

D2
ρ,σ =

∫
d[ρ]P (ρ)tr(ρ − σ )2, (17)

where d[ρ] is defined similar to d[W ]. We introduce an
auxiliary variable t inside the delta function to replace 1 in
the expression of the density P (ρ). It will be set equal to 1
toward the end of the calculation. We have

D2
ρ,σ (t ) = C

∫
d[ρ] (det ρ)αδ(trρ − t )tr(ρ − σ )2. (18)

Taking Laplace transform (t → s), we get

D̃2
ρ,σ (s) = C

∫
d[ρ] (det ρ)αe−s trρ tr(ρ − σ )2. (19)

We now introduce ρ = ( β

2s )W with s > 0, so that d[ρ] =
( β

2s )n[β(n−1)/2+1]d[W ]. After some simplification we obtain

D̃2
ρ,σ (s) = C

(
β

2s

)βnm/2+2 ∫
d[W ] (det W )αe− β

2 tr W

× tr

(
W − 2s

β
σ

)2

= C
C

(
β

2s

)βnm/2+2 ∫
d[W ]P(W )tr

(
W − 2s

β
σ

)2

= C
C

(
β

2s

)βnm/2+2[
nm(n + m + 2/β − 1)

+ (4s2/β2)trσ 2 − (4m/β )s trσ
]
, (20)

where we employed Eqs. (1) and (9). Now, σ being a density
matrix, we have tr σ = 1. Taking the inverse Laplace trans-
form (s → t) then yields

D2
ρ,σ (t ) = C

C

(
β

2

)βnm/2+2

×
[

4tβnm/2−1

β2�(βnm/2)
trσ 2 − 4m tβnm/2

β�(βnm/2 + 1)

+ nm(n + m + 2/β − 1)
tβnm/2+1

�(βnm/2 + 2)

]
.

Finally, setting t = 1 and substituting the ratio C/C from
Eq. (14), we obtain the desired result:

D2
ρ,σ = trσ 2 + β(n + m + 2/β − 1)

βnm + 2
− 2

n
. (21)

The above derivation, equivalently, may be carried out by ob-
serving that P (ρ) ∝ ∫

d[G]δ(ρ − GG†)δ(trGG† − 1)PG(G)
and mapping the ρ-integral to G-integral. It should be noted
that the second term in Eq. (21) corresponds to the average of
trρ2, i.e., it is the average purity for a random density matrix,
viz., ∫

d[ρ]P (ρ)trρ2 = β(n + m + 2/β − 1)

βnm + 2
. (22)

Of special interest is the case when σ is a pure state or a
maximally mixed state. For these, we have trσ 2 = 1 and 1/n,
respectively and the corresponding average distances can be

FIG. 4. Mean-square Hilbert-Schmidt distance between two in-
dependent random density matrices with (a) n = 2 and (b) n = 5.
For both cases, several combinations of m1, m2 values have been
considered.

readily obtained from Eq. (21). Moreover, for m = n � 1, we
obtain

D2
ρ,σ = tr σ 2 + O

(
1

n2

)
, (23)

which, to the leading order, is just the purity of the state
σ . In the same limit, the leading contribution for pure and
maximally mixed states are therefore D2

ρ,σ = 1 and D2
ρ,σ =

1/n. The latter goes to 0 as n → ∞, as was shown in Ref. [27].
We verify Eq. (21) by numerically simulating 105 random

density matrices using the random matrix model (16), and
calculating the mean distance square with the fixed matrix
σ set as the maximally mixed state n−11n. The results are
depicted in Fig. 3 for n = 2, 5, and m varying from n to n + 3.
We find an impressive agreement between the analytical and
simulation-based results.

B. Two random density matrices

Let ρ1 and ρ2 be random density matrices from the proba-
bility density given in Eq. (13), but unequal m in general, say
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FIG. 5. Eigenvalue density for Hilbert-Schmidt distributed random density matrix: comparison between analytical result (solid line) and
the histogram obtained by diagonalizing reduced density matrices obtained from coupled kicked top simulation with k1 = k2 = 7, ε = 1. The
density matrix dimension is n = 2 j1 + 1 = 25 and the subplots depict the densities for varying m = 2 j2 + 1 values: (a) 25, (b) 27, (c) 29, and
(d) 31.

m1 and m2. We therefore need to calculate

D2
ρ1,ρ2

=
∫

d[ρ1]
∫

d[ρ2]P1(ρ1)P2(ρ2)tr(ρ1 − ρ2)2, (24)

where P j (ρ j ) = C j (det ρ j )
β

2 (mj−n+1)−1δ(trρ j − 1); j = 1, 2.
We can calculate the ρ2 integral first by treating ρ1 fixed, and
thus use Eq. (21). We obtain

D2
ρ1,ρ2

=
∫

d[ρ1]P1(ρ1)

[
trρ2

1 + β(n + m2 + 2/β− 1)

βnm2 + 2
− 2

n

]
.

The first term can be integrated using Eq. (22), while the
integral over the other two terms is trivial. We have

D2
ρ1,ρ2

= β(n + m1 + 2/β − 1)

βnm1 + 2

+ β(n + m2 + 2/β − 1)

βnm2 + 2
− 2

n
. (25)

For n = m1 = m2 � 1, we obtain

D2
ρ1,ρ2

= 2

n
+ O

(
1

n2

)
, (26)

as was calculated in Ref. [32].
We simulate 105 pairs of random density matrices using

the matrix model in Eq. (16) and obtain the average of
Hilbert-Schmidt distance square. These Monte Carlo results
are contrasted with the above analytical result in Fig. 4. We
have considered n = 2, 5 and several m1, m2 values and very
good agreement can be seen in all cases.

IV. COUPLED KICKED TOPS

In this section, we compare the analytical results
obtained in the preceding section with the mean-square
Hilbert-Schmidt distance obtained using random density
matrices generated via coupled kicked tops. Coupled quantum
kicked tops, inter alia, have been used extensively to study
the bipartite entanglement and effect of chaos [22,103–109].
In Ref. [32], it has been used to study the spectrum of the
difference of two density matrices, the so-called Helstrom
matrix. In the same spirit, we use here the couple kicked
top system to generate random density matrices distributed
according to Hilbert-Schmidt measure and then evaluate the
corresponding squared Hilbert-Schmidt distance averages.
These results are compared with our random matrix theory
based analytical results.

The Hamiltonian for the coupled kicked top system is
[103,104]

H = H1 ⊗ 1N2 + 1N1 ⊗ H2 + H12. (27)

Here,

Hr = π

2
Jyr + kr

2 jr
J2

zr

∞∑
ν=−∞

δ(t − ν), r = 1, 2 (28)

represent the Hamiltonians for the individual tops [110,111],
and

H12 = ε√
j1 j2

(Jz1 ⊗ Jz2 )
∞∑

ν=−∞
δ(t − ν) (29)

is the interaction term. The Hamiltonians H1 and H2 cor-
respond to N1 (= 2 j1 + 1)-dimensional, and N2 (= 2 j2 + 1)-
dimensional Hilbert spaces H(N1 ) and H(N2 ), respectively.
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Also, 1N1 and 1N2 are N1- and N2-dimensional identity
operators, respectively. The Hamiltonian for the coupled
kicked tops corresponds to an N1N2-dimensional Hilbert space
H(N1N2 ) = H(N1 ) ⊗ H(N2 ). Jxr , Jyr , Jzr are angular momentum
operators for the rth top and j is the quantum number cor-
responding to the operator J2. The stochasticity parameters kr

for the two tops decide the kick strengths and control their
chaotic behavior. The parameter ε takes care of the coupling
between the two tops.

The unitary time-evolution operator (Floquet operator) cor-
responding to the Hamiltonian in Eq. (27) is

U = (U1 ⊗ U2)U12, (30)

with

Ur = exp

(
− iπ

2
Jyr − ikr

2 jr
J2

zr

)
, r = 1, 2 (31)

U12 = exp

(
− iε√

j1 j2
Jz1 ⊗ Jz2

)
. (32)

Here, i = √−1 represents the imaginary unit. The Floquet
operator U is used to obtain the state |ψ (ν)〉 starting from
an initial state |ψ (0)〉 using the iteration scheme |ψ (ν)〉 =
U |ψ (ν − 1)〉. The initial state is taken as the tensor product
of directed angular momentum states associated with the two
tops. After ignoring a certain number of iterations that fall in
the transient regime, one considers the reduced density matri-
ces obtained by partial tracing over one of the tops (say, the
second one), viz., ρ(ν) = tr2(|ψ (ν)〉〈ψ (ν)|); cf., Eq. (15). In
the chaotic regime (kr � 6), with sufficient coupling between
the two tops, these reduced density matrices belong to the
Hilbert-Schmidt measure as given in Eq. (13) [22,106].

For comparison with our analytical result for distance be-
tween a random density matrix and a fixed density matrix, we
generate 5000 reduced density matrices using the procedure
described above. We consider j1 = 12 which gives n = N1 =
25 and vary j2 from 12 to 15 which corresponds to m = N2 =
25, 27, 29, 31. It should be noted that for each choice of j2, we
have to run a separate simulation. The fixed density matrix is
chosen as n−11n, which represents the maximally mixed state.
Before we proceed to calculate the average distance between
the quantum states, to demonstrate that the algorithm does
produce density matrices distributed according to the Hilbert-
Schmidt measure, we compare the corresponding eigenvalue
density with the random matrix prediction for β = 2 [19,22],
viz.,

p(μ) =
n∑

i=1

Ki μ
i+α−1(1 − μ)−i+nm−α−1

× [
(n − i)F−n,i−nm+α

α+1 − nF1−n,i−nm+α
α+1

]
. (33)

Here, μ represents a generic eigenvalue of ρ and Fa,b
c :=

2F1(a, b; c; μ

μ−1 )/�(c) with 2F1(. . . ) being the Gauss hyper-
geometric function. The coefficient Ki is given by

Ki = (−1)i�(m + 1)�(nm)

n�(i)�(n − i + 1)�(i + α + 1)�(nm − α − i)
. (34)

As can be seen in Fig. 5, we find very good agreement between
the analytical eigenvalue densities and histograms obtained
from simulations. Thus, we use these density matrices for

FIG. 6. Comparison between random matrix theory (RMT) and
coupled kicked top simulation results: (a) mean-square Hilbert-
Schmidt distance between density matrices ρ of dimension n =
25 generated from coupled kicked top (CKT) simulations and the
maximally mixed density matrix σ = n−11n, along with the RMT
predictions; (b) the corresponding percent relative differences, i.e.,
100([D2

ρ,σ ]CKT/[D2
ρ,σ ]RMT − 1)%. The sets of parameters (k1, k2, ε)

used for the coupled kicked tops are CKT I: (7,8,1), CKT II:
(6,7,0.75), CKT III: (6,9,0.5) and m has been varied in each case,
as indicated along the horizontal axis.

evaluating the Hilbert-Schmidt distance. The results are de-
picted in Fig. 6 for three sets of (k1, k2, ε) parameters along
with the random matrix theory based results based on Eq. (21).
We find a very good agreement, with the relative difference
remaining below 1% in each case.

For simulating the distance between two density matrices
we consider two independent coupled kicked tops, say A
and B. This helps us to realize different m1 = 2 jA

2 + 1 and
m2 = 2 jB

2 + 1 values. Here, jA
2 and jB

2 represent the j2 values
for the two couple kicked tops, respectively. The n value
is decided by the common Hilbert-space dimension 2 jA

1 +
1 = 2 jB

1 + 1. We should add that if one does not require to
consider different values for m1 and m2, only one coupled
kicked top would suffice. In this case, ρ1 and ρ2 can be taken
as reduced density matrices separated by a certain number of
iterations within a single simulation. In Fig. 7, we show the
comparison between the random matrix analytical and kicked
top simulation results for the mean-square Hilbert-Schmidt

012405-7
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FIG. 7. Comparison between random matrix theory and coupled
kicked top simulation results: (a) mean-square Hilbert-Schmidt dis-
tance between two random density matrices ρ1, ρ2 of dimension
n = 25 and various m1, m2 combinations calculated using coupled
kicked top pairs (CKTP), along with RMT predictions; (b) the
corresponding percent relative differences. The sets of parameters
(kA

1 , kA
2 , εA; kB

1 , kB
2 , εB ) used for the coupled kicked top pairs are

CKTP I: (8, 7, 0.5; 7, 8, 1), CKTP II: (6, 6, 0.8; 7, 8, 0.75), CKTP
III: (7, 7, 0.75; 8, 8, 0.75).

distance for n = 25 and several combinations of m1, m2. Three
sets of parameters (kA

1 , kA
2 , εA) and (kB

1 , kB
2 , εB) have been

chosen for the coupled tops A and B. Here, also, we find the
agreement to be impressive with the relative difference with
the random matrix result (25), remaining below 1%.

V. SUMMARY AND OUTLOOK

In this work, we obtained exact and compact expressions
for the mean-square Hilbert-Schmidt distance between a ran-
dom density matrix and a fixed density matrix, and also be-
tween two random density matrices. This derivation involved
first computing the corresponding expressions for Wishart
random matrices. These results are compiled in Table I for a
quick reference. We also compared our analytical results with
the average distances obtained using reduced density matrices
simulated via coupled kicked top system with appropriately
chosen parameters, and found very good agreement. Our
results constitute a useful reference for comparing Hilbert
distance between quantum states. Moreover, due to their
simplicity, our analytical expressions are amenable to further
analysis, such as examining asymptotic limits.

Distance measures other than Hilbert-Schmidt, such as
trace distance and Bures distance, are acknowledged to be
better suited for characterizations such as distinguishability
of quantum states. While large dimension asymptotic results
exist for averages of these distances, it would be immensely
useful if finite-dimension results can be obtained. Moreover,
it would be of interest to go beyond the mean of these dis-
tances and explore higher moments and distributions. Finally,
one would also like to investigate the statistics of distances
between random states distributed according to measures
other than the Hilbert-Schmidt measure, such as Bures-Hall
measure.
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APPENDIX: RELATIONSHIP BETWEEN
NORMALIZATION CONSTANTS

We prove here the relationship between the normalization
constants C and C as given in Eq. (14). Since

∫
dρ P (ρ) = 1,

we obtain from Eq. (13),

C−1(t ) =
∫

d[ρ](det ρ)αδ(trρ − t ), (A1)

TABLE I. Summary of results for the mean-square Hilbert-Schmidt distance between a pair of matrices. For the Wishart matrices, n is the
matrix dimension and m is the number of degrees of freedom. For random density matrices, n is the matrix dimension and m is the auxiliary
dimension of the Hilbert space corresponding to the environment.

Matrices Mean-square Hilbert-Schmidt distance

A Wishart matrix (W ) and a fixed Hermitian matrix (X ) D2
W,X = nm(n + m + 2

β
− 1) + trX 2 − 2m trX

Two Wishart matrices (W1,W2) D2
W1,W2

= n[(m1 + m2)(n + 2
β

− 1) + (m1 − m2)2]

A random density matrix (ρ) and a fixed density matrix (σ ) D2
ρ,σ = trσ 2 + β(n + m + 2/β − 1)

βnm + 2
− 2

n

Two random density matrices (ρ1, ρ2) D2
ρ1,ρ2

= β(n + m1 + 2/β − 1)

βnm1 + 2
+ β(n + m2 + 2/β − 1)

βnm2 + 2
− 2

n
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where, as before, we have introduced the auxiliary variable t inside the delta function. Taking the Laplace transform
(t → s), we obtain

C̃−1(s) =
∫

d[ρ](det ρ)αe−s trρ. (A2)

We then consider the transformation, ρ = ( β

2s )W with s > 0, so that d[ρ] = ( β

2s )n[β(n−1)/2+1]d[W ]. This gives

C̃−1(s) =
(

β

2s

)βnm/2 ∫
d[W ](det W )αe− β

2 trW

=
(

β

2s

)βnm/2

C−1. (A3)

Taking the inverse Laplace transform we obtain

C−1(t ) = 1

�(βnm/2)

(
β

2

)βnm/2

tβnm/2−1C−1. (A4)

Finally, setting t = 1, we get

C−1 = 1

�(βnm/2)

(
β

2

)βnm/2

C−1, (A5)

which yields the desired result appearing in Eq. (14).
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