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Fragility of quantum correlations and coherence in a multipartite photonic system
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Certain quantum states are well known to be particularly fragile in the presence of decoherence, as illustrated
by Schrödinger’s famous gedanken cat experiment. More recently it has been considered that quantum states
can be characterized through a hierarchy of quantum quantities such as entanglement, quantum correlations,
and quantum coherence. It has been conjectured that each of these quantities has various degrees of fragility in
the presence of decoherence. Here we experimentally confirm this conjecture by preparing tripartite photonic
states and subjecting them to controlled amounts of dephasing. When the dephasing is applied to all the qubits,
we find that the entanglement is the most fragile quantity, followed by the quantum coherence and then mutual
information. This is in agreement with the widely held expectation that multipartite quantum correlations are a
highly fragile manifestation of quantumness. We also perform dephasing on one of the three qubits on star and
WW̄ states. Here the distribution of the correlations and coherence in the star state becomes more important in
relation to the dephasing location.

DOI: 10.1103/PhysRevA.102.012403

I. INTRODUCTION

One of the main challenges in the development of quantum
technologies is how to overcome decoherence [1–3]. Quantum
systems tend to couple very easily to their external environ-
ment, thereby losing their quantum nature and being reduced
to a classical state [4,5]. It is however also well known that the
timescale for which a quantum state decoheres is very much
a state-dependent process. For example, superpositions of
macroscopically distinct states, such as Schrödinger cat states
|0〉⊗N + |1〉⊗N , where N is the number of qubits, collapse
exponentially fast in comparison to a product state of qubits
(|0〉 + |1〉)⊗N . The fragility (or conversely the robustness) of
quantum states has been studied in numerous studies [6–9].
The fragility of quantum states has been discussed in connec-
tion with measures of defining the macroscopicity of quantum
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superpositions [6,10,11]. The fragility of particular quantum
states can be considered the flip side of the enhanced sensitiv-
ity of such states, the classic example being NOON states,
which are fundamental in the field of quantum metrology
[12–14].

Meanwhile, quantum information theory has provided nu-
merous tools in order to better understand the nature of
quantum states. Various quantifiers for the strength of Bell
correlations [15,16], Einstein-Podolsky-Rosen (EPR) steering
[17], entanglement [18], and quantum correlations [19,20]
have been proposed, each characterizing different aspects of
quantum states. For example, entanglement is strictly de-
fined as any state that is not writable in a separable form,
whereas quantum correlations arise when it is impossible to
disturb a quantum state with local projective measurements
[19]. Recently, another quantifier, quantum coherence, has
attracted attention as another way of characterizing quantum
states [21]. Unlike quantum correlations that require at least
bipartite systems to exist, quantum coherence can occur on a
single system and is a measure of the degree of superposition
[22,23]. These quantifiers form a hierarchical structure, where
quantities higher in the hierarchy possess as attributes nonzero
values of lower quantities [24,25]. For example, a system

2469-9926/2020/102(1)/012403(13) 012403-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9721-1741
https://orcid.org/0000-0001-7774-1622
https://orcid.org/0000-0003-4894-9349
https://orcid.org/0000-0001-6815-8929
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.012403&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevA.102.012403


HUAN CAO et al. PHYSICAL REVIEW A 102, 012403 (2020)

possessing entanglement necessarily possesses quantum cor-
relations and coherence, but does not necessarily show Bell
correlations or steering. In particular, a unified theory connect-
ing various types of quantum correlations was proposed by
Modi et al. in Ref. [26]. Giorgi and Zambrini extended this ap-
proach to include various types of coherence in Ref. [27]. Var-
ious quantum technological tasks rely on different properties
of quantum states; hence one of the major aims of quantum
information theory is to understand the operational capability
of these different resources [28–34]. How these resources
behave in a dynamical context has been a focus of several
works [35–38], motivated by the presence of environmental
decoherence in quantum technological systems.

In this study we experimentally show the effect of the
different quantum correlations and coherences of a tripartite
photonic system under the influence of a one- and a three-
qubit dephasing environment. We compute the six quantities,
(i) entanglement, (ii) total coherence, (iii) global coherence,
(iv) local coherence, (v) mutual information, and (vi) classical
correlations, and measure their decay dynamics under dephas-
ing. The above quantities are computed from the tomographic
reconstruction of the density matrices corresponding to the
experimentally generated quantum state. The fragility of these
quantities under dephasing is investigated by measuring the
decay rate, which can quantify the fragility of the quantity
under question. We note that investigations on the transient
dynamics of entanglement and quantum discord have been
performed in Refs. [35–45]. Particularly in Refs. [35–38],
an experimental verification of the decay dynamics has been
examined. In our work we focus on studying the comparative
dephasing dynamics of different quantum properties using
relative entropy measures. To observe the decay dynamics
of multipartite quantum states, we generate the WW̄ and
star states, which contain correlations and coherences at all
levels. Such states are uniquely suited for examining multiple
quantum properties simultaneously.

In Sec. II we discuss the two quantum states under in-
vestigation and their experimental preparation. The various
measures of correlations and coherence are explained in
Sec. III. The evolution of the density matrix under dephasing
is described in Sec. IV within the two main topics of tomo-
graphic reconstruction of states and decay of correlations and
coherence under dephasing. In Sec. V we present a summary
and our conclusions.

II. PHOTONIC STATE GENERATION

A. WW̄ and star states

In this study we generate and study the dynamics of two
quantum states under dephasing. The first state is the WW̄
state defined as

|WW̄ 〉 = 1√
2
(|W 〉 + |W̄ 〉), (1)

|W 〉 = 1√
3
(|001〉 + |010〉 + |100〉), (2)

|W̄ 〉 = 1√
3
(|110〉 + |101〉 + |011〉). (3)

The WW̄ state is an equal superposition of a standard W state
and its spin-flipped version, the W̄ state. This type of state is
chosen because it has quantum coherence at the single-qubit,

bipartite, and tripartite levels, as well as bipartite and tripartite
quantum correlations. Such a state is a good test bed for
studying quantum correlations distributed at different levels.
The presence of different types of correlations is one of the
reasons that W states are robust under local decoherence [46].

The second state we investigate is the star state defined as

|S〉 = 1
2 (|000〉 + |100〉 + |101〉 + |111〉). (4)

Like the WW̄ state, the star state also has coherence and
correlations distributed at all possible levels. However, the
correlations are present in an asymmetric way for a star state,
in contrast to the WW̄ state, which is symmetric for all qubits.
The entanglement structure for the star state takes the form
A ⇔ C ⇔ B, where we have labeled the three qubits as ABC
in (4) from left to right. For example, if qubit A or B is traced
out, entanglement is present in the remaining qubits. However,
if qubit C is traced out, the remaining qubits are left in a
separable state. We thus call qubit C the central qubit and
qubits A and B are the peripheral qubits. The star state is a very
simple example of a graph state [47], which in multipartite
cases is useful for quantum error correction [48]. More details
on the distribution of correlations and coherence in the WW̄
and star states are given in Appendix B.

B. Experimental preparation

To experimentally realize the above states, polarization
encoded photonic qubits are used, where the horizontal (H)
and vertical (V ) polarizations are encoded as the two levels
|0〉 and |1〉, respectively. The detailed procedure of preparing
these quantum states is shown in Fig. 1. In our experiment
we investigate the dynamics of various correlations and co-
herence in a tripartite quantum system which is under the
influence of an external phase damping environment, realized
by passing the photonic states through birefringent quartz
crystals of different thicknesses. We perform two types of de-
phasing, where all three photons are dephased by a crystal of
the same thickness, and another where only one of the photons
is dephased. The dephasing on only one of the photons allows
for a partial dephasing of the system, where some quantum
property is retained even after complete dephasing.

The experimental setup to prepare the WW̄ is shown in
Fig. 1(a). Two pairs of down-converted photons are simul-
taneously generated through a higher-order emission of the
spontaneous parametric down-conversion (SPDC) process.
These four photons are collected by a single-mode fiber and
then fed into a polarizing beam splitter (PBS) where they
overlap and become indistinguishable in the spatial mode.
The spectral selection is realized by inserting a 3-nm inter-
ference filter after the PBS. The four photons are separated by
three nonpolarizing beam splitters. The postselected fourfold
coincidence count certifies the generation of a four-photon
Dicke state with two excitations |D2

4〉 = (|0011〉 + |0101〉 +
|1001〉 + |0110〉 + |1010〉 + |1100〉)/

√
6. The WW̄ state is

generated from the Dicke state by projecting one of the qubits
into the (|0〉 + |1〉)/

√
2 basis.

The star state generation scheme is shown in Fig. 1(b). Two
nonmaximally entangled bipartite states |ψ〉 = cos θ |01〉 +
sin θ |10〉 with the ratio cos2 θ : sin2 θ = 6.8554 are required
to prepare the star state. These polarization entangled states
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FIG. 1. Experimental setup for the preparation, dephasing, and measurement of the (a) WW̄ state and (b) star state. In (a) the down-
converted photons are collected by a single fiber coupler. The output coupler before the first polarizing beam splitter (PBS) is mounted on a
translational stage to make fine adjustments with the arrival time of the photons. Each beam splitter (BS) consists of one 0◦ plate BS and a 45◦

mirror in its reflection path. The mirror introduces a phase shift of π between |H〉 and |V 〉 which is to compensate the phase shift introduced by
the BS. Such a setup makes the reflectivity more polarization independent than a cube BS. Since this requires no phase modulation the setup
can be stable over several days. The final triggered photon is detected using a half waveplate (HWP), a PBS, and a detector. Each photon of a
WW̄ state is analyzed using a polarization measurement system consisting of a quarter waveplate (QWP), HWP, PBS, and two fiber-coupled
single-photon detectors. (b) In each arm of the EPR pairs, one crystal is used for temporal compensation (TC) and one crystal is used for
spatial compensation (SC), through which the two possible ways of generating photon pairs (first or second crystal in sandwiched BBO) are
made indistinguishable. The two extraordinarily down-converted photons produced by the cascaded sandwich beam source are superposed on
a PBS. The time of arrival of photons is adjusted with prisms. Further details on the experiment can be seen in the Appendices.

are generated using a sandwiched geometry beamlike type-
II β barium borate (BBO) entanglement resource. Such an
entanglement resource was first devised by Zhang et al. in
Ref. [49] and was later used in Ref. [50] to realize ten-
photon entanglement. Applying single-qubit unitary operators
on each qubit, the state |ψ〉 is transformed to (|00〉 + |10〉 +
|11〉)/

√
3. The transformed states are fed into the PBS to

overlap them and the Hong-Ou-Mandel interference visibility
is enhanced using a 2-nm bandpass filter. The second of the
four-qubit quantum states generated through this process is
projected in the (|0〉 + |1〉)/

√
2 basis. By exchanging qubits

3 and 4 in the resulting quantum state, the star states are
obtained.

III. MEASURES OF CORRELATIONS AND COHERENCE

We measure the correlations and coherence using the uni-
fied distance-based approach of Ref. [26]. The basic idea of
any distance-based approach to quantify a quantum observ-
able is as follows. First the set of all states that do not have the
relevant quantity is defined and the states are called reference
states. For example, for entanglement, the reference states are
the set of all separable states. Then, to quantify the quantum
property, one uses a suitable distance measure to find the
distance to the closest reference state by minimization. In our
case, we choose the distance measure to be relative entropy

S(ρ‖σ ) = Tr(ρ ln ρ − ρ ln σ ), (5)

where ρ is the quantum state in which correlations are mea-
sured and σ is the reference quantum state which does not
possess the quantum property. This measure is a popular
choice due to its simplicity of computation and well-known

properties [51]. The six quantities that we calculate are de-
fined below and are summarized in Table I.

Entanglement. The entanglement is quantified as the min-
imum distance to the set of all separable states [52,53]. We
perform a minimization procedure to separable states taking
the form

∑
j p jρ

A
j ⊗ ρB

j ⊗ ρC
j , where p j is a probability and

ρA,B,C
j are density matrices on subsystems A, B, and C.

Coherence. The total quantum coherence [21] is defined as
the distance to the closest incoherent state, which takes the
form

∑
j p j | j〉〈 j|, where | j〉 is in the basis {|0〉, |1〉} for A,

B, and C. It has been shown that for the relative entropy, the
closest incoherent state to a state ρ takes coefficients pj =
〈 j|ρ| j〉; hence the minimization does not need to be explicitly
performed [21] and

C(ρ) = min
σ∈I

S(ρ‖σ ) = S(ρ‖ρd ) = S(ρd ) − S(ρ). (6)

Here we define ρd as the matrix ρ with all off-diagonal terms
set to zero in the basis | j〉.

Local and global coherence. Quantum coherence can orig-
inate from coherence which is localized on subsystems or
coherence due to a collective property of the whole system
[22,23]. The former is called local coherence and is found by
first breaking all the correlations between the subsystems. In
a similar way to total coherence, the closest incoherent state
is found by taking the diagonal form

CL(ρ) = min
σ∈I

S(π (ρ)‖σ ) = S(π (ρ)‖πd (ρ)), (7)

where π (ρ) = ρA ⊗ ρB ⊗ ρC is the product density matrix
with ρA = TrBCρABC the single-qubit reduced density matrix
and πd (ρ) the matrix π (ρ) but with all off-diagonal elements
set to zero in the basis | j〉. The coherence attributed to the
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TABLE I. List of properties of a quantum state ρ and their measurement procedure.

Quantity Reference state Example reference state σ Definition

entanglement separable state S
∑

j p jρ
A
j ⊗ ρB

j ⊗ ρC
j E = min

σ∈S
S(ρ‖σ )

total coherence incoherent state I ρd = ∑
j〈 j|ρ| j〉| j〉〈 j| C = min

σ∈I
S(ρ‖σ )

local coherence incoherent states I πd (ρ ) = ρA
d ⊗ ρB

d ⊗ ρC
d CL = min

π (ρ )∈I
S(π (ρ )‖σ )

mutual information
(total correlations)

product state P π (ρ ) = ρA ⊗ ρB ⊗ ρC T = min
σ∈P

S(ρ‖σ )

classical correlation product state P π (ρd ) K = min
σ∈P

S(ρd‖σ )

hookup incoherent product states Ī πd (ρ ) = π (ρd ) M = min
σ∈Ī

S(ρ‖σ )

collective nature of the system is called global coherence and
is defined as the difference of the total and local coherence

CG(ρ) = C(ρ) − CL(ρ). (8)

Mutual information. Mutual information measures the total
amount of correlation, including both quantum and classical
parts [26]. The set of uncorrelated states takes the form of a
product state σ A ⊗ σ B ⊗ σC . It has been shown in Ref. [26]
that for relative entropy the closest product state is the product
state π (ρ) = ρA ⊗ ρB ⊗ ρC consisting of the reduced density
matrices on each subsystem ρA,B,C . Hence we can write

T (ρ) = min
σ∈P

S(ρ‖σ ) = S(ρ‖π (ρ)) ≡ S(π (ρ)) − S(ρ). (9)

The total correlations as measured by the mutual information
T and the total quantum coherence C are not completely
independent quantities. Hence there is a common region of
quantumness in a system which is measured by both these
quantities. This region of overlap is the amount of global
coherence in the system which arises due to quantum corre-
lations between the qubits.

Classical correlations. For local coherence, first the cor-
relations between the subsystems are broken and then the
remaining coherence is measured. The reverse ordering can
equally be performed, where first the coherence is removed
from the system and then the remaining correlations are
measured. The state with no coherence is ρd , which can only
contain classical correlations because it is a diagonal density
matrix [27]. In the same way as for mutual information, the
closest uncorrelated state is its corresponding product state

K (ρ) = min
σ∈P

S(ρd‖σ ) = S(ρd‖π (ρd )). (10)

Hookup. The reference state for total coherence C is ρd ,
which is a state that has no coherence but potentially classical
correlations. Meanwhile, the reference state for the mutual in-
formation T is π (ρ), which has no correlations but potentially
coherence. One can define a quantity with a reference state
that has no correlations and no coherence. This was called the
hookup in Ref. [27] and can be evaluated to be

M(ρ) = C(ρ) + K (ρ) = T (ρ) + CL(ρ). (11)

Of the different measured quantities, entanglement, total
coherence, local coherence, and global coherence measure
purely quantum properties. The entanglement is a measure of
the nonseparability of quantum states, the global coherence
is the coherence attributed to the collective quantum states,
and the local coherence estimates the quantumness localized

in the qubit. The total coherence, which is the sum of the local
and global coherence, estimates the total quantumness in the
system. The mutual information and hookup measure features
which are partly quantum and partly classical by nature.
Finally, as the name suggests, the classical correlations are
correlations that are in the incoherent basis (i.e., |0〉 and |1〉).
A detailed overview of the various correlations and coherence
is given in Appendix A.

IV. DENSITY-MATRIX EVOLUTION UNDER DEPHASING

A. Tomography reconstruction of states

Figure 2 shows the tomographic reconstructions of the
star and WW̄ states with various amounts of dephasing. For
the case where the dephasing is applied to all the photons,
the density matrix approaches its diagonal form as expected
for larger values of �, the thickness of the quartz plate.
In the case where dephasing is only applied to one of the
photons, some of the off-diagonal terms remain since the
state is only partially dephased. This is due to the nature of
the star and WW̄ states that are used which contain types
of coherence other than completely tripartite coherence [such
as in a Greenberger-Horne-Zeilinger (GHZ) state]. The to-
mographically reconstructed density matrix is compared to
the theoretically calculated density matrix according to a
dephasing channel for each qubit defined as

ρ → [1 − p(�)]ρ + p(�)σzρσz, (12)

where p(�) = [1 − exp(−	�2)]/2 (see Appendix D). We ob-
tain fidelities of the state with dephasing better than 93% for
all dephasing values.

B. Decay of correlations and coherence with dephasing
on all qubits

Using the tomographically reconstructed density matrices,
we calculate the various quantities summarized in Table I.
First we discuss the dephasing dynamics of the correlations
in a WW̄ state, as shown in Figs. 3(a) and 3(b). We observe
that all quantities decay to zero for large dephasing, except
the mutual information T and classical correlations K , which
saturate to finite values. This is due to the dephasing removing
all coherence from the system such that the state

ρd = 1
6 (|001〉〈001| + |010〉〈010| + |100〉〈100|
+ |110〉〈110| + |101〉〈101| + |011〉〈011|) (13)
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FIG. 2. Tomographic reconstruction of the density matrices of the star and WW̄ states for various thicknesses of quartz plates. The amount
of dephasing is controlled by the quartz plate thickness �. Only the real part of the density matrix elements are shown, and the imaginary
parts are consistent with zero for all thicknesses (see the Appendices). The theoretical density matrix for each dephasing time is shown as a
transparent histogram, and the fidelities are marked as a percentage, along with the error estimate. Dephasing rates of 	 = 2.21 × 10−5λ−2

0 for
the WW̄ states and 	 = 2.06 × 10−5λ−2

0 for star states are used, with λ0 = 780 nm.

is progressively approached. This is a classically correlated
state and hence the mutual information only contains classical
correlations T = K is observed and all other quantum proper-
ties decay to zero. In Fig. 3(b) we see that the global coherence
starts at a larger value than the local coherence, but the global
coherence decays faster than the local coherence. This is an
indication of the greater robustness of the local coherence in
the presence of dephasing than global coherence.

To examine this point in more detail, we plot the decay
rates for the various quantities in Fig. 3(c). Due to the Gaus-
sian nature of the dephasing channel (12), we expect the
quantum properties to also approximately follow a Gaussian
form proportional to exp(−	�2); hence the decay rate is the
negative gradient on a semilogarithmic plot with �2. Of all
the quantum properties the fastest decay is for entanglement.
The next fastest decay rate is displayed by global quantum
coherence, followed by the total coherence. The very slow
decay of mutual information is because it is composed of both
quantum correlations and classical correlations. While quan-
tum correlations decay due to the environment, the classical
correlations remain unchanged, since the dephasing acts in the
classical basis |0〉, |1〉. Likewise, local coherence can be seen
to decay more slowly than the total coherence. These results
generally show that the quantities that are related to collective
effects, such as entanglement and global coherence, tend to
decay at a faster rate than classical or local quantities.

The star state generally shows similar behavior, as can be
seen in Figs. 3(d) and 3(e). Here again the mutual information
and classical correlations saturate towards a nonzero value,

according to the classical correlations in the state

ρd = 1
4 (|000〉〈000| + |100〉〈100| + |101〉〈101|
+ |111〉〈111|). (14)

All other quantities decay to zero, in a similar way to the WW̄
state. The total coherence is less in the star state due to the
smaller number of terms in the superposition. Nevertheless,
as seen by evaluating the decay rates in Fig. 3(f), the entan-
glement shows the greatest rate of decrease, followed by the
global and total coherences. The mutual information and local
coherences decay with the slowest rates, similar to the WW̄
state. Thus, despite the rather different structure of the states, a
consistent picture emerges once the decay rates are examined.

C. Decay of correlations and coherence with one-qubit
dephasing

One way of understanding the faster decay of the collective
quantities such as entanglement and global coherence is that
they are exposed to the dephasing effects from multiple qubits.
This is in contrast to quantities that are localized on each
qubit, such as local coherence, which can only affect one qubit
at a time. In this picture, if the dephasing is only applied to one
qubit, then we might expect that the rates for all quantities
will be more similar. To test this hypothesis, we also perform
dephasing on one qubit and investigate its effect on the various
quantities as before.
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FIG. 3. Decay of quantum properties for the (a)–(c) WW̄ and (d)–(f) star states under three-qubit dephasing. The various quantum
properties are mutual information T , total coherence C, global coherence CG, local coherence CL , entanglement E , and classical correlations
K . In (a), (b), (d), and (e) the exponential decay of these properties is shown as a function of the thickness of the quartz plate � (units of
λ0 = 780 nm). Theoretical predictions are shown with the solid lines. Replotted in (c) and (f) are the same curves on a semilogarithmic plot
with the x axis representing the square of the thickness of the quartz plate and the physical properties along the y axis. The slope of the linear
fit gives the decay rate of the quantum property. In all panels the experimental data are denoted by points and the error bar is obtained through
a simulation of the photon statistics. In (a), (b), (d), and (e) solid lines are the theoretical predictions, while in (c) and (f) the solid lines are fits
to the experimental data. Fitted values of the decay rates (in units of 10−5λ−2

0 ) are (c) 	(E ) = 10.9, 	(CG) = 6.6, 	(C) = 6.1, 	(CL ) = 5.6,
and 	(T ) = 4.0 and (f) 	(E ) = 9.2, 	(CG) = 5.2, 	(C) = 4.8, 	(CL ) = 3.9, and 	(T ) = 3.0.

The decay of various quantities for the WW̄ due to dephas-
ing is shown in Figs. 4(a) and 4(b). Due to the symmetric
nature of the state, dephasing any one of the three qubits leads
to the same result; hence in our case qubit B is dephased. In
this case all quantities saturate to a nonzero value, which is
characteristic of the WW̄ state. As is well known, dephasing
of a W state only partially removes the entanglement from
the system and the remaining qubits are partially entangled.
This means that both quantum correlations and coherence are
preserved in the system. Due to the quantum correlations that
are preserved in this case, we observe that the amounts of cor-
relation and coherence are always larger than the amount of
classical correlations, in contrast to the three-qubit dephasing
case.

The entanglement structure of the state plays a more im-
portant role in the case of star states, as seen in Figs. 4(d)
and 4(e) for the central qubit dephasing and Figs. 4(g) and
4(i) for the peripheral dephasing. For the star state we show
the effects of dephasing on the central qubit C as well as the
peripheral qubit B. In this case we observe the entanglement
decaying to zero for large dephasing, as expected from the
discussion surrounding Eq. (4). For dephasing on a peripheral

qubit, we find that the entanglement does not decay to zero,
in a similar way to the WW̄ state (see Appendix B). Other
quantities saturate to nonzero values, with the steady-state
value of the global coherence being higher than the amount of
classical correlations in the system. This is in contrast to the
entanglement and local coherence in which the steady-state
value is lower than the classical correlations. We note that
compared to the other quantities the local coherence exhibits
very minimal evolution due to dephasing.

Figures 4(c), 4(f), and 4(i) show a comparison of the decay
rates of the various quantities, which appear as the negative
gradient on the semilogarithmic plot. We find that the ordering
of the decay rates does not occur in a consistent order as
before. For the WW̄ state, we find that all quantities generally
decay with a similar rate, with the global coherence giving the
largest value. On the other hand, for the star state, we clearly
see that the entanglement decays at the fastest rate, in a similar
way to the three-qubit dephasing case. We attribute this to
the different structure of entanglement that is present in the
two states. For the WW̄ state, all the qubits can be considered
“peripheral” qubits, since the dephasing causes only partial
loss of entanglement. In the case of dephasing the central qubit
of the star state, the destruction of entanglement is effective,
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FIG. 4. Decay of quantum properties of the (a)–(c) WW̄ and (d)–(f) star states with qubit C (central qubit) dephased and the (g)–(i) star
state with qubit B (peripheral qubit) dephased. For the WW̄ state, qubit B is dephased, while for the star state qubit C is dephased for central
qubit dephasing and qubit B dephased for peripheral qubit dephasing. The labeling is the same as in Fig. 3. Points are experimental data and
the lines are theoretical predictions in (a), (b), (d), (e), (g), and (h). In (c), (f), and (i) the lines are fits to the data. Fitted values of the decay rates
(in units of 10−5λ−2

0 ) are (c) 	(CG) = 2.2, 	(C) = 1.8, 	(T ) = 1.7, 	(E ) = 1.7, and 	(CL ) = 1.3; (f) 	(E ) = 3.6, 	(CG) = 2.0, 	(C) = 1.3,
	(T ) = 1.3, and 	(CL ) = 0.2; and (i) 	(E ) = 2.4, 	(CG) = 1.8, 	(C) = 1.6, 	(T ) = 1.1, and 	(CL ) = 1.1.

since the central qubit is individually entangled to qubits A
and qubit B, which are not entangled with each other. So a
dephasing of qubit C will destroy all the entanglement in the
system. Thus, in this case we observe that the structure of the
quantum correlations greatly affects the fragility of the state.

V. SUMMARY AND CONCLUSIONS

The dephasing effects on quantum correlations and quan-
tum coherence were experimentally studied for photonic WW̄
and star states. In our experiment we considered both one-
qubit dephasing and three-qubit dephasing of the tripartite
quantum states. Such states have coherence and correlations
of all types in a tripartite system. Using a Gaussian dephasing
model, we were able to extract the effective decay rates for
each state and each type of dephasing, as shown in Figs. 3(c),
3(f), 4(c), and 4(f). In the case that dephasing was applied
on all the qubits, a consistent picture emerged, despite the
different nature of the states. Here we found that

	(E ) > 	(CG) > 	(C) > 	(CL ) > 	(T ) > 	(K ), (15)

i.e., the dephasing rates occurred in the order of entanglement,
global coherence, total coherence, local coherence, mutual
information, and classical correlations. We thus saw a clear
hierarchy in the decay rate of the various quantum properties,
where the collective quantities decayed at a faster rate than
local and classical quantities. This can be understood as the
result of collective quantities being affected by all the chan-
nels of dephasing, but local quantities only are affected by
their local dephaser. In this way we verified the conjecture that
collective quantities are more fragile than the local quantities,
when local decoherence is applied on the whole system.
For the case that only one qubit is dephased, the rates of
decay depend more on the structure of the quantum state.
In the case of dephasing the central qubit of a star state, we

again recovered the entanglement as the most fragile quantity.
However, in the case of dephasing a peripheral qubit where
entanglement can be retained in the strong dephasing limit,
the rate of decay is much lower. Similar results were obtained
theoretically in different models of dephasing [54].

The information-theoretic quantities like entanglement,
mutual information, total coherence, local coherence, and
global coherence are manifestations of some basic physical
features. For example, entanglement is a manifestation of the
nonseparability of quantum states, total quantum correlation
is the interqubit quantum correlation, and local coherence is a
physical feature arising due to local superposition. From the
decay rate hierarchy of the information-theoretic quantities in
Eq. (15), we can get the robustness hierarchy of the different
quantum features as

DQC ≺ TQC ≺ LS, (16)

where DQC, TQC, and LS stand for distributed quantum cor-
relation, total quantum correlation, and local superposition,
respectively, and the notation A ≺ B denotes that A decays
faster than B. The DQC unique to quantum systems and TQC
(both nonlocal and local quantum correlations) are interqubit
correlations distributed between the qubits. Here LS is the
superposition between the levels of a qubit and hence is an in-
traqubit property which is localized within a qubit. Hence we
find that the interqubit quantum properties which are spread
out between the qubits are more likely to decay much faster
when compared to the intraqubit quantum properties, which
are relatively more robust. This suggests that in quantum
information-theoretic tasks it would be advantageous to use
intraqubit quantum properties as resources as they can be
preserved over longer time intervals. By converting between
local coherence to global coherence only when it is needed
[55], this could be used as a strategy for preserving coherence
to longer times.
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We note that in our approach the classical correlations are
constant throughout the entire process of evolution. This is in
contrast to the theoretical results observed in Refs. [45,56] and
was subsequently experimentally examined [36]. The differ-
ence here originates from the different notions of classicality
as defined by quantum discord and quantum coherence. In
quantum discord, a state is classically correlated if there exist
a local measurement and a conditioned measurement, in any
basis, which do not disturb the quantum state [19,57]. It is
therefore a quantity that is invariant under local basis transfor-
mations. In contrast, coherence is a basis-dependent quantity
[58]. The classical nature of the state is with respect to a
particular basis choice, in our case the |0〉, |1〉 basis. Here our
notion of classical correlations is in this fixed basis choice, and
the dephasing removes coherence in this basis. This means
that the classical correlations are always unchanged under this
evolution. In the case of Refs. [36,45,56], classical correla-
tions can be dynamic because of the local basis optimization
that is performed in evaluating the discord. In our view, these
results are not inconsistent, but arise from different notions of
classicality. In our approach, there is a preferred classical basis
|0〉, |1〉, which is natural to consider since this is the basis that
dephasing occurs in the system.

Another observation that can be made from Figs. 3 and 4 is
that the amount of total quantum coherence is always higher
than the entanglement present in the system. This is because
the coherence originates due to collective quantum correla-
tions, local quantum correlations, and local superpositions,
whereas the entanglement arises only due to the nonlocal
quantum correlations. This enables us to verify the theorem
E (ρ) � C(ρ) in Ref. [59] in a dynamical scenario, when they
are both measured using the same contractive distance. This
relationship between entanglement and coherence was proved
in Ref. [59] under the condition that both these quantities are
measured using the same contractive distance. In our work we
also use the same contractive distance (relative entropy) and
also verify that the relation holds under dephasing dynamics
as well.

Our work demonstrates that various quantum information
quantities can be used to effectively characterize quantum
systems. These can be extended to larger quantum systems,
where more dramatic phase transition phenomena can be
observed [31]. Adding decoherence and observing the dy-
namics can be a direct quantifier for the fragility of various
quantities. Since particular quantities are more relevant for a
given quantum information task, this general method may find
also practical uses in the context of applications to quantum
technology.
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APPENDIX A: QUANTUM PROPERTIES AND THEIR
MEASUREMENT

In information-theoretic applications an important task is
to compare two probability distributions P = {p1, . . . , pm}
and Q = {q1, . . . , qm}. Fundamentally there are two different
methods to compare the distributions. The first method is to
use the normed distance between these two distributions, for
example, the �n-norm between two distributions is

D�n =
(

m∑
i=1

|pi − qi|n
)1/n

. (A1)

For n = 1 we have the �1-norm and for n = 2 it is the
well-known Euclidean norm. The second method is to use a
contrast function which compares the information between
two distributions. A commonly used function in this regard,
the relative entropy

S(P‖Q) =
m∑

i=1

pi ln
pi

qi
(A2)

estimates the difference in entropy between the two distri-
butions. In the quantum case similar comparisons are made
between two density matrices ρ, σ ∈ B(H+

1 ). The relative
entropy between two different density matrices is defined as

S(ρ‖σ ) = Tr(ρ ln ρ − ρ ln σ ). (A3)

One can use this expression to measure the amount of quan-
tum correlation. To do so we must consider one of the density
matrices σ to be the reference state. A reference state is a
very particular type of state which does not have any of the
quantum correlation which is being measured. In the quantum
domain one typically has a set of reference states which do not
have any quantum correlations. Under such a circumstance,
we usually compute the distance to the closest state in the set.
This translates to finding the minimum distance of a quantum
state to a set of reference states. So using the expression for
the relative entropy and minimizing over the appropriate set
of reference states, one can measure the amount of a given
quantum correlation according to

Q = min
σ∈R

S(ρ‖σ ). (A4)

Here Q is the quantum property and R is the set of reference
states. In Table I we give a list of correlations and quantum
properties and their estimation procedure.

As shown in Table I, there are several measurable proper-
ties in a quantum system, but some of them have an overlap
in what they measure. It is then essential to come up with a
quantity which measures the complete information without
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C TCG

Qc KCL

M(a) (b)

FIG. 5. (a) Definition of various properties of a quantum system
as the distance between the states. Here s is the set of separable
states, p is the set of product states, and I is the set of incoherent
states. The closest separable state, product state, and incoherent state
are represented by σ min

s , πmin
p , and Imin, respectively. (b) Unified

framework for combining coherence and mutual information. The
total amount of information in the system, known as the hookup M,
is divided into two circular regions, namely, the coherence C and
mutual information T . The overlap of the two circles denotes the
quantum correlations as well as the global coherence. The classical
correlations K and the local coherence CL are the nonoverlapping
regions of the mutual information and coherence.

redundancy. Using this as motivation, the total amount of in-
formation (both quantum and classical) present in the system
was obtained through a unified picture of quantum coherence
and correlations in Ref. [27]. This was achieved by defining a
new quantity called the hookup M, which is equal to the sum
of the mutual information (total correlations) and the local
coherence in the system

M(ρ) = T (ρ) + CL(ρ). (A5)

Equivalently, it can also be defined as the sum of the total
coherence and classical correlations

M(ρ) = C(ρ) + K (ρ). (A6)

While the above expressions (A5) and (A6) can be used to
estimate the total information in the system, it can also be
defined using a distance measure as shown in Table I of the
main text. We estimate these different correlations for the
symmetric WW̄ state and the asymmetric star state.

APPENDIX B: QUANTUM STATES

Quantum states with more than two qubits can be entangled
in a multitude of different ways (see Fig. 5). It is always
convenient to classify them into equivalence classes based
on their entanglement structure. There are two methods of
classifying entanglement in multipartite systems, one based
on stochastic local operations and classical communications
(SLOCC) [46] and the other based on local unitary (LU) trans-
formations [60]. In the SLOCC method, multipartite states are
divided into different classes based on LOCC transformations.
If a group of quantum states can be transformed into one
another through LOCC they belong to the same class. For
example, based on LOCC, the tripartite quantum states are
classified into the GHZ and W classes. The LU decomposition
method is based on the entanglement distribution between the
different qubits. The pure tripartite states can be classified into
six different types based on the LU decomposition method.
The classification of quantum correlated states follows the

FIG. 6. Schematic sketch of the tripartite WW̄ and star states: A,
B, and C are the three qubits of the system. The outer circle represents
the genuinely tripartite quantum property which is destroyed when a
single qubit is lost. Arrows between the qubits denote the quantum
property which is distributed in a bipartite fashion. The local coher-
ence due to the superposition of the two levels of the same qubit
is shown by the arrows within the qubits. The distribution of the
correlations between the qubits on the star state show the asymmetric
property of the bipartite correlations.

same pattern as that of entanglement classification using LU
decomposition.

In our investigation we consider the WW̄ and star states
to study the symmetric and asymmetric quantum states. The
WW̄ state has both bipartite and genuinely tripartite quantum
correlations. A quantum correlation is said to be genuinely
tripartite when the loss of a single qubit completely destroys
it. Similarly, it also has bipartite quantum correlations which
are distributed pairwise between all three possible pairs. The
coherence in the WW̄ state is distributed at all levels and
hence it has local coherence, bipartite global coherence, and
genuinely tripartite coherence. The WW̄ state is said to be
symmetric because the reduction in quantum correlation or
coherence in the system due to the loss of a qubit does not
depend on the label of the qubit which has been traced out.
The star state also has both bipartite quantum correlations
and genuinely tripartite quantum correlations. In a star state
the bipartite correlation is present only between the two pairs
of qubits. Hence the star state is asymmetric with respect to
the distribution of quantum correlations and coherence. The
amount of correlation and coherence left in the system after
the loss of a qubit depends on which particular qubit has been
removed from the system. An illustrative sketch of the WW̄
and star states is given in Fig. 6.

APPENDIX C: EXPERIMENTAL GENERATION OF
QUANTUM STATES

A detailed description of the experimental generation of
WW̄ and star states is given in this Appendix.

1. The WW̄ state

A femtosecond pump pulse of central wavelength of
780 nm, pulse duration of 140 fs, and repetition rate of
76 MHz is frequency doubled by a 1.5-mm-thick BBO crystal.
To generate a WW̄ state, the output ultraviolet pulse is guided
to pump a 1-mm-thick beamlike type-II phase-matching BBO
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FIG. 7. Diagram of the experimental generation of star states through a step by step process. The preparation method starts with a bipartite
quantum system. These states are then subjected to three quantum operations in a succession of steps and the result yields a star state.

crystal. Through SPDC two pairs of down-converted photons
are generated. These four photons are overlapped using a
PBS. A 3-nm interference filter is used for spectral selection.
Using three nonpolarizing beam splitters, the four photons
are separated. This process leads to the generation of a four-
photon Dicke state with two excitations∣∣D2

4

〉 = (|HHVV 〉 + |HV HV 〉 + |V HHV 〉 + |HVV H〉
+|V HV H〉 + |VV HH〉)/

√
6. (C1)

Finally, the WW̄ state is generated by projecting one of the
qubits into the (|H〉 + |V 〉)/

√
2 basis.

2. Star state

The star state is generated using a nonmaximally entan-
gled state |ψ1〉 = (|HH〉 + |V H〉 + |VV 〉)/

√
3. By Schmidt

decomposition, we can rewrite the state in a new ba-
sis |ψ1〉 = cos θ |α1α2〉 + sin θ |α⊥

1 α⊥
2 〉, with the parameters
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FIG. 8. Reconstruction of the density matrices of the star and WW̄ states from the tomography data for three-qubit dephasing. The columns
correspond to the dephasing time performed by the quartz plate thickness. In each row the two histograms correspond to the real part (top
chart) and the imaginary part (bottom chart) of the density matrix. The theoretical density matrices are shown as transparent histograms. The
numerical values of the fidelities of the states in comparison to theory are marked together with error estimates.
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FIG. 9. Reconstruction of the density matrices of the star and WW̄ states from the tomography data, for single-qubit dephasing. The
columns correspond to the dephasing time simulated by the quartz plate thickness. In each row the two histograms correspond to the real part
(top chart) and the imaginary part (bottom chart) of the density matrix. The theoretical density matrices are shown as transparent histograms.
The numerical values of the fidelities of the states in comparison to theory are marked together with error estimates.

cos2 θ : sin2 θ = 6.8554, |α〉 = 0.5257|0〉 + 0.8507|1〉, and
|α⊥〉 = 0.8507|0〉 − 0.5257|1〉.

To generate the nonmaximally entangled state we use a
sandwichlike EPR pair source. The setup of this resource
consists of a half waveplate sandwiched between 2-mm-
thick and 1-mm-thick identical beamlike type-II BBO crys-
tals [49,50]. The first BBO crystal produces the polariza-
tion state |V1,o〉|H2,e〉. Here H (V ) denotes the horizon-
tal (vertical) polarization, the notation o (e) stands for the
ordinary (extraordinary) photons, and 1 and 2 denote the
respective emitting paths of the down-converted photons.
The half waveplate sandwiched between the two BBO crys-
tals rotates the photonic state to its orthogonal counterpart
|H1,o〉|V2,e〉. The second BBO crystal has the same cutting
angle as the first and is also placed in the same manner.
Hence the second BBO crystal also prepares the photonic
state |V1,o〉|H2,e〉. The two possible ways of generating pho-
ton pairs (using the first and the second BBO crystal) are
made indistinguishable by spatial and temporal compensa-
tions due to the birefringent crystals. A LiNbO3 crystal with
a thickness of 4.2 mm (0.5 mm) is used for the temporal

compensation of the extraordinary (ordinary) light. Similarly,
a YVO4 crystal with a thickness of 0.57 mm (0.5 mm) is
used for the spatial compensation of the extraordinary (ordi-
nary) light. The spacing between the two BBO crystals can
be adjusted to tune the ratio of the photon pairs generated
in them.

The multiphoton entangled states are produced using
Hong-Ou-Mandel interference. A schematic sketch of the star
state production process is given in Fig. 7. In the first step,
the two nonmaximally entangled states |ψ1〉 from the SPDC
source overlaps on a PBS for interference. The PBS acts as a
parity check gate |HH〉〈HH | + |VV 〉〈VV | on the two inter-
fering photons where there is one and only one photon in each
output port. After this process we have a four-qubit quantum
state. In the output state of the first step, the second photon is
projected onto |+〉 = (|H〉 + |V 〉)/

√
2. Due to this projective

measurement, the four-qubit quantum state is reduced to a
three-qubit quantum state. Here we would like to note that
there is no relabeling to quantum states after the projective
measurement. Finally, qubits 3 and 4 are exchanged to obtain
the star states.
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APPENDIX D: DEPHASING CHANNEL DUE TO THE
BIREFRINGENT CRYSTAL

A polarized photon gets dephased on passing through a
birefringent crystal. This can be used to controllably simulate
the decoherence due to dephasing in a linear optical system.
The down-converted (SPDC) photons have a frequency distri-
bution which approximates to a Gaussian function [61]. Under
this spectral condition, the action of a quartz plate on an initial
qubit state |ψ0〉 = α|0〉 + β|1〉 is described as

ε�(ρ) =
[ |α|2 αβ∗F (�)

α∗βF∗(�) |β|2
]
.

Here � represents the effective path difference which is pro-
portional to the thickness of the quartz plate. The coherence
behavior functional is exponential by nature and reads F (�) =
exp(−	�2), where 	 is the decay rate. To find the decay rate
	, we fit the single-photon coherence behavior F (�) under
decoherence. The decay rate 	 for the WW̄ state is measured
to be 	 = 2.2083 × 10−5λ−2

0 with a 3-nm interference filter
for each particle. For the star state 	 = 2.0624 × 10−5λ−2

0
while using a 2-nm interference filter for each particle. The
action of a quartz plate on a quantum state is equivalent to a

phase flip map ε�(ρ) = [1 − p(�)]ρ + p(�)σzρσz, where p(�)
is the mixing probability and σz is the Pauli spin matrix. This
action can be decomposed in two Kraus operators

M0 =
√

1 − p(�)I, M1 =
√

p(�)σz, (D1)

where p(�) = [1 − exp(−	�2)]/2. Using (D1), we can de-
scribe the tripartite system in a dephasing environment as

ε⊗3
� (ρ123) =

1∑
i, j,k=0

M†
i ⊗ M†

j ⊗ M†
k ρ123Mi ⊗ Mj ⊗ Mk .

(D2)
The experimental density matrices at various stages of the
dephasing dynamics are reconstructed using tomography. The
experimental tomographic density matrix and the theoretical
predictions for various values of path difference are given
in Figs. 8 and 9. The theoretical predictions are also shown
in Figs. 8 and 9 for the sake of comparison. The expression
in (D2) describes a three-channel dephasing. To describe a
single-channel dephasing, we will use the Kraus operator
corresponding to only one qubit and the other two qubits will
be subjected to an identity operation. In our work we look into
both three-channel and single-channel dephasing of the WW̄
and star states.
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