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The generalized amplitude-damping channel (GADC) is one of the sources of noise in superconducting-
circuit-based quantum computing. It can be viewed as the qubit analog of the bosonic thermal channel, and it thus
can be used to model lossy processes in the presence of background noise for low-temperature systems. In this
work, we provide an information-theoretic study of the GADC. We first determine the parameter range for which
the GADC is entanglement breaking and the range for which it is antidegradable. We then establish several upper
bounds on its classical, quantum, and private capacities. These bounds are based on data-processing inequalities
and the uniform continuity of information-theoretic quantities, as well as other techniques. Our upper bounds on
the quantum capacity of the GADC are tighter than the known upper bound reported recently in Rosati et al.,
[Nat. Commun. 9, 4339 (2018)] for the entire parameter range of the GADC, thus reducing the gap between the
lower and upper bounds. We also establish upper bounds on the two-way assisted quantum and private capacities
of the GADC. These bounds are based on the squashed entanglement, and they are established by constructing
particular squashing channels. We compare these bounds with the max-Rains information bound, the mutual
information bound, and another bound based on approximate covariance. For all capacities considered, we find
that a large variety of techniques are useful in establishing bounds.
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I. INTRODUCTION

One of the main goals of quantum information theory
is to determine the optimal rate of sending information
(classical or quantum) through quantum channels [1–4].
Quantum channels model the noisy evolution that quantum
states undergo when they are transmitted via some physical
medium.

Depending on the message and the availability of re-
sources, communication protocols over quantum channels can
be divided into different categories. In particular, classical
communication, entanglement-assisted classical communica-
tion, private classical communication, and quantum commu-
nication are some of the communication protocols that have
been studied in the last few decades (see Refs. [1–4] for
reviews). The notion of the capacity of a channel defined by
Shannon [5] can be extended to the quantum domain for these
different communication protocols (see Sec. III A for formal
definitions).

The optimal rate (capacity) of any communication pro-
tocol depends on the properties of the quantum channel.
In general, the best characterization of the capacities of a
quantum channel is given by an optimization over regularized
information quantities over an unbounded number of copies
of the channel. Hence, it appears to be generally difficult
to calculate the quantum and private capacities of quantum
channels [6,7] except for a special class of quantum channels
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that are degradable (see definitions in Sec. III), in which case
the regularized quantities reduce to simpler formulas that are
functions of only one copy of the channel [8,9]. Recently,
however, it was shown that one can calculate quantum ca-
pacity for some channels that are not degradable [10,11].
Furthermore, recent progress in estimating and understanding
the quantum capacity of low-noise and some other channels
has been reported in Refs. [12–15].

Remarkably, even in the qubit case, very little is known
when it comes to exact, computable expressions for the com-
munication capacities of quantum channels. For example, two
of the most widely considered noise models in quantum infor-
mation and communication are the depolarizing channel and
the amplitude-damping channel. The classical capacity of the
qubit depolarizing channel is known [16,17], but its quantum
capacity (for its entire parameter range) is not. Similarly, the
quantum capacity of the amplitude-damping channel is known
[18], but its classical capacity (for its entire parameter range)
is not. These are two of the most significant open problems in
quantum Shannon theory.

In general, the difficulty in obtaining exact expressions
for the communication capacities of quantum channels has
led to a wide body of work on obtaining lower and upper
bounds on these quantities. With the recent developments
in quantum communication technologies, it is important to
study different physically motivated noisy communication
processes (quantum channels) and to establish lower and
upper bounds on their communication capacities in terms of
the channel parameters. Moreover, these communication rates
also play a critical role in the context of distributed quantum
computing between remote locations and in benchmarking

2469-9926/2020/102(1)/012401(31) 012401-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.012401&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1038/s41467-018-06848-0
https://doi.org/10.1103/PhysRevA.102.012401


KHATRI, SHARMA, AND WILDE PHYSICAL REVIEW A 102, 012401 (2020)

the performance of quantum key distribution and quantum
networks.

In this work, we provide an information-theoretic study
of the generalized amplitude-damping channel (GADC). As
the name suggests, the GADC is indeed a generalization of
the amplitude-damping channel. Specifically, the GADC is
a qubit-to-qubit channel, and it models the dynamics of a
two-level system in contact with a thermal bath at nonzero
temperature. It can be used to describe the T1 relaxation
process due to the coupling of spins to a system that is in
thermal equilibrium at a temperature higher than the spin
temperature [19–21]. The GADC is also one of the sources
of noise in superconducting-circuit-based quantum computing
[22]. It can additionally be used to characterize losses in
linear optical systems in the presence of low-temperature
background noise [23]. In the case that the thermal bath is
at zero temperature, the GADC reduces to the amplitude-
damping channel, which arises naturally as a noise model in
spin chains [18,24].

The GADC can be thought of as the qubit analog of the
bosonic thermal channel, which is used to model loss in
quantum optical systems and is particularly relevant in the
context of communication through optical fibers or free space
[25–27]. Moreover, in the context of private communication,
tampering by an eavesdropper can be modeled as the excess
noise realized by a thermal channel [28,29]. A lower bound on
the quantum capacity of a bosonic Gaussian thermal channel
was proposed in Ref. [30]. Recently, several upper bounds
on the energy-constrained quantum and private capacities of
a thermal channel have been established in Ref. [31] (see
also Ref. [32] in the context of lower and upper bounds
on the energy-constrained quantum capacity). Moreover, the
unconstrained quantum capacity of a thermal channel has
been studied in Refs. [31–35]. However, the communication
capacities of a qubit thermal channel, i.e., the GADC, have
not been studied extensively.

Some prior works have established bounds on the various
capacities of the GADC. Since it is not a degradable chan-
nel for nearly all parameter values, determining its quantum
capacity exactly appears to be a difficult task. It is worth
noting, however, that it is degradable in the special case
that it reduces to the amplitude-damping channel, and thus
the quantum and private capacities of the amplitude-damping
channel are simply given by its coherent information [18], due
to the additivity of the coherent and private information for
degradable channels [8,9]. An upper bound on the quantum
capacity of the GADC in general was established in Ref. [34]
by using the notion of weak degradability. Furthermore, lower
and upper bounds on the classical capacity of the GADC
have been established in Ref. [36] (see also Ref. [37]). In
Ref. [38] the mutual information of the GADC was calculated,
thus establishing its entanglement-assisted classical capacity
[39–41], which is in turn an upper bound on its unassisted
classical capacity. In general, half the mutual information
of a quantum channel is an upper bound on its two-way
assisted quantum and private capacities [42–44]. Thus, one
can infer from Ref. [38] and Refs. [42–44] an upper bound
on the two-way assisted quantum and private capacities of the
GADC.

II. SUMMARY OF RESULTS

In this paper, we study the GADC in detail by first deriving
its intrinsic information-theoretic properties, such as neces-
sary and sufficient conditions for entanglement breakability
[45] and antidegradability [46]. We then consider several
upper bounds on the classical, quantum, and private capacities
of the GADC; see Table I for a summary.

We start with the classical capacity of the GADC. A first
upper bound, known as Cβ , is based on the no-signalling
and PPT-preserving codes for classical communication over
a quantum channel [47]. In particular, we find an analytical
expression for Cβ of the GADC that depends only on the
channel parameters. Another upper bound from Ref. [47] on
the classical capacity of any quantum channel is the quantity
Cζ . We prove that Cζ = Cβ for the GADC. Two other upper
bounds on the classical capacity of the GADC are established
by using the notion of ε entanglement-breakability and ε

covariance [48]. We also compare these upper bounds with
the entanglement-assisted classical capacity upper bound for
the GADC [38].

We employ a variety of techniques to establish upper
bounds on the quantum and private capacities of the GADC.
The first four upper bounds are established, related to the
approach of Refs. [49,50] (see Refs. [31,32,34] for bosonic
channels), by decomposing any GADC into a serial con-
catenation of two amplitude-damping channels. Since the
quantum capacity of an amplitude-damping channel is known
[18], upper bounds on the quantum capacity of the GADC
follow from the data-processing property [56] of the coherent
information of a quantum channel. We call these bounds
the “data-processing bounds.” We also consider three other
upper bounds by using the notion of approximate degrad-
ability and antidegradability, recently developed in Ref. [51].
We call these bounds the “ε-degradable bound,” “ε-close-
degradable bound,” and “ε-antidegradable bound.” We finally
employ the Rains information strong converse upper bound
from Ref. [52] and the relative entropy of entanglement
strong converse upper bound from Ref. [35] in order to
bound the quantum and private capacities of the GADC,
respectively.

We compare these upper bounds on the quantum capacity
of the GADC with the known coherent information lower
bound, and we find that for certain parameter values, the gap
between the lower bound and the upper bounds is relatively
small. Moreover, we compare these upper bounds with the
upper bound established in Ref. [34], and we find that two of
our data-processing upper bounds are tighter than the bound in
Ref. [34] for all parameter values of the channel. Furthermore,
the strong converse bounds from Refs. [35,52] can be even
tighter for certain parameter values.

We also consider four different upper bounds on the two-
way assisted (i.e., feedback-assisted) quantum and private
capacities of the GADC. The first two upper bounds are based
on the fact that the squashed entanglement of a quantum
channel is an upper bound on the two-way assisted quantum
and private capacities of any channel [42,43,57]. For the
third upper bound, we employ the max-Rains information
[58,59] and the max-relative entropy of entanglement [60],
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TABLE I. Summary of the lower and upper bounds on the classical, quantum, and two-way assisted quantum capacities of the GADC that
we consider in this work. The classical capacity upper bounds are established in Sec. VI. The quantum and private capacity upper bounds are
established in Sec. VII. The two-way assisted quantum and private capacities are established in Sec. VIII. We obtain analytic expressions for
the quantities Cβ (Proposition 5), Q↔,UB

max-Rains (Proposition 9), and Q↔,UB
cov in this work.

Upper bounds

Capacity Lower bounds Quantity Technique

Classical χ Holevo Cβ [Eq. (148)] No-signalling and PPT-preserving codes [47]
Information [Eq. (131)] CUB

cov [Eq. (137)] Approximate covariance [48]
CUB

EB [Eq. (136)] Approximate entanglement breakability [48]
CUB

Fil [Eq. (149)] Approximate unitality [36,37]
CE [Eq. (152)] Entanglement-assisted classical capacity [39–41]

Quantum Ic Coherent QUB
DP,1−4 [Eqs. (165)–(168)] Data processing [49,50]

Information [Eq. (177)] QUB
deg,1−2 [Eqs. (169), (171)] Approximate degradability [51]

QUB
a-deg [Eq. (174)] Approximate antidegradability [51]

QUB
Rains [Eq. (175)] PPT-preserving codes [52]

QUB
RMG [Eq. (180)] Degradability and data processing [34]

Two-Way Assisted Ic Coherent Q↔,UB
MI [Eq. (189)] One-half mutual information [42–44]

Quantum Information [Eq. (177)] Q↔,UB
sq,1−2 [Eqs. (190) and (192)] Squashed entanglement [44,53]

Irc Reverse Coherent Q↔,UB
max-Rains [Eq. (207)] PPT-preserving assisted codes [54]

Information [Eq. (204)] Q↔,UB
cov [Eq. (208)] Approximate covariance [55]

which are known to be upper bounds on the two-way assisted
quantum [54] and private [60] capacities, respectively, for
any quantum channel. In fact, for this third upper bound, we
have found an analytical expression that establishes that the
max-Rains information and max-relative entropy of entan-
glement are equal for the GADC. We found this analytical
expression by analytically solving the semidefinite programs
associated to max-Rains information and max-relative en-
tropy of entanglement. The fourth upper bound is based
on the notion of approximate covariance. A comparison of
these four upper bounds with the mutual information upper
bound leads to the conclusion that all four upper bounds
are significantly tighter than the mutual information upper
bound.

The rest of the paper is structured as follows. We be-
gin by summarizing relevant definitions and prior results
in Sec. III. We derive necessary and sufficient conditions
for entanglement breakability and antidegradability of the
GADC in Sec. IV and Sec. V, respectively. We then estab-
lish several upper bounds on the classical capacity and the
quantum capacity of the GADC in Sec. VI and Sec. VII,
respectively. In Sec. VIII we establish several upper bounds
on the two-way assisted quantum and private capacities of
the GADC. Finally, we summarize our results and conclude
in Sec. IX.

All codes in MATHEMATICA, MATLAB, and PYTHON used to
assist with the analytical derivations, numerical computations,
and the creation of plots are available as ancillary files with
the arXiv posting of this paper [61]. The MATHEMATICA files
contain the code used in the proofs of (107), Proposition 5,
Proposition 9, and (218). The MATLAB and PYTHON files have
been used to compute all the bounds stated in the paper,
and the plots have been generated in the included Jupyter
notebooks using PYTHON.

III. PRELIMINARIES

In this section, we review some definitions and prior re-
sults relevant for the rest of the paper. We point readers to
Refs. [1–4] for details and further background.

Let H denote a finite-dimensional Hilbert space. The ten-
sor product of two Hilbert spacesHA andHB corresponding to
the quantum systems A and B is denoted byHAB ≡ HA ⊗HB.
We let dA denote the dimension of HA. Let D(H ) denote
the set of density operators (positive semidefinite operators
with unit trace) acting on a Hilbert space H . An extension
of a state ρA ∈ D(HA) is some state ρRA ∈ D(HR ⊗HA)
such that TrR[ρRA] = ρA. Similarly, a purification of a state
ρA ∈ D(HA) is some pure state |φ〉RA ∈ HR ⊗HA such that
TrR[|φ〉〈φ|RA] = ρA.

The quantum entropy of a quantum state ρ ∈ D(H ) is
defined as H (ρ) ≡ − Tr[ρ log2 ρ]. The binary entropy h2(x)
is defined for x ∈ [0, 1] as

h2(x) ≡ −x log2(x) − (1 − x) log2(1 − x). (1)

Moreover, throughout the paper we use the bosonic entropy
g(x) for x � 0:

g(x) ≡ (1 + x) log2(1 + x) − x log2 x (2)

= (1 + x)h2

(
x

1 + x

)
. (3)

The quantum mutual information of a bipartite state ρAB ∈
D(HA ⊗HB) is defined as

I (A; B)ρ ≡ H (ρA) + H (ρB) − H (ρAB). (4)

Let L(H ) denote the space of linear operators acting on
H . Quantum channels are completely positive and trace-
preserving maps from L(HA) to L(HB) and denoted byNA→B.
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An isometric extension or Stinespring dilation U :HA →
HB ⊗HE of a quantum channel NA→B is a linear isom-
etry such that for all ρA ∈ L(HA), the following holds:
TrE [UρAU †] = N (ρA). A complementary channel Nc

A→E of
NA→B is defined as Nc

A→E (ρA) = TrB [UρAU †]. The Choi
state of a quantum channel NA→B is given by

ρNAB ≡ (idA ⊗NA′→B)(�+
AA′ ), (5)

where �+
AA′ denotes the maximally entangled state:

�+
AA′ ≡ 1

dA

dA∑
i,i′=1

|i〉〈i′|A ⊗ |i〉〈i′|A′ . (6)

We let

	NAB ≡ dAρNAB (7)

denote the Choi matrix of the channel N .
According to the Choi-Kraus theorem, the action of a quan-

tum channel NA→B on any XA ∈ L(HA) can be represented in
the following way:

NA→B(XA) =
r∑

i=1

ViXAV †
i , (8)

where the so-called Kraus operators Vi:HA → HB, i ∈
{1, . . . , r}, satisfy

∑r
i=1 V †

i Vi = 1A, and r need not exceed
dAdB, with a minimal choice being r = rank(	NAB).

A quantum channel NA→B is entanglement breaking if the
Choi state as in (5) of the channel is separable [45].

A quantum channel NA→B is called degradable if there
exists a channelDB→E such that

(DB→E ◦NA→B)(XA) = Nc
A→E (XA), (9)

for all XA ∈ L(HA) [8]. A channelNA→B is called antidegrad-
able if its complementary channelNc

A→E is degradable, i.e., if
there exists a channel EE→B such that(

EE→B ◦Nc
A→E

)
(XA) = NA→B(XA) (10)

for all XA ∈ L(HA) [46].
For any Hermiticity-preserving map MA→B, its diamond

norm ‖M‖� is defined as [62]

‖M‖� = max
ψRA

‖MA→B(ψRA)‖1, (11)

where the optimization is over all pure states ψRA, with the
dimension of the reference system R equal to the dimension
of A, and ‖X‖1 denotes the trace norm of the matrix X , which
is defined as the sum of the singular values of X .

A. Capacities of quantum channels

For any quantum channelN , its classical capacity C(N ) is
defined to be the highest rate at which classical information
can be sent over many uses of the channel with an error
probability that converges to zero as the number of channel
uses increases. It holds that [63–65]

C(N ) = lim
n→∞

1

n
χ (N⊗n), (12)

where χ (N ) is the Holevo information of the channel N ,
which is defined as

χ (N ) = max
ρXA

I (X ; B)ω, (13)

where ωXB = NA→B(ρXA), and the maximization is with re-
spect to all classical-quantum states, i.e., states of the form

ρXA ≡
∑

x

pX (x)|x〉〈x|X ⊗ ρx
A. (14)

For any quantum channelN , its quantum capacity Q(N ) is
defined to be the highest rate at which quantum information
can be sent over many uses of the channel with a fidelity that
converges to one as the number of channel uses increases. It
has been shown [56,66–71] that

Q(N ) = lim
n→∞

1

n
Ic(N⊗n), (15)

where the function Ic is the channel coherent information,
which is defined for any quantum channel N as

Ic(N ) ≡ max
ρ

Ic(ρ,N ), (16)

where ρ ∈ D(H ), and

Ic(ρ,N ) ≡ H (N (ρ)) − H (Nc(ρ)). (17)

If the channel N is antidegradable [46], then its coherent
information in (16) vanishes, which means that antidegradable
channels have zero quantum capacity.

The private capacity P(N ) of a quantum channel N is
defined to be the maximum rate at which a sender can reliably
communicate classical messages to a receiver by using the
channel many times, such that the environment of the channel
obtains negligible information about the transmitted message.
The private capacity P(N ) is equal to the regularized private
information of the channel N [71,72],

P(N ) = lim
n→∞

1

n
P(1)(N⊗n), (18)

where the private information of the channel is defined as

P(1)(N ) ≡ max
ρXA

[I (X ; B)ω − I (X ; E )ω]. (19)

The maximization here is with respect to all states ρXA as
in (14), and ωXABE = UNA→BE (ρXA), with UNA→BE being an
isometric channel extending N .

In general, the quantum and private capacities of a channel
N are related as follows [71]:

Q(N ) � P(N ). (20)

For degradable channels N andM, the coherent information
is known to be additive [8] in the following sense:

Ic(N ⊗M) = Ic(N ) + Ic(M). (21)

Moreover, the private information of a degradable channel
is equal to its coherent information [9]. Therefore, both the
quantum and private capacities of a degradable channel are
given by its coherent information.

Two-way assisted communication capacities are defined
as the highest achievable rate of communication for proto-
cols involving local operations by the sender and receiver
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and classical communication in both directions between the
sender and receiver [73,74] (see also Ref. [42]). We denote
the two-way assisted quantum and private capacities of a
quantum channel N by Q↔(N ) and P↔(N ), respectively. As
in the unassisted case, we have that Q↔(N ) � P↔(N ) for all
quantum channels N .

Since any one-way, or unassisted, communication protocol
is a special case of a two-way assisted communication pro-
tocol, we immediately have the coherent information lower
bound Q↔(N ) � Ic(N ). Another known lower bound is the
reverse coherent information [75–77], which is defined as

Irc(N ) ≡ max
ρ

Irc(ρ,N ), (22)

where

Irc(ρ,N ) ≡ H (ρ) − H (Nc(ρ)). (23)

The reverse coherent information as in (22) was defined in
Ref. [75] and shown in Refs. [75,76] to be a lower bound on
the two-way assisted quantum capacity. It was proven to be
additive in Ref. [77], and concavity in the input state ρ was
shown in Ref. [2, Eq. (8.48)].

B. Bounds on the capacities of quantum channels

In this section, we recall several different techniques for
placing upper bounds on the communication capacities of a
quantum channel that we use throughout the rest of the paper.

1. Data-processing upper bounds

LetN ◦M denote the serial concatenation of two quantum
channelsN andM. Upper bounds on the quantum capacity of
the channel N ◦M can be established as follows [49,50]:

Q(N ◦M) � Q(M), (24)

Q(N ◦M) � Q(N ). (25)

The first inequality follows from definitions and the quan-
tum data-processing inequality. The second inequality is a
consequence of the following argument: consider an arbitrary
encoding and decoding scheme for quantum communication
over the channel N ◦M. Then this encoding, followed by
many uses of the channel M, can be considered as an en-
coding for the channel N . Since the quantum capacity of the
channel N involves an optimization over all such encodings,
the desired inequality follows.

By similar reasoning as above, we can conclude analogous
data-processing upper bounds for the private capacity and the
classical capacity:

P(N ◦M) � P(M), (26)

P(N ◦M) � P(N ), (27)

C(N ◦M) � C(M), (28)

C(N ◦M) � C(N ). (29)

2. Classical capacity upper bounds via approximate entanglement
breakability and approximate covariance

Upper bounds on the classical capacity of any quantum
channel have been obtained using the notions of approxi-
mate entanglement breakability and approximate covariance

of channels [48]. We now summarize these results. All of
these results, as well as their proofs, can be found in Ref. [48].

A quantum channel N is called ε entanglement breaking
if there exists an entanglement-breaking channelM such that
1
2‖N −M‖� � ε. We let

εEB(N ) ≡ min
M

{
1
2‖N −M‖�:M entanglement breaking

}
(30)

denote the smallest ε such thatN is ε entanglement breaking.
For qubit-to-qubit channels, the entanglement-breaking pa-
rameter εEB(N ) can be calculated by means of a semidefinite
program [48, Lemma III.8]. We suppress the channel depen-
dence on εEB if the channel is understood from the context.

For any ε-entanglement-breaking channelN , the following
upper bound on the classical capacity C(N ) holds [48, Corol-
lary III.7]:

C(N ) � χ (M) + 2ε log2 dB + g(ε), (31)

whereM is the entanglement-breaking channel such that ε =
1
2‖N −M‖�.

We now define the notion of approximate covariance of
a quantum channel NA→B. Let G be a finite group with a
unitary representation {UA(g)}g∈G on the input system A and
a unitary representation {VB(g)}g∈G on the output system B.
The so-called twirled channel NG

A→B is defined as

NG
A→B(·) ≡ 1

|G|
∑
g∈G

VB(g)†NA→B(UA(g)(·)UA(g)†)VB(g).

(32)
Note that the twirled channelNG

A→B can be realized by means
of a generalized teleportation protocol [55, Appendix B]. By
construction, this channel is covariant with respect to the
representations {UA(g)}g∈G and {VB(g)}g∈G, meaning that

NG
A→B(UA(g)ρAUA(g)†) = VB(g)NG

A→B(ρA)VB(g)† (33)

for all states ρA and all g ∈ G. We call N ε-covariant with re-
spect to the representations {UA(g)}g∈G, {VB(g)}g∈G if 1

2‖N −
NG‖� � ε. We let

εcov(N ) ≡ 1
2‖N −NG‖� (34)

denote the smallest ε such that N is ε-covariant. The co-
variance parameter εcov(N ) can be computed by means of a
semidefinite program, as observed in Ref. [48], due to the fact
that the diamond norm can be computed by a semidefinite
program [78]. We suppress the dependence of the covariance
parameter on both the group and its representations for sim-
plicity, and if it is clear from the context, we also suppress the
dependence on the channel.

Let N be a qubit-to-qubit channel, and let G = Z2 × Z2,
with Z2 the group consisting of the set {0, 1} with addition
modulo two. This group has the (projective) unitary represen-
tation consisting of the Pauli operators {1, σx, σy, σz}. With
this group and this representation, if N is ε-covariant, then
[48, Corollary III.5]

C(N ) � χ (NG) + 2ε + g(ε). (35)
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3. Quantum and private capacity upper bounds via approximate
degradability and approximate antidegradability

We now recall techniques to obtain upper bounds on the
quantum and private capacities of a quantum channel using
the concepts of approximate degradability and approximate
antidegradability. These concepts were developed in Ref. [51].
All of the results stated in this subsection, as well as their
proofs, can be found in Ref. [51].

A channelN is called ε degradable if there exists a channel
D such that 1

2‖Nc −D ◦N‖� � ε. We let

εdeg(N ) := min
D

{
1
2‖Nc −D ◦N‖�:D is a channel

}
(36)

denote the smallest ε such thatN is ε degradable. We suppress
the dependence of this quantity on the channel if it is clear
from the context. Note that εdeg(N ) can be calculated via a
semidefinite program.

For an ε-degradable channel N with corresponding
(approximate) degrading channel D, it holds that [51,
Theorem 7]

Q(N ) � UD(N ) + 2ε log2 dE + g(ε), (37)

where the quantity UD(N ) is defined as

UD(N ) ≡ max
ρ

{H (F |Ẽ )ω:ωẼFE

= (W ⊗ 1E )V ρAV †(W ⊗ 1E )†}, (38)

with V :HA → HB ⊗HE and W :HB → HẼ ⊗HF being
isometric extensions of channels N and D, respectively.
Moreover, the following bound was established on the
private capacity of an ε-degradable channel N in Ref. [31,
Theorem 13]:

P(N ) � UD(N ) + 6ε log2 dE + 3g(ε). (39)

Another upper bound on the quantum capacity of a quan-
tum channel N can be established using the notion of ε-close
degradability. A channel N is called ε close degradable if
there exists a degradable channelM such that 1

2‖N −M‖� �
ε. If N is an ε-close-degradable channel, then the following
bounds hold [51, Proposition A2]:

Q(N ) � Ic(M) + 2ε log2 dB + 2g(ε), (40)

P(N ) � Ic(N ) + 4ε log2 dB + 4g(ε). (41)

A channelN is called an ε-antidegradable channel if there
exists a channel E such that 1

2‖N − E ◦Nc‖� � ε. We let

εa-deg(N ) ≡ min
E

{
1
2‖N − E ◦Nc‖�:E is a channel

}
(42)

denote the smallest ε such that N is ε-antidegradable. We
suppress the dependence of this quantity on the channel if it is
clear from the context. Note that εa-deg(N ) can be calculated
via a semidefinite program.

For any ε-antidegradable channel N , it holds that [51,
Theorem 11]

Q(N )�P(N )�ε log2(dB − 1) + 2ε log2 dB + h2(ε) + g(ε).
(43)

4. Rains information upper bound on quantum capacity and
relative entropy of entanglement upper bound on private capacity

The Rains information of a quantum channel is an upper
bound on its quantum capacity [52], and a channel’s relative
entropy of entanglement is an upper bound on its private
capacity [35]. Here we briefly recall these results.

The Rains relative entropy R(A; B)ρ [79,80] and the rela-
tive entropy of entanglement ER(A; B)ρ [81] of a bipartite state
ρAB are defined as

R(A; B)ρ ≡ min
σAB∈PPT′(A:B)

D(ρAB‖σAB), (44)

ER(A; B)ρ ≡ min
σAB∈SEP(A:B)

D(ρAB‖σAB), (45)

where D(ρAB‖σAB) is the quantum relative entropy of ρAB and
σAB [82]. We have D(ρAB‖σAB) = Tr[ρ(log2 ρ − log2 σ )] if
supp(ρAB) ⊂ supp(σAB), and D(ρAB‖σAB) = +∞ otherwise.
Also, PPT′(A :B) denotes the set {σAB:σAB � 0, ‖σ TB

AB‖1 � 1}
[80], and SEP(A:B) denotes the set of separable states acting
on HA ⊗HB [83]. Note that one can efficiently calculate the
Rains relative entropy by employing convex programming
methods [84–86], due to the fact that the constraints σAB � 0
and ‖σ TB

AB‖1 � 1 are semidefinite constraints.
For any channelNA′→B, we define its Rains relative entropy

R(N ) and its relative entropy of entanglement ER(N ) as
follows:

R(N ) ≡ max
φAA′

R(A; B)ρ, (46)

ER(N ) ≡ max
φAA′

ER(A; B)ρ, (47)

where ρAB ≡ NA′→B(φAA′ ) and the optimization is with re-
spect to all pure bipartite input states φAA′ , with the dimension
of A equal to the dimension of the input system A′ of the
channel N . As stated above, the information measures R(N )
and ER(N ) are useful because they bound the quantum and
private capacities, respectively, of the channel N :

Q(N ) � R(N ), (48)

P(N ) � ER(N ). (49)

By following an approach similar to that given in Ref. [52,
Proposition 2], it follows that the maximizations in (46) and
(47) are concave in the reduced density operator TrA[φAA′]:

Proposition 1. Let NA′→B be a quantum channel, ρA′ a
state, φ

ρ

AA′ a purification of ρA′ , and ωAB ≡ NA′→B(φρ

AA′ ).
Then the functions ρA′ �→ R(A; B)ω and ρA′ �→ ER(A; B)ω are
concave in the reduced state TrA[φρ

AA′ ] = ρA′ , regardless of
which purification φ

ρ

AA′ of ρA′ is chosen.
We give a proof of Proposition 1 in Appendix A. Proposi-

tion 1, combined with the results of Refs. [84–86], implies that
R(N ) can be computed efficiently by convex programming
techniques. One can effectively use convex programming
techniques to calculate ER(N ), but it will not be efficient to
do so in general since it is well known that optimizing over
the set of separable states is difficult [87–89].

For qubit-qubit systems AB, it is known that R(A; B)ρ =
ER(A; B)ρ [90], which is related to the fact that the posi-
tive partial transposition criterion is necessary and sufficient
for separability for such low-dimensional systems [91,92].
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(However, note that the analysis in Ref. [90] goes well be-
yond this observation in order to establish the aforemen-
tioned equality.) This equality in turn implies that R(N ) =
ER(N ) for qubit-to-qubit channels, which is useful for our
purposes here since our focus is the qubit-to-qubit generalized
amplitude-damping channel.

5. Upper bounds on two-way assisted quantum
and private capacities

The squashed entanglement [93] (see also Refs. [94,95]) of
a bipartite state ρAB is defined as

Esq(A; B)ρ = 1
2 inf{I (A; B|E )ω: TrE [ωABE ] = ρAB}, (50)

where

I (A; B|E ) ≡ H (A|E ) + H (B|E ) − H (AB|E )

= H (AE ) + H (BE ) − H (E ) − H (ABE )
(51)

is the quantum conditional mutual information. Whether the
infimum in (50) can be replaced with a minimum is one of the
outstanding challenges in quantum information theory.

An alternative way of writing the squashed entanglement
is to use the fact that for any extension ωABE of a state ρAB

there exists a channel S acting on a purification |ψ〉ABE ′ such
that SE ′→E (|ψ〉〈ψ |ABE ′ ) = ωABE . This leads to the following
alternative expression for Esq(A; B)ρ :

Esq(A; B)ρ = 1
2 inf
S

{I (A; B|E )ω : ωABE

= SE ′→E (|ψ〉〈ψ |ABE ′ )}, (52)

where |ψ〉ABE ′ is a purification of ρAB. The channels S over
which we optimize are called squashing channels.

The squashed entanglement of a channel N [42,43] is
defined as

Esq(N ) ≡ max
φAA′

Esq(A; B)ρ, (53)

where ρAB = NA′→B(φAA′ ) and where the optimization is over
all pure states φAA′ , with A having the same dimension as the
dimension of the input system A′ of the channel N .

For any channelN , the following bounds hold [42,43] [see
also Ref. [57] for (55)]:

Q↔(N ) � Esq(N ), (54)

P↔(N ) � Esq(N ). (55)

By taking the identity-squashing channel, and using the
fact that I (A; B|E )ψ = I (A; B)ρ for any pure state ψABE ,
where ρAB = TrE [|ψ〉〈ψ |ABE ], we get that Esq(A; B)ρ �
1
2 I (A; B)ρ for all states ρAB. This implies that Esq(N ) �
1
2 maxφAA′ I (A; B)ρ = 1

2 I (N ), where ρAB = NA′→B(φAA′ ). In
other words, the squashed entanglement of any channel is
always bounded from above by half the mutual information
of the channel. Therefore, we have

Q↔(N ) � 1
2 I (N ) (56)

for all channels N [42–44].
The max-Rains relative entropy of a bipartite state ρAB is

defined as [58] (see also Ref. [52])

Rmax(A; B)ρ ≡ min
σAB∈PPT′(A:B)

Dmax(ρAB‖σAB), (57)

where, as stated before, the set PPT′(A :B) is defined as [80]

PPT′(A :B) ≡ {
σAB:σAB � 0,

∥∥σ TB
AB

∥∥
1 � 1

}
, (58)

and the max-relative entropy Dmax(ρAB‖σAB) is defined as [96]

Dmax(ρAB‖σAB) = log2 min
t

{t :ρAB � tσAB}. (59)

The max-Rains information Rmax(N ) of a channel N is de-
fined as [59] (see also Ref. [52])

Rmax(N ) ≡ max
φAA′

Rmax(A; B)ρ, (60)

where ρAB = NA′→B(φAA′ ), and the optimization is over pure
states φAA′ , with the dimension of A the same as that of the
input system A′ of the channel N . It satisfies [54]

Q↔(N ) � Rmax(N ). (61)

Furthermore, it is a strong converse rate. As shown in
Ref. [59], it holds that

Rmax(N ) = log2 (N ),

(N ) =
⎧⎨⎩min. ‖ TrB[VAB + YAB]‖∞

subject to YAB � 0,VAB � 0,

(VAB − YAB)TB � 	NAB,

(62)

where 	NAB is the Choi matrix of the channel N , and ‖X‖∞
denotes the spectral norm of the matrix X , which is defined
as the largest singular value of X . In particular, the quantity
(N ) is given by an SDP.

For the two-way assisted private capacity, we consider the
following general strong converse upper bound [60]:

P↔(N ) � Emax(N ), (63)

which holds for any channel N . The quantity Emax(N ) is the
max-relative entropy of entanglement of N , which is defined
as [60]

Emax(N ) ≡ max
φAA′

Emax(A; B)ρ, (64)

where ρAB = NA′→B(φAA′ ), and the optimization is over pure
states φAA′ , with the dimension of A equal to the dimension
of the input system A′ of the channel N . The max-relative
entropy of entanglement Emax(A; B)ρ of any bipartite state ρAB

is defined as [96]

Emax(A; B)ρ ≡ min
σAB∈SEP(A:B)

Dmax(ρAB‖σAB), (65)

where SEP(A :B) is the set of separable states acting on the
spaceHA ⊗HB. It has been shown in Ref. [54] that, for qubit-
to-qubit channels, the quantity Emax(N ) can be written as the
solution to an SDP as follows:

Emax(N ) = log2 �(N ),

�(N ) =
⎧⎨⎩

min. ‖ TrB[YAB]‖∞
subject to 	NAB � YAB,

Y TB
AB � 0.

(66)

Using the fact that PPT ⊂ PPT′, we obtain Rmax(A; B)ρ �
Emax(A; B)ρ for all states ρAB, which implies that

Rmax(N ) � Emax(N ) (67)

for any quantum channel N .
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In Ref. [55] the following bounds on the two-way as-
sisted capacities were established for a channel N that is
ε-approximately covariant (see Sec. IIIB2 for the definition):

Q↔(N ) � R(A; B)ρ + 2ε log2 dB + g(ε), (68)

P↔(N ) � ER(A; B)ρ + 2ε log2 dB + g(ε), (69)

where ρAB = NG
A′→B(�+

AA′ ) and the twirled channel NG
A′→B is

defined in (32).

C. The generalized amplitude damping channel

The generalized amplitude-damping channel (GADC)
Aγ ,N is a qubit-to-qubit channel with the following four Kraus
operators (in the standard basis) [19]:

A1 = √
1 − N (|0〉〈0| +

√
1 − γ |1〉〈1|), (70)

A2 =
√

γ (1 − N )|0〉〈1|, (71)

A3 =
√

N (
√

1 − γ |0〉〈0| + |1〉〈1|), (72)

A4 =
√

γ N |1〉〈0|. (73)

It is completely positive and trace preserving for all γ , N ∈
[0, 1]. If we set N = 0, then the GADC reduces to the ordinary
amplitude-damping channel Aγ with two Kraus operators.
The GADC also has only two Kraus operators for N = 1, in
which case the channel behaves as an amplification process,
driving the signal toward the state |1〉〈1|.

Let ρ denote a single-qubit density operator:

ρ = 1
2 (1 + rxσx + ryσy + rzσz ), (74)

where �r ≡ (rx, ry, rz ) ∈ R3 is the Bloch vector, which satisfies
r2

x + r2
y + r2

z � 1. The action of the GADCAγ ,N on ρ is given
by the action of Aγ ,N on the Pauli operators σx, σy, σz. We
have that

Aγ ,N (σx ) =
√

1 − γ σx, (75)

Aγ ,N (σy) =
√

1 − γ σy, (76)

Aγ ,N (σz ) = (1 − γ )σz, (77)

Aγ ,N (1) = 1 + γ (1 − 2N )σz (78)

for all γ , N ∈ [0, 1]. This implies that the vector �r of the initial
state ρ gets transformed as

�r �→ (rx

√
1 − γ , ry

√
1 − γ , rz(1 − γ ) + γ (1 − 2N )) ≡ �R,

where �R ≡ (Rx, Ry, Rz ). In particular, for any state ρ, we get(
Rx√

1 − γ

)2

+
(

Ry√
1 − γ

)2

+
[

Rz − γ (1 − 2N )

1 − γ

]2

= r2
x + r2

y + r2
z � 1, (79)

which implies that the initial Bloch sphere gets transformed
to an ellipsoid centered at (0, 0, γ (1 − 2N )) with x, y, and z
axes

√
1 − γ ,

√
1 − γ , and 1 − γ , respectively. Note that all

pure initial states, which satisfy r2
x + r2

y + r2
z = 1, get mapped

to the surface of the ellipsoid.

The relations (75)–(78) also imply that the GADC is co-
variant with respect to the Pauli-z operator,

Aγ ,N (σzρσz ) = σzAγ ,N (ρ)σz, (80)

for all states ρ and all γ , N ∈ [0, 1]. More generally, the
GADC is covariant with respect to the operator eian̂, where

n̂ ≡ |1〉〈1| (81)

is the number operator,

Aγ ,N (eian̂ρe−ian̂) = eian̂Aγ ,N (ρ)e−ian̂, (82)

for all states ρ, all a ∈ R, and all γ , N ∈ [0, 1].
We also have that

Aγ ,N (ρ) = σxAγ ,1−N (σxρσx )σx (83)

for all states ρ and all γ , N ∈ [0, 1]. In other words, the
GADC Aγ ,N is related to the GADC Aγ ,1−N via a simple
pre- and postprocessing by the unitary σx. The information-
theoretic aspects of the GADC are thus invariant under the
interchange N ↔ 1 − N , which means that we can, without
loss of generality, restrict the parameter N to the interval
[0, 1/2].

We now recall the following well-known decomposition
theorems for an arbitrary generalized amplitude-damping
channelAγ ,N :

(1) Let γ ∈ [0, 1] and N ∈ [0, 1]. Then any generalized
amplitude-damping channel Aγ ,N can be decomposed as a
convex combination ofAγ ,0 andAγ ,1:

Aγ ,N = (1 − N )Aγ ,0 + NAγ ,1. (84)

(2) Let γ1, γ2 ∈ [0, 1] and N1, N2 ∈ [0, 1]. Then any gen-
eralized amplitude-damping channel Aγ ,N can be decom-
posed as the concatenation of two generalized amplitude-
damping channelsAγ1,N1 andAγ2,N2 [97]:

Aγ ,N = Aγ2,N2 ◦Aγ1,N1 , (85)

where γ = γ1 + γ2 − γ1γ2 and N = γ1(1−γ2 )N1+γ2N2

γ1+γ2−γ1γ2
.

A consequence of (85) is that, for all γ , N ∈ [0, 1],

Aγ ,N = Aγ N,1 ◦A γ (1−N )
1−γ N ,0, (86)

Aγ ,N = Aγ (1−N ),0 ◦A γ N
1−γ (1−N ) ,1

. (87)

We define

Ac
γ ,N (ρA) ≡ TrB

[
V γ ,N

A→BEρA
(
V γ ,N

A→BE

)†]
(88)

to be a channel complementary to Aγ ,N , where V γ ,N
A→BE is an

isometric extension ofAγ ,N , which we take to be

V γ ,N
A→BE ≡ A1 ⊗ |0〉E + A2 ⊗ |1〉E + A3 ⊗ |2〉E + A4 ⊗ |3〉E .

(89)

D. The qubit thermal channel

The GADC is presented in a different form in Ref. [34] and
is called the “qubit thermal attenuator channel.” In this section
we show explicitly that the qubit thermal attenuator channel is
equal to the GADC up to a reparameterization.
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FIG. 1. The qubit thermal channel is defined by analogy with the
bosonic thermal channel as the interaction of a system A in the state
ρA with an environment in the state θN

E (see (91)) at a “beamsplitter”
of transmissivity η, which is a unitary channel defined by the unitary
U η in (90). The state of the environment is then discarded to obtain
the output Lη,N (ρA).

A qubit thermal attenuator channel, which we refer to here
as a “qubit thermal channel,” is defined by analogy with the
bosonic thermal channel [98] as the interaction of two qubit
systems A and E via a unitary channel, given by the unitary
U η, followed by discarding the system E [18]. See Fig. 1 for
an illustration. The unitary U η is defined as

U η =

⎛⎜⎜⎜⎝
1 0 0 0

0
√

η
√

1 − η 0

0 −√
1 − η

√
η 0

0 0 0 1

⎞⎟⎟⎟⎠. (90)

This unitary is analogous to the unitary transformation in-
duced by an optical beamsplitter with transmissivity η ∈
[0, 1]. Such an optical beamsplitter is defined such that if
one of the input arms contains no light, then the fraction
η of the light is transmitted unaltered, while the remaining
fraction is reflected into the other output arm. The unitary
transformation for the optical beamsplitter can be written as
eiθHBS , where HBS = i(â†b̂ − b̂†â) and θ = arccos (

√
η) (see,

e.g., Ref. [99]). Here â and b̂ are the bosonic annihilation oper-
ators corresponding to the two input arms of the beamsplitter.
The unitary U η for the qubit thermal channel can be written
in the same form eiθHBS by replacing the bosonic annihilation
operator â in HBS with σ− ⊗ 1 and the operator b̂ with 1 ⊗ σ−,
where σ− ≡ |0〉〈1| can be thought of as the qubit analog of the
annihilation operator.

Let ρA denote the state of the input system A, and let the
initial state of the system E be

θN
E ≡ (1 − N )|0〉〈0|E + N |1〉〈1|E . (91)

Then, the qubit thermal channel Lη,N is defined as

Lη,N (ρA) ≡ TrE
[
U η

AE→BE

(
ρA ⊗ θN

E

)(
U η

AB→AE

)†]
(92)

= TrEE ′
[(

U η
AE→BE ⊗ 1E ′

)
(ρA ⊗ |θN 〉〈θN |EE ′ )

×(
U η

AE→BE ⊗ 1E ′
)†]

, (93)

where

|θN 〉EE ′ ≡ √
1 − N |0, 0〉EE ′ +

√
N |1, 1〉EE ′ . (94)

FIG. 2. Serial decompositions of the qubit thermal channel, as
given in (99) and (100).

When N = 0, we call the qubit thermal channel Lη,0 the qubit
pure-loss channel.

The qubit thermal channel as defined in (92) has exactly the
same form as the bosonic thermal channel, the latter having
the unitary U η defined in (90) replaced by eiθHBS . In particular,
the initial state θN

E of the system E can be thought of as the
qubit analog of the bosonic thermal state e−βâ†â/Tr [e−βâ†â]
[98], and the parameter N ∈ [0, 1] can be thought of as the
mean number of photons. Indeed, if we replace â with σ− in
the definition of the bosonic thermal state, observe using the
definition of the number operator n̂ in (81) that σ

†
−σ− = n̂, and

let β = ln ( 1−N
N ), then we obtain

e−βσ
†
−σ−

Tr[e−βσ
†
−σ−]

= 1

1 + e−β
|0〉〈0| + e−β

1 + e−β
|1〉〈1| (95)

= (1 − N )|0〉〈0| + N |1〉〈1| (96)

= θN . (97)

There is a simple connection between the qubit thermal
channel and the generalized amplitude-damping channel that
is straightforward to prove: for all γ ∈ [0, 1] and N ∈ [0, 1],

Aγ ,N = L1−γ ,N . (98)

Using this, along with (86) and (87), we obtain the following
serial decompositions of the qubit thermal channel:

Lη,N = L1−(1−η)N,1 ◦L η

1−(1−η)N ,0, (99)

Lη,N = Lη+(1−η)N,0 ◦L η

η+(1−η)N ,1. (100)

These decompositions are depicted in Fig. 2.
We take a channel complementary to the qubit thermal

channel to be

Lc
η,N (ρA) ≡ TrB

[(
U η

AE→BE ⊗ 1E ′
)
(ρA ⊗ |θN 〉〈θN |EE ′ )

×(
U η

AE→BE ⊗ 1E ′
)†]

, (101)

and we define a weakly complementary channel [46] to be

L̃c
η,N (ρA) ≡ TrB

[
U η

AE→BE (ρA ⊗ θN )
(
U η

AE→BE

)†]
. (102)
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IV. ENTANGLEMENT BREAKABILITY OF THE GADC

Having defined the GADC, we now proceed to examine its
properties. We start by determining when the channel is en-
tanglement breaking. Necessary and sufficient conditions for
entanglement-breakability of the GADC have been previously
determined in Refs. [97,100]. For completeness, we provide
the derivation here, following the same approach given in
Refs. [97,100].

For any two-qubit quantum state ρAB, the condition

det
(
ρ

TB
AB

)
� 0 (103)

is necessary and sufficient for the separability of ρAB [101].
Since a channel is entanglement breaking if and only if its

Choi state is separable [45], to determine when the GADC
Aγ ,N is entanglement breaking, we can apply the condition

in (103) to its Choi state ρ
γ ,N
AB ≡ ρ

Aγ ,N

AB as defined by (5). We
have

ρ
γ ,N
AB = 1

2 [(1 − γ N )|0, 0〉〈0, 0|AB +
√

1 − γ |0, 0〉〈1, 1|AB

+ γ N |0, 1〉〈0, 1|AB + γ (1 − N )|1, 0〉〈1, 0|AB

+
√

1 − γ |1, 1〉〈0, 0|AB

+ (1 − γ (1 − N ))|1, 1〉〈1, 1|AB] (104)

= 1

2

⎛⎜⎜⎜⎝
1 − γ N 0 0

√
1 − γ

0 γ N 0 0

0 0 γ (1 − N ) 0√
1 − γ 0 0 1 − γ (1 − N )

⎞⎟⎟⎟⎠.

(105)

Then

det
[(

ρ
γ ,N
AB

)TB
] = −1 + 2γ − γ 2 + γ 4(1 − N )2N2

16
, (106)

so that det [(ργ ,N
AB ]

TB
) � 0 leads to the following necessary

and sufficient condition for the GADC to be entanglement
breaking (see also Refs. [97,100]):

2(
√

2 − 1) � γ � 1,

1

2

(
1 −

√
γ 2 + 4γ − 4

γ 2

)
� N � 1

2

(
1 +

√
γ 2 + 4γ − 4

γ 2

)
.

(107)
Note that 2(

√
2 − 1) ≈ 0.8284. See Fig. 3 for a plot of this

region of parameters. It is worth remarking that while the
GADC has many parallels with the bosonic thermal channel,
as outlined in Sec. III D, the entanglement-breakability condi-
tion obtained here is starkly different from the corresponding
condition in the bosonic case. In particular, entanglement
breakability of the bosonic thermal channel is given by the
relatively simple condition η � N

N+1 [102].

V. DEGRADABILITY AND ANTIDEGRADABILITY
OF THE GADC

A. Degradability of the GADC

It is known that the GADC is degradable for all γ ∈
[0, 1/2] when N = 0 or N = 1 [18]. For N ∈ (0, 1) and γ ∈

FIG. 3. Region of parameters, indicated in blue as per (107), for
which the GADC is entanglement breaking. See also Refs. [97,100].

(0, 1], it follows from Ref. [103, Theorem 4] that the GADC
is not degradable.

In the case N = 0, it can be shown that [18]

Ac
γ ,0 = A1−γ ,0. (108)

Then, using (85), it follows from the conditionDγ ,0 ◦Aγ ,0 =
Ac

γ ,0 = A1−γ ,0 that a degrading channelDγ ,0 is simply

Dγ ,0 = A 1−2γ

1−γ
,0. (109)

In other words,

A 1−2γ

1−γ
,0 ◦Aγ ,0 = Ac

γ ,0 (110)

for all γ ∈ [0, 1/2). In terms of the qubit thermal channel, we
use the correspondence in (98) to write the condition (110) as

L 1−η

η
,0 ◦Lη,0 = Lc

η,0. (111)

for all η ∈ (1/2, 1].
Although the qubit thermal channel is not degradable for

N > 0, it is weakly degradable, meaning that there exists a
channel D̃η,N such that

D̃η,N ◦Lη,N = L̃c
η,N . (112)

In particular, one possible weakly degrading channel D̃η,N is
[34]

D̃η,N = P1−2N ◦L 1−η

η
,N , (113)

where Pμ denotes the phase-damping channel, which is de-
fined via its Kraus operators(

1 0

0
√

μ

)
and

(
0 0

0
√

1 − μ

)
. (114)

B. Antidegradability of the GADC

To determine the antidegradability of the GADC, we use
the fact that a channel is antidegradable if and only if its Choi
state is two-extendable [104].
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Proposition 2 (Antidegradability of the GADC). For all
N ∈ [0, 1], the condition

γ � 1
2 (115)

is necessary and sufficient for the antidegradability of the
GADCAγ ,N .

Proof. Since the GADC is a qubit-to-qubit channel, its
Choi state ρ

γ ,N
AB is a two-qubit state. For any two-qubit state

ρAB, the inequality

Tr
[
ρ2

AB

] − Tr
[
ρ2

B

]
� 4

√
det(ρAB) (116)

is necessary and sufficient for ρAB to be two-extendable
[105,106]. For the Choi state ρ

γ ,N
AB , we find that

Tr
[(

ρ
γ ,N
AB

)2] = γ 2N2 − γ 2N + 1
2γ 2 − γ + 1, (117)

Tr
[(

ρ
γ ,N
B

)2] = 2γ 2N2 − 2γ 2N + 1
2γ 2 + 1

2 , (118)

det
(
ρ

γ ,N
AB

) = γ 4N2(1 − N )2

16
. (119)

Substituting these quantities into the inequality in (116) and
simplifying leads to γ � 1

2 as the necessary and sufficient
condition for two-extendability of the Choi state of the
GADC, and hence for antidegradability of the GADC. �

It is interesting to note that the condition for antidegrad-
ability of the GADC has no dependence on N , even though,
intuitively, the noise of the channel increases with N . This
is another way in which the GADC is in contrast with the
bosonic thermal channel, since for the bosonic thermal chan-
nel the antidegradability condition depends on N and is given
by η � N+1/2

N+1 [107, Eq. (4.6)].
When the GADC is antidegradable, there exists a simple

antidegrading channel E satisfying (10), the form of which
follows immediately from the following lemma.

Lemma 1. Define the channel E∗
N by the Kraus operators

E0 = |0〉B〈0|E + |1〉B〈1|E , (120)

E1 = |0〉B〈3|E + |1〉B〈2|E , (121)

which acts on the four-dimensional output space of the com-
plementary channelAc

γ ,N defined in (88). Then

E∗
N ◦Ac

γ ,N = A1−γ ,N (122)

for all N ∈ [0, 1] and all γ ∈ [0, 1].
Proof. See Appendix B. �
It follows that the channel E∗

N defined in Lemma 1 is an
antidegrading channel at the boundary γ = 1

2 for all N ∈
[0, 1]. To find an antidegrading channel for γ > 1

2 , we use
(85) to obtain the following.

Proposition 3. For all N ∈ [0, 1] and all γ � 1
2 , the chan-

nel

Eγ ,N ≡ A 2γ−1
γ

,N ◦ E∗
N (123)

is an antidegrading channel for the GADC, meaning that
Eγ ,N ◦Ac

γ ,N = Aγ ,N .
Proof. The decomposition in (85) implies that

A 2γ−1
γ

,N ◦A1−γ ,N = Aγ ,N . (124)

Combining this with (122), we find that

A 2γ−1
γ

,N ◦ E∗
N ◦Ac

γ ,N = Aγ ,N (125)

for all N ∈ [0, 1] and all γ � 1
2 . The result then follows. �

VI. BOUNDS ON THE CLASSICAL
CAPACITY OF THE GADC

We now consider the communication capacities of the
GADC, starting with the classical capacity. In general, the
Holevo information recalled in (13) is a lower bound on the
classical capacity of any channel. Then, as implied by the for-
mula in (12), determining the classical capacity of a quantum
channel essentially reduces to determining the additivity of
the Holevo information, as the capacity of additive channels
can be calculated without any regularization. Remarkably,
even in the case N = 0, in which case the GADC reduces to
the amplitude-damping channel, determining the additivity of
the Holevo information remains an important open problem.
In the case N = 1

2 , however, we observe from (78) that the
GADC is unital, i.e., Aγ , 1

2
(1) = 1 for all γ ∈ [0, 1]. The

Holevo information is additive for unital qubit channels [16],
i.e.,

χ (N ⊗M) = χ (N ) + χ (M) (126)

for any unital qubit channel N and for any channel M.
This implies that the classical capacity of any unital qubit
channel is equal to its Holevo information. In particular, for
the GADC, we obtain

C(Aγ , 1
2
) = χ (Aγ , 1

2
). (127)

Furthermore, the Holevo information for unital qubit channels
is directly related to its minimum output entropy [108–110]
(see also Ref. [1, Example 8.10]), such that for the GADC
with N = 1

2 we obtain

χ (Aγ , 1
2
) = 1 − h2

(
1 − √

1 − γ

2

)
. (128)

The Holevo information is also known to be additive for
entanglement breaking channels [111]. Therefore, using the
result in (107), we obtain

C(Aγ ,N ) = χ (Aγ ,N ), (129)

for all γ and N satisfying

2(
√

2 − 1) � γ � 1,

1

2

(
1 −

√
γ 2 + 4γ − 4

γ 2

)
� N � 1

2

(
1 +

√
γ 2 + 4γ − 4

γ 2

)
.

(130)
Using the techniques from Refs. [109,112], it has been

shown in Ref. [113] that the Holevo information of the GADC
for its entire parameter range is given by

χ (Aγ ,N ) = 1
2 [ f (r∗) − log2(1 − q2) − q f ′(q)], (131)
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where

f (x) ≡ (1 + x) log2(1 + x) + (1 − x) log2(1 − x), (132)

f ′(x) = d

dx
f (x) = log2

(
1 + x

1 − x

)
, (133)

r∗ ≡
√

1 − γ − [q − γ (1 − 2N )]2

1 − γ
+ q2, (134)

and q is determined as the solution to the equation

[γ q − γ 2(1 − 2N ) − γ (1 − γ )(1 − 2N )] f ′(r∗)

= −r∗(1 − γ ) f ′(q). (135)

Let us now compare the Holevo information lower bound
with two upper bounds based on the concepts of ε entangle-
ment breakability and ε covariance.

Proposition 4 (Classical capacity upper bounds via ε

entanglement breakability and ε covariance). For all
γ , N ∈ (0, 1) it holds that

C(Aγ ,N ) � χ (Mγ ,N ) + 2ε1 + g(ε1) ≡ CUB
EB (γ , N ), (136)

C(Aγ ,N ) � χ (Aγ , 1
2
) + 2ε2 + g(ε2) ≡ CUB

cov (γ , N ), (137)

where ε1 = εEB(Aγ ,N ) = 1
2‖Aγ ,N −Mγ ,N‖� and ε2 =

εcov(Aγ ,N ) = γ |N − 1
2 |.

Proof. To obtain (136), we use (31) and the fact that dB =
2 for the GADC. Furthermore, we note here again that since
the GADC is a qubit-to-qubit channel, the entanglement-
breaking parameter εEB(Aγ ,N ) defined in (30) can be calcu-
lated via an SDP [48, Lemma III.8] due to the fact that, for
two-qubit states, the set of separable states is equal to the set
of states with positive partial transpose [91,92].

For the bound in (137), we make use of (35). Let us first
show that the channel AG

γ ,N obtained by twirling with the
Pauli operators {1, σx, σy, σz} is equal to Aγ , 1

2
. We start by

recalling the convex decomposition of the GADC as stated in
(84):

Aγ ,N = (1 − N )Aγ ,0 + NAγ ,1. (138)

Thus, by linearity of the twirling channel, we have that
AG

γ ,N = (1 − N )AG
γ ,0 + NAG

γ ,1. Next, we recall (80) and
(83), respectively:

Aγ ,0(·) = σzAγ ,0(σz(·)σz )σz, (139)

Aγ ,1(·) = σxAγ ,0(σx(·)σx )σx. (140)

Using these relations, and the fact that σy = iσxσz, we obtain

AG
γ ,0 = 1

2Aγ ,0 + 1
2Aγ ,1 = Aγ , 1

2
, (141)

AG
γ ,1 = 1

2Aγ ,0 + 1
2Aγ ,1 = Aγ , 1

2
, (142)

where to obtain the last equality in both equations we used
(138). Therefore,

AG
γ ,N = Aγ , 1

2
(143)

for all γ , N ∈ [0, 1]. The final step is to show that
εcov(Aγ ,N ) = 1

2‖Aγ ,N −AG
γ ,N‖� = 1

2‖Aγ ,N −Aγ , 1
2
‖� = γ

|N − 1
2 |, which we do in Appendix D. �

We now compare the upper bounds obtained above with
two strong converse upper bounds on the classical capacity
that hold for any quantum channel N [47]. The first upper
bound is

C(N ) � Cβ (N ) ≡ log2 β(N ), (144)

where

β(N ) ≡

⎧⎪⎨⎪⎩
min. Tr[SB]

subject to −RAB �
(
	NAB

)TB � RAB,

−1A ⊗ SB � RTB
AB � 1A ⊗ SB.

(145)

Note that the optimization is with respect to the operators SB

and RAB. We also observe that the optimization problem is a
semidefinite program (SDP).

The second upper bound from Ref. [47], which is also
given by an SDP, is the following:

C(N ) � Cζ (N ) ≡ log2 ζ (N ), (146)

where

ζ (N ) =

⎧⎪⎨⎪⎩
min. Tr[SB]

subject to VAB � 	NAB,

−1A ⊗ SB � V TB
AB � 1A ⊗ SB.

(147)

By considering the dual of the SDPs in (145) and (147), we
obtain analytic expressions for Cβ (Aγ ,N ) and Cζ (Aγ ,N ) for all
values of γ and N , and we find that Cζ (Aγ ,N ) = Cβ (Aγ ,N ) for
all values of γ and N .

Proposition 5. For all γ , N ∈ [0, 1],

Cβ (Aγ ,N ) = Cζ (Aγ ,N ) = log2(1 +
√

1 − γ ). (148)

Proof. See Appendix C. �
Let us now compare the Holevo information lower bound

and the upper bounds in Proposition 4, (144), and (146) to
the upper bound obtained in Ref. [36]. This bound is obtained
using a technique developed in Ref. [37], which is based
on a decomposition of the channel of interest in terms of a
unital channel (for which we know the classical capacity, as
mentioned above). When applied to the GADC, the technique
leads to the following upper bound [36, Eq. (35)]:

C(Aγ ,N ) � CUB
Fil (γ , N )

≡ 1 − h2

[
1

2

(
1 −

√
1 − γ

f (γ , N )

)]
+ log2 f (γ , N )

+ 1

2
log2

N

1 − N
, (149)

where

f (γ , N ) ≡ γ
√

N (1 − N ) +
√

N + (1 − N )(1 − γ )

×
√

1 − N + N (1 − γ ). (150)

Finally, we consider the entanglement-assisted classical
capacity as another upper bound on the classical capacity of
the GADC. The entanglement-assisted classical capacity of
a quantum channel N , denoted by CE (N ), is defined as the
maximum rate at which classical information can be sent over
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the channel in the asymptotic limit, with the assistance of
entanglement between the sender and the receiver. It is known
[39–41] that CE (N ) is given simply by the mutual information
I (N ) of the channel,

CE (N ) = I (N ) ≡ max
φAA′

I (A; B)ρ, (151)

where ρAB = NA′→B(φAA′ ) and the dimension of A is equal
to the dimension of the input system A′ of the channel N .
For the GADC, by using its Pauli-z covariance, as well as
the concavity of the function ρA′ �→ I (A; B)ω, where ωAA′ =
NA′→B(φρ

AA′ ) and φ
ρ

AA′ is any purification of ρA′ , it has been
shown [38] that

I (Aγ ,N ) = max
z∈[−1,1]

F (γ , N, z) (152)

for all γ , N ∈ (0, 1), where

F (γ , N, z) ≡ −
2∑

i=1

λi log2 λi −
2∑

i=1

λ′
i log2 λ′

i

+
4∑

i=1

λ′′
i log2 λ′′

i (153)

and

λ1 = 1
2 (1 + z), (154)

λ2 = 1
2 (1 − z), (155)

λ′
1 = 1

2 {1 + [(2N − 1)γ − (1 − γ )z]}, (156)

λ′
2 = 1

2 {1 − [(2N − 1)γ − (1 − γ )z]}, (157)

λ′′
1 = 1

2 (1 − N )γ (1 − z), (158)

λ′′
2 = 1

2 Nγ (1 + z), (159)

λ′′
3 = 1

4 {2 − [1 + (2N − 1)z]γ

+
√

4 − 4[1 + z(2N − 1)]γ + (2N − 1 + z)2γ 2},
(160)

λ′′
4 = 1

4 {2 − [1 + (2N − 1)z]γ

−
√

4 − 4[1 + z(2N − 1)]γ + (1 − 2N + z)2γ 2}.
(161)

In Fig. 4 we plot the Holevo information lower bound as
well as the Cβ upper bound, the upper bound CUB

EB based on
approximate entanglement breakability, the upper bound CUB

cov
based on approximate covariance, the bound CUB

Fil defined in
(149), and the entanglement-assisted classical capacity CE .
We find that the Cβ upper bound is close to the Holevo in-
formation lower bound for low values of γ and N . For higher
values of γ , the entanglement-assisted classical capacity pro-
vides a tighter upper bound than Cβ . For values of N close
to 1

2 , as one might expect, the approximate covariance upper
bound CUB

cov is tighter than both Cβ and CE , at least for low to
intermediate values of γ . In this same regime for N , the bound
CUB

Fil is the tightest for small intervals of γ close to γ = 0.6.
For N = 1

2 , we know from (127) that the classical capacity of
the GADC is given by the Holevo information. Accordingly,
the Holevo information and the upper bounds CUB

cov and CUB
Fil

FIG. 4. Bounds on the classical capacity of the GADC. Shown is
the Holevo information lower bound given by (131), as well as the Cβ

upper bound given by (148). We also plot the upper bound in (136)
based on approximate entanglement breakability, the upper bound in
(137) based on approximate covariance, the upper bound in (149)
from Ref. [36], and the entanglement-assisted classical capacity CE

given by (152). The classical capacity lies within the shaded region.
For N = 1

2 , the classical capacity is equal to the Holevo information,
and this coincides with the approximate covariance upper bound and
the upper bound from Ref. [36].

coincide. Also, as expected, the approximate entanglement-
breaking bound CUB

EB is tight, matching the lower bound,
whenever the GADC is entanglement breaking. For values of
γ and N close to the entanglement-breaking region, this upper
bound is also the tightest among all of the other upper bounds.

VII. BOUNDS ON THE QUANTUM AND PRIVATE
CAPACITIES OF THE GADC

We now consider the quantum and private capacities of the
GADC and provide upper bounds using the data-processing
bounds, the approximate degradability and approximate an-
tidegradability bounds, and the Rains information and relative
entropy of entanglement bounds defined in Sec. III B.

We start with the decompositions of the GADC in (86) and
(87):

Aγ ,N = Aγ N,1 ◦A γ (1−N )
1−γ N ,0, (162)

Aγ ,N = Aγ (1−N ),0 ◦A γ N
1−γ (1−N ) ,1

. (163)
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These decompositions of the GADC involve the amplitude-
damping channels A γ (1−N )

1−γ N ,0 and Aγ (1−N ),0. Moreover, these

decompositions are similar in spirit to the ones used in
Refs. [31,32,34,107,114] in the context of bosonic Gaussian
thermal channels.

Unlike the classical capacity, the quantum capacity of the
amplitude-damping channel has a known closed-form expres-
sion and is given by [18]

Q(Aγ ,0) = max
p∈[0,1]

[h2((1 − γ )p) − h2(γ p)]. (164)

for γ ∈ [0, 1/2), and Q(Aγ ,0) = 0 for γ ∈ [1/2, 1]. The
quantum capacity can be determined easily in this case since
the amplitude-damping channel is degradable for all γ ∈
[0, 1/2], which implies that the coherent information of the
channel is additive. The relation betweenAγ ,0 andAγ ,1 given
by (83) implies that the quantum capacity of the channelAγ ,1

is equal to the quantum capacity of the amplitude-damping
channel, i.e., Q(Aγ ,1) = Q(Aγ ,0). Furthermore, since the
private and quantum capacities are equal to each other for
degradable channels, we have that P(Aγ ,0) = Q(Aγ ,0).

Proposition 6 (Data-processing upper bounds). For all
γ , N ∈ (0, 1), it holds that

Q(Aγ ,N ) � P(Aγ ,N ) � Q
(
A γ (1−N )

1−γ N ,0

) ≡ QUB
DP,1(γ , N ),

(165)

Q(Aγ ,N ) � P(Aγ ,N ) � Q(Aγ (1−N ),0) ≡ QUB
DP,2(γ , N ),

(166)

Q(Aγ ,N ) � P(Aγ ,N ) � Q(Aγ N,1) ≡ QUB
DP,3(γ , N ), (167)

Q(Aγ ,N ) � P(Aγ ,N ) � Q
(
A γ N

1−γ (1−N ) ,1

) ≡ QUB
DP,4(γ , N ).

(168)

Proof. All of these inequalities follow from the relation
between the quantum and private capacities in (20), the
decompositions of the GADC in (162) and (163), and the
general data-processing upper bounds given in (24) and (25)
for the quantum capacity and (26) and (27) for the private
capacity. In particular, for the bounds on the private capacity,
we make use of the fact that the amplitude-damping channel
is degradable, which means that its private capacity is equal to
its quantum capacity, as given in (164). �

We obtain more upper bounds using the concepts of ε

degradability, ε close degradability, and ε antidegradability.
Proposition 7 (Approximate degradability and anti-

degradability upper bounds). For all γ ∈ (0, 1/2) and
all N ∈ (0, 1), we have the following ε-degradable upper
bounds:

Q(Aγ ,N ) � QUB
deg,1(γ , N ) ≡ UD(Aγ ,N ) + 4ε1 + g(ε1),

(169)

P(Aγ ,N ) � UD(Aγ ,N ) + 12ε1 + 3g(ε1), (170)

where ε1 = εdeg(Aγ ,N ). The ε-close-degradable upper bounds
are

Q(Aγ ,N ) � QUB
deg,2(γ , N ) ≡ Q(Aγ ,0) + 2ε2 + 2g(ε2), (171)

P(Aγ ,N ) � Q(Aγ ,0) + 4ε2 + 4g(ε2), (172)

where ε2 = 1
2‖Aγ ,N −Aγ ,0‖�. Finally, the ε-antidegradable

upper bounds are

Q(Aγ ,N ) � P(Aγ ,N ) (173)

� QUB
a-deg(γ , N ) ≡ 2ε3 + h2(ε3) + g(ε3), (174)

where ε3 = εa-deg(Aγ ,N ).
Proof. We start with the bounds in (37) and (39). For the

GADC, we have dE = 4, since the channel has four Kraus
operators (assuming N �= 0 and N �= 1). Therefore, by deter-
mining the approximate-degradability parameter εdeg(Aγ ,N ),
we immediately obtain the bounds in (169) and (170).

Similarly, we obtain the bounds in (171) and (172) using
(40) and (41), respectively, as follows. Since the channelAγ ,0

is degradable for all γ ∈ [0, 1/2], we can take that to be our
ε-close-degradable channel to Aγ ,N . Then, since Ic(Aγ ,0) is
simply the quantum capacity of Aγ ,0 [as given by (164)], we
obtain (171).

Finally, we use the bounds in (43) arising from ε an-
tidegradability. Since dB = 2, after calculating the antidegrad-
ability parameter εa-deg(Aγ ,N ), we obtain (174). �

We obtain another upper bound on the private and quantum
capacities of the GADC by employing the Rains information
of the GADC, as given in (46), (48), and (49):

Q(Aγ ,N ) � P(Aγ ,N ) � R(Aγ ,N ) ≡ QUB
Rains(γ , N ), (175)

which follows from the fact that, as stated previously, the
Rains information R(Aγ ,N ) is equal to the channel’s relative
entropy of entanglement ER(Aγ ,N ) for qubit-to-qubit chan-
nels, due to Ref. [90]. To compute the latter, we can perform
the minimization over PPT states, due to Refs. [91,92]. Fur-
thermore, due to the σz covariance of the GADC, we can make
several simplifications to the task of computing the Rains
information R(Aγ ,N ), which speed it up significantly. First,
due to the σz covariance and concavity of Rains information
in the input state, as presented in Proposition 1, it suffices to
perform the maximization over input states with respect to the
one-parameter family of states |θ p〉AA′ = √

1 − p|0, 0〉AA′ +√
p|1, 1〉AA′ (see Appendix E for details on how to show this).

Second, the minimization in the Rains relative entropy in the
definition in (46) can be performed over PPT states having the
following form:

σAB = 1

2

⎛⎜⎜⎜⎝
α 0 0 ξeiφ

0 β 0 0

0 0 γ 0

ξe−iφ 0 0 δ

⎞⎟⎟⎟⎠, (176)

where α, β, γ , δ � 0, α + β + γ + δ = 2, 0 � ξ �
min{√αδ,

√
βγ }, φ ∈ [0, 2π ). This latter simplification

follows from the same argument given in Ref. [115,
Appendix B].

See Fig. 5 for a plot of the upper bounds QUB
DP,1 to QUB

Rains. To
get a sense for how good these upper bounds are, it is worth
comparing them to a lower bound. The coherent information
Ic(Aγ ,N ) provides a lower bound on the quantum capacity of
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FIG. 5. Bounds on the quantum capacity of the GADC. Shown is the coherent information lower bound QLB
CI given in (177), the data-

processing upper bounds QUB
DP,1 to QUB

DP,4 from Proposition 6, the upper bounds QUB
deg,1, QUB

deg,2, and QUB
a-deg from Proposition 7, and the upper bound

QUB
Rains defined in (175). The quantum capacity lies within the shaded region.

the GADC. It can be shown that [116]

Ic(Aγ ,N ) = max
p∈[0,1]

Ic

((
1 − p 0

0 p

)
,Aγ ,N

)
≡ QLB

CI (γ , N ).

(177)
By plotting in Fig. 5 the coherent information lower bound
alongside the upper bounds QUB

DP,1 to QUB
Rains, we find that

the gap between the upper bounds and the lower bound is
smallest when both γ and N are small. We also find that,
as expected, the upper bound QUB

deg,1 based on ε-degradability
is a tighter bound for γ close to zero, since γ = 0 is the
point at which the GADC is close to an identity channel.
We note here that the generic behavior of the ε-degradable
bound being tangent to the lower bound for low noise quantum
channels was studied in detail in Ref. [13]. On the other
hand, the upper bound QUB

deg,2 based on ε close degradability
is relatively poor for large values of N . Similarly, we observe
that the upper bound QUB

a-deg based on ε-antidegradability is

relatively poor except for values of γ close to γ = 1
2 , where,

as expected, the bound is tighter, since γ = 1
2 is the point

beyond which the GADC is antidegradable. From Fig. 5, it
is also evident that the upper bound QUB

DP,1 is tighter than all
other data-processing upper bounds for all values of γ and
for N < 0.5. Moreover, for N = 0.5, the upper bounds QUB

DP,1

and QUB
DP,2 coincide with the upper bounds QUB

DP,4 and QUB
DP,3,

respectively. Furthermore, the upper bound QUB
a-deg is tighter

than all other upper bounds for both γ and N close to 1
2 . While

the Rains information upper bound QUB
Rains is worse than two

of the data-processing upper bounds for all values of γ when
N is close to zero, it is tighter than all four data-processing
upper bounds for all values of γ when N is close to 1

2 . In
this region of N close to 1

2 , it is also tighter than the bounds
QUB

deg,1 and QUB
a-deg for values of γ roughly between 0.15 and

0.49.

Comparison with prior work

Let us now compare the bounds obtained here with those
from prior work.

In Ref. [34], in order to obtain an upper bound on the
quantum capacity of the qubit thermal channel, the authors
consider the “extended” channel

L̂η,N (ρA) ≡ TrE
[(

U η
AE→BE ⊗ 1E ′

)
(ρA ⊗ |θN 〉〈θN |EE ′ )

×(
U η

AE→BE ⊗ 1E ′
)†]

. (178)

Note that

Lη,N = TrE ′ ◦L̂η,N , (179)
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which implies, via (24), that

Q(Lη,N ) � Q(L̂η,N ) ≡ QUB
RMG(η, N ). (180)

As explained in Ref. [34], to compute the upper bound
Q(L̂η,N ), we observe that by defining a channel complemen-
tary to L̂η,N as

L̂c
η,N (ρA) ≡ TrBE ′

[(
U η

AE→BE ⊗ 1E ′
)
(ρA ⊗ |θN 〉〈θN |EE ′ )

×(
U η

AE→BE ⊗ 1E ′
)†]

, (181)

we get

L̂c
η,N = L̃c

η,N (182)

for all η, N ∈ [0, 1], where L̃η,N is the channel weakly
complementary to Lη,N defined in (102). This implies that
whenever the qubit thermal channel is weakly degradable,
the extended channel is degradable. Indeed, for all N > 0
and all η ∈ [0, 1], the channel D̂η,N ≡ P1−2N ◦L 1−η

η
,N ◦ TrE ′

satisfies

D̂η,N ◦ L̂η,N = P1−2N ◦L 1−η

η
,N ◦ TrE ′ ◦L̂η,N (183)

= P1−2N ◦L 1−η

η
,N ◦Lη,N (184)

= L̃c
η,N (185)

= L̂c
η,N , (186)

where to obtain the second equality we used (179) and to
obtain the third equality we used (113). The quantum capacity
of the extended channel is therefore given by its coherent
information. In other words,

Q(L̂η,N ) = max
ρ

{
H[L̂η,N (ρ)] − H

[
L̂c

η,N (ρ)
]}

(187)

= max
p∈[0,1]

Ic

((
1 − p 0

0 p

)
, L̂η,N

)
(188)

for all N > 0 and η ∈ [0, 1], where the last equality holds due
to the fact L̂η,N (σzρAσz ) = (σz ⊗ 1E ′ )L̂η,N (ρ)(σz ⊗ 1E ′ ) and
the fact that the coherent information is concave in the input
state of the channel whenever the channel is degradable [117].

See Fig. 6 for a comparison of the upper bounds obtained
in this paper and the upper bound obtained in Ref. [34]
for N = 0.01 and N = 0.1. We find that the upper bound
QUB

5 based on approximate degradability is tighter than QUB
RMG

beyond roughly η = 0.56 for both N = 0.01 and N = 0.1,
while the data-processing upper bounds QUB

DP,1 and QUB
DP,2 are

tighter than QUB
RMG for all values of η. In fact, as shown in

Fig. 7, these data-processing bounds are tighter for all values
of N . The data-processing upper bounds are thus tighter than
the bound in Ref. [34] for the entire parameter range of the
qubit thermal channel/GADC. For values of N close to 1

2 ,
the Rains information upper bound QUB

Rains is tighter than both
data-processing upper bounds for all values of η.

VIII. BOUNDS ON THE TWO-WAY-ASSISTED QUANTUM
AND PRIVATE CAPACITIES

In this section we consider the two-way assisted quantum
and private capacities Q↔(Aγ ,N ) and P↔(Aγ ,N ), respec-
tively, of the GADC.

FIG. 6. Comparison between the data-processing upper bounds
QUB

DP,1 and QUB
DP,2 defined in (165) and (166), respectively, the ε-

degradable upper bound QUB
deg,1 defined in (169), and the upper bound

QUB
RMG obtained in Ref. [34] and defined in (180). Also shown is

the coherent information lower bound QLB
CI defined in (177). The

quantum capacity lies within the shaded region.

A. Squashed entanglement upper bounds

Recalling from (56) that one-half of the mutual information
of a channel is an upper bound on its two-way assisted
quantum capacity, and using the expression for the mutual
information of the GADC in (152), we get

Q↔(Aγ ,N ) � 1
2 max

z∈[−1,1]
F (γ , N, z) ≡ Q↔,UB

MI (γ , N ) (189)

for all γ , N ∈ (0, 1).
A potentially better upper bound on the two-way quantum

capacity of the GADC than the one in (189) can be obtained
by a different choice of squashing channel. In particular, we
make use of the decompositions in (86) and (87) to obtain the
following result. Our approach is related to the constructions
in Refs. [44,53].

Proposition 8 (Squashed entanglement upper bounds).
For all γ , N ∈ (0, 1), it holds that

Q↔(Aγ ,N )�P↔(Aγ ,N )

� 1
2 max

p∈[0,1]
I (A; B|E1E2)τ p ≡ Q↔,UB

sq,1 (γ , N ), (190)
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FIG. 7. Comparison between the data-processing upper bounds
QUB

DP,1 and QUB
DP,2 defined in (165) and (166), respectively, the Rains

information upper bound QUB
Rains in (175), and the upper bound QUB

RMG

obtained in Ref. [34]. Also shown is the coherent information lower
bound QLB

CI defined in (177). The quantum capacity lies within the
shaded region.

where the state τ p on which we evaluate the conditional
mutual information is

τ
p
ABE1E2

= (idAB ⊗A 1
2 ,0 ⊗A 1

2 ,0)
(|ψp〉〈ψp|ABE ′

1E ′
2

)
, (191)

with |ψp〉ABE ′
1E ′

2
= V γ N,1

B′→BE ′
2
V

γ (1−N )
1−γ N ,0

A′→B′E ′
1
|θ p〉AA′ and |θ p〉AA′ =√

1 − p|0, 0〉AA′ + √
p|1, 1〉AA′ .

Also,

Q↔(Aγ ,N )�P↔(Aγ ,N )

� 1
2 max

p∈[0,1]
I (A; B|E1E2)τ̃ p ≡ Q↔,UB

sq,2 (γ , N ), (192)

where the state τ̃ p on which we evaluate the conditional
mutual information is

τ̃
p
ABE1E2

= (idAB ⊗A 1
2 ,0 ⊗A 1

2 ,0)(|ψ̃p〉〈ψ̃p|ABE ′
1E ′

2
), (193)

with |ψ̃p〉ABE ′
1E ′

2
= V γ (1−N ),0

B′→BE ′
2

V
γ N

1−γ (1−N ) ,1

A′→B′E ′
1

|θ p〉AA′ .

Proof. We use the fact that Q↔(Aγ ,N ) � Esq(Aγ ,N ),
where

Esq(Aγ ,N ) = 1
2 max

φAA′
inf
SE ′→E

I (A; B|E )ω, (194)

where ωABE = SE ′→E (|ψ〉〈ψ |ABE ′ ) and |ψ〉ABE ′ is a purifica-
tion of the state (idA ⊗Aγ ,N )(|φ〉〈φ|AA′ ).

To obtain the first upper bound in (190), we use the fact that
Aγ ,N can be decomposed as Aγ ,N = Aγ N,1 ◦A γ (1−N )

1−γ N ,0. This

means that, for any pure state |φ〉AA′ , a purification of the state

FIG. 8. Strategy for the first part of the proof of Proposition 8,
in which we decompose the GADC as Aγ ,N = Aγ N,1 ◦A γ (1−N )

1−γ N ,0,

as per (86). Using (98), we can write this decomposition using the
qubit thermal channel as Aγ ,N = L1−γ N,1 ◦L 1−γ

1−γ N ,0. To place an

upper bound on the squashed entanglement of the GADC, we use
a squashing channel consisting of a 50/50 “qubit beamsplitter” (i.e.,
the unitary transformation U η defined in (90) with η = 1

2 ) acting on
the environment of each of the two qubit thermal channels in the
decomposition of the GADC.

ρAB ≡ (idA ⊗Aγ ,N )(|φ〉〈φ|AA′ ) can be written as

|ψ〉ABE ′
1E ′

2
≡ V γ N,1

B′→BE ′
2
V

γ (1−N )
1−γ N ,0

A′→B′E ′
1
|φ〉AA′ (195)

As the squashing channels, which act on E ′
1 and E ′

2, we
take the channels Aγ1,N1 and Aγ2,N2 , respectively. The state
ωABE1E2 on which the quantum conditional mutual information
in (194) is evaluated is then

ωABE1E2 (γ1, N1, γ2, N2)

≡ (
idAB ⊗Aγ1,N1 ⊗Aγ2,N2

)(|ψ〉〈ψ |ABE ′
1E ′

2

)
. (196)

We can optimize over the open parameters γ1, N1, γ2, N2 ∈
[0, 1] such that the squashed entanglement of ρAB can be
bounded from above as

Esq(A; B)ρ � 1
2 min

γ1,γ2,N1,N1

I (A; B|E1E2)ω, (197)

where the state ωABE1E2 is given in (196). This means that

Esq(Aγ ,N ) � 1
2 max

φAA′
min

γ1,γ2,N1,N2

I (A; B|E1E2)ω. (198)

Now, numerical evidence suggests that γ1 = 1
2 = γ2 and N1 =

0 = N2 is optimal. The corresponding squashing channel
can be viewed as qubit pure-loss channels with beamsplit-
ters of transmissivity 1

2 , analogous to the construction in
Refs. [44,53]; see Fig. 8. So we have

Esq(Aγ ,N ) � 1
2 max

φAA′
I (A; B|E1E2)τ , (199)

where τABE1E2 = ωABE1E2 ( 1
2 , 0, 1

2 , 0). Finally, due to the co-
variance of the GADC with respect to the Pauli-z opera-
tor, it suffices to optimize over pure states |φ〉AA′ = |θ p〉AA′
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FIG. 9. Bounds on the two-way assisted quantum capacity of the GADC. Shown is the reverse coherent information Q↔,LB
RCI lower bound,

given by the expression in (204). We also plot the mutual information upper bound Q↔,UB
MI defined in (189) and obtained by employing the

identity squashing channel in the definition of the squashed entanglement, along with the squashed entanglement upper bounds Q↔,UB
sq,1 and

Q↔,UB
sq,2 defined in (190) and (192), respectively. The bounds Q↔,UB

sq,1 and Q↔,UB
sq,2 are obtained by employing the squashing channel as shown in

(191). The max-Rains upper bound Q↔,UB
max-Rains is given by the SDP in (62). [See also the analytic expression in (206).] The upper bound Q↔,UB

cov

is given in (208) and is based on the notion of approximate covariance. The two-way assisted quantum capacity lies within the shaded region.

= √
1 − p|0, 0〉AA′ + √

p|1, 1〉AA′ , where p ∈ [0, 1]. In other
words, the following equality holds:

1
2 max

φAA′
I (A; B|E1E2)τ = 1

2 max
p∈[0,1]

I (A; B|E1E2)τ p, (200)

where τ
p
ABE1E2

is defined in (191). See Appendix E for a proof.
We thus obtain the bound in (190).

We obtain the second upper bound in (192) using the de-
composition Aγ ,N = Aγ (1−N ),0 ◦A γ N

1−γ (1−N ) ,1
. In this case, we

take a purification of the state ρAB = (idA ⊗Aγ ,N )(|φ〉〈φ|AA′ )
to be

|ψ̃〉ABE ′
1E ′

2
≡ V γ (1−N ),0

B′→BE2
V

γ N
1−γ (1−N ) ,1

A′→B′E1
|φ〉AA′ . (201)

Then, letting

ω̃ABE1E2 (γ1, N1, γ2, N2)

≡ (
idAB ⊗Aγ1,N1 ⊗Aγ2,N2

)(|ψ̃〉〈ψ̃ |ABE ′
1E ′

2

)
(202)

and performing the optimization minγ1,γ2,N1,N2 I (A; B|E1E2)ω̃
analogous to the one in (197), we find numerically that γ1 =
1
2 = γ2 and N1 = 0 = N2 gives the optimal value. Therefore,
we get

Esq(Aγ ,N ) � 1
2 max

p∈[0,1]
I (A; B|E1E2)τ̃ p, (203)

as required. As with the first upper bound, it suffices to
optimize over pure states |θ p〉AA′ due to the covariance of the
GADC with respect to the Pauli-z operator, and the proof is
analogous to the one presented in Appendix E for the first
upper bound. �

See Fig. 9 for a plot of the squashed entanglement upper
bounds in (190) and (192) along with the mutual information
upper bound Esq(Aγ ,N ) � 1

2 I (Aγ ,N ), with I (Aγ ,N ) given in
(152). We also plot the reverse coherent information Irc(Aγ ,N )
lower bound. Due to Pauli-z covariance and concavity of the
reverse coherent information, Irc(Aγ ,N ) can be obtained by
optimizing over diagonal input states:

Irc(Aγ ,N ) = max
p∈[0,1]

Irc

((
1 − p 0

0 p

)
,Aγ ,N

)
≡ Q↔,LB

RCI (γ , N ). (204)

We note that the coherent information lower bound is not
plotted in Fig. 9 because it is smaller than the RCI lower
bound for all values of γ and N .
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B. Max-Rains and max-relative entropy
of entanglement upper bounds

For the amplitude-damping channel Aγ ,0, it has been
shown in Ref. [115, Proposition 2] that

Emax(Aγ ,0) = log2(2 − γ ). (205)

We now generalize this formula to all values of γ , N for the
GADC. We also prove that the inequality opposite to the one
in (67) holds for the GADC. As stated, this result generalizes
the equality in (205), and the proof that we give is arguably
simpler than that given for Ref. [115, Proposition 2].

Proposition 9. For all γ , N such that the GADC Aγ ,N is
not entanglement breaking, it holds that

Emax(Aγ ,N ) = Rmax(Aγ ,N )

= log2

[
1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ )

]
.

(206)

If the GADC is entanglement breaking, as given by (107), then
Emax(Aγ ,N ) = Rmax(Aγ ,N ) = 0. �

Proof. See Appendix F.
By (61), and using Proposition 9, we have that

Q↔(Aγ ,N ), P↔(Aγ ,N ) � Q↔,UB
max-Rains

≡ log2

[
1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ )

]
.

(207)

for all γ , N ∈ [0, 1]. In Fig. 9 we compare this max-Rains up-
per bound with the squashed entanglement upper bounds from
the previous subsection. We observe that the max-Rains upper
bound is tight when the channel is entanglement breaking.
This is due to the fact that the state ρAB for which Rmax(A; B)ρ
is evaluated in (60) is separable whenever the channel is
entanglement breaking, and the fact that any separable state
is in the set PPT′.

C. Approximate covariance upper bounds

Applying the bounds in Eq. (68) and Eq. (69) to the GADC,
recalling from (143) thatAG

γ ,N = Aγ , 1
2
, and using the fact that

the quantity R(A; B)ρ coincides with ER(A; B)ρ for qubit-qubit
states ρAB [90, Sec. III], these bounds reduce to the following:

Q↔(Aγ ,N ), P↔(Aγ ,N ) � Q↔,UB
cov (γ , N )

≡ ER(A; B)ρ + 2εcov + g(εcov),
(208)

where εcov ≡ εcov(Aγ ,N ) = γ |N − 1
2 | and

ρ
γ

AB ≡ Aγ , 1
2
(�+

AA′ ) (209)

= 1

2

⎛⎜⎜⎜⎝
1 − γ

2 0 0
√

1 − γ

0 γ

2 0 0

0 0 γ

2 0√
1 − γ 0 0 1 − γ

2

⎞⎟⎟⎟⎠. (210)

Note that, due to (107), ρ
γ
AB is entangled only when 0 �

γ < 2(
√

2 − 1). In this case, it is a Bell-diagonal state of the

form:

ρ
γ
AB =

1∑
i, j=0

ri, j |�i, j〉〈�i, j |AB, (211)

with |�i, j〉AB ≡ (1A ⊗ σ i
xσ

j
z )|�+〉AB and

r0,0 = 1
4 (2 + 2

√
1 − γ − γ ) (212)

r0,1 = 1
4 (2 − 2

√
1 − γ − γ ), (213)

r1,0 = r11 = γ

4
. (214)

The closest separable state for such a Bell-diagonal state
with r0,0 � 1

2 is well known to have the form [118] (see also
Ref. [90])

σAB = 1

2
|�0,0〉〈�0,0|AB

+ 1

2(1 − r0,0)

∑
i, j �=(0,0)

ri, j |�i, j〉〈�i, j |AB (215)

=

⎛⎜⎜⎜⎝
1
2 − x 0 0 x

0 x 0 0

0 0 x 0

x 0 0 1
2 − x

⎞⎟⎟⎟⎠, (216)

where

x = γ

2(2 − 2
√

1 − γ + γ )
. (217)

We then find that

ER(A; B)ρ

=
1∑

i, j=0

ri, j log2 ri, j + 1 − γ

2
log2

(
γ

2 − 2
√

1 − γ + γ

)

+ γ − 2 + 2
√

1 − γ

4
log2

(
4 − γ − 4

√
1 − γ

8 + γ

)
, (218)

which completes the analytic form of the bound in (208).
Note that this formula for ER(A; B)ρ holds only for γ ∈
[0, 2(

√
2 − 1)); otherwise, ρ

γ
AB is separable, which means

that ER(A; B)ρ = 0. We also note that for N = 1
2 , which

is when the GADC is covariant with respect to the Pauli
group and thus εcov = 0, the bound in (208) reduces to
Q↔(Aγ ,N ), P↔(Aγ ,N ) � ER(A; B)ρ , which is precisely the
bound determined in Ref. [33, Theorem 5] and in Ref. [35,
Theorem 12] for the class of teleportation-simulable channels.
(Any channel that is covariant with respect to the Pauli group
is teleportation-simulable; see, e.g., Ref. [35, Appendix A].)

In Fig. 9 we plot the bound Q↔,UB
cov in (208). While the

bound is relatively poor for small values of N , for values of
N close to 1

2 we find that it is tighter than the other upper
bounds for some values of γ . Notably, at N = 1

2 , this upper
bound is the tightest among the other upper bounds, and by a
significant margin as well.

IX. CONCLUSION

In this work, we provided an information-theoretic study of
the generalized amplitude-damping channel (GADC), which
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is a generalized form of the well-known amplitude-damping
channel and can be thought of as the qubit analog of the
bosonic thermal channel. We first determined the range of
parameters for which the channel is entanglement breaking, as
well as the range of parameters for which it is antidegradable.

We then established several upper bounds on the classical
capacity of the GADC. We used the concepts of approximate
covariance and approximate entanglement breakability [48] to
obtain upper bounds. We compared these upper bounds with
known SDP-based upper bounds [47], for which we proved
an analytical formula for the GADC, as well as the known
entanglement-assisted classical capacity upper bound [38].

We also provided several upper bounds on the quantum and
private capacities of the GADC. We exploited the two decom-
positions of the GADC in (86) and (87) in terms of amplitude-
damping channels in order to obtain data-processing upper
bounds, and we used the concepts of approximate degradabil-
ity and approximate antidegradability [51] to obtain further
upper bounds. We found that one of the data-processing upper
bounds is tighter than the recently obtained upper bound from
Ref. [34] for all parameter values of the GADC, and that the
Rains information upper bound is tighter than the upper bound
from Ref. [34] for certain parameter regimes.

We also considered the two-way assisted quantum and pri-
vate capacities of the GADC. We determined upper bounds on
these capacities using the squashed entanglement [42,43], the
max-Rains information [54], and the max-relative entropy of
entanglement [60]. The squashed entanglement upper bounds
exploited the decompositions of the GADC in (86) and (87),
as well as a particular choice of squashing channel. This
allowed us to obtain upper bounds that are better than the
mutual information bound that can be obtained via the identity
squashing channel. We also obtained upper bounds using the
concept of approximate covariance. Along the way, we also
determined an analytic form for both the max-Rains informa-
tion Rmax and the max-relative entropy of entanglement Emax

of the GADC, and we found that for the GADC both quantities
are equal to each other. In light of the latter result, it is worth
exploring whether the equality Rmax(N ) = Emax(N ) holds for
all qubit-to-qubit channels N .

Obtaining the communication capacities of the GADC for
its entire parameter range remains a challenging open prob-
lem. This work has applied many state-of-the-art techniques to
obtain upper bounds, and it is clear that obtaining tighter upper
bounds, or even to obtain an exact expression for the capacity,
will require new techniques. To this end, some directions for
future work include: employing a different squashing channel
than the one used here to obtain a better upper bound on
the two-way assisted quantum and private capacities of the
GADC. Another method to reduce the gap between lower and
upper bounds for any communication scenario is to look at
improving current lower bounds rather than upper bounds, via
potential superadditivity effects.
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APPENDIX A: PROOF OF PROPOSITION 1

The proof is similar in spirit to Ref. [52, Proposition 2] and
in fact implies it for the relative entropy. Let ψ0

AA′ and ψ1
AA′ be

pure states and define

ψλ
A′ ≡ (1 − λ)ψ0

A′ + λψ1
A′ , (A1)

for λ ∈ [0, 1]. A purification of ψλ
A′ is given by

|ψ〉λPAA′ ≡ √
1 − λ|0〉P|ψ0〉AA′ +

√
λ|1〉P|ψ1〉AA′ . (A2)

This purification is related to another purification φλ
AA′

by an isometric channel UA→PA:ψλ
PAA′ = UA→PA(φλ

AA′ ).
Let σλ

AB ∈ PPT′(A:B) be the operator such that
R(NA′→B(φλ

AA′ )) ≡ R(A; B)ρλ = D(NA′→B(φλ
AA′ )‖σλ

AB), where
ρλ

AB = NA′→B(φλ
AA′ ), and define ξλ

PAB = UA→PA(σλ
AB). Observe

that ξλ
PAB ∈ PPT′(PA:B). Let

P
(
ξλ

PAB

) = q|0〉〈0|P ⊗ τ 0
AB + (1 − q)|1〉〈1|P ⊗ τ 1

AB, (A3)

where P is a completely dephasing channel, defined as

P(·) ≡ |0〉〈0|P(·)|0〉〈0|P + |1〉〈1|P(·)|1〉〈1|P, (A4)

q ≡ Tr
[
(|0〉〈0|P ⊗ 1AB)ξλ

PAB

]
, (A5)

τ 0
AB ≡ 1

q
TrP

[
(|0〉〈0|P ⊗ 1AB)ξλ

PAB

]
, (A6)

τ 1
AB ≡ 1

1 − q
TrP

[
(|1〉〈1|P ⊗ 1AB)ξλ

PAB

]
. (A7)

Note that the states τ 0
AB and τ 1

AB are in the set PPT′(A:B) since
ξλ

PAB is in PPT′(PA:B). Then we have that

R
(
NA′→B

(
φλ

AA′
))

= D
(
NA′→B

(
φλ

AA′
)∥∥σλ

AB

)
(A8)

= D
(
NA′→B

(
ψλ

PAA′
)∥∥ξλ

PAB

)
(A9)

� D
(
P

[
NA′→B

(
ψλ

PAA′
)]∥∥P

(
ξλ

PAB

))
(A10)

= D
(
NA′→B

[
P

(
ψλ

PAA′
)]∥∥P

(
ξλ

PAB

))
(A11)

= (1 − λ)D
(
NA′→B

(
ψ0

AA′
)∥∥τ 0

AB

)

+ λD
(
NA′→B

(
ψ1

AA′
)∥∥τ 1

AB

)

+D({1 − λ, λ}‖{q, 1 − q}) (A12)

� (1 − λ)D
(
NA′→B

(
ψ0

AA′
)∥∥τ 0

AB

)

+λD
(
NA′→B

(
ψ1

AA′
)∥∥τ 1

AB

)
(A13)

� (1 − λ)R
(
NA′→B

(
ψ0

AA′
)) + λR

(
NA′→B

(
ψ1

AA′
))

.

(A14)

The second equality follows from the isometric invariance of
the relative entropy. The first inequality follows from the data-
processing property of relative entropy. The fourth equality
follows from the identity [3, Exercise 11.8.8]

D(ρXB‖σXB) =
∑

x

p(x)D
(
ρx

B‖σ x
B

) + D(p‖r), (A15)

holding for classical-quantum states

ρXB =
∑

x

p(x)|x〉〈x|X ⊗ ρx
B, (A16)

σXB =
∑

x

r(x)|x〉〈x|X ⊗ σ x
B . (A17)
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Note that D(p‖r) denotes the classical relative entropy of
the probability distributions p and r. For binary probability
distributions such that p(0) = 1 − λ, p(1) = λ, r(0) = 1 −
q, r(1) = q, we let D({1 − λ, λ}‖{1 − q, q}) ≡ D(p‖r). The
second inequality follows from the non-negativity of the rela-
tive entropy. The final inequality follows because the Rains
relative entropy involves a minimization over all states in
PPT′(A : B).

A proof for the concavity statement for the relative en-
tropy of entanglement ER(A; B)ω is identical, except replacing
PPT′(A:B) with SEP(A:B).

APPENDIX B: PROOF OF LEMMA 1

Let E∗, E0, and E1 be as defined in the statement of Lemma
1. Let V γ ,N

A→BE be the isometric extension of the GADC defined
in (89), and define the pure state

|ψ〉γ ,N
ABE ≡ (

1A ⊗ V γ ,N
A′→BE

)|�+〉AA′ (B1)

= 1√
2

[
√

1 − N |0, 0, 0〉ABE +
√

N (1 − γ )|0, 0, 2〉ABE

+
√

Nγ |0, 1, 3〉ABE +
√

(1 − γ )(1 − N )|1, 1, 0〉ABE

+
√

N |1, 1, 2〉ABE +
√

γ (1 − N )|1, 0, 1〉ABE ] (B2)

Then, ρ
γ ,N
AB ≡ TrE [|ψ〉〈ψ |γ ,N

ABE ] is the Choi state of the GADC
Aγ ,N , while ρ

γ ,N
AE ≡ TrB [|ψ〉〈ψ |γ ,N

ABE ] is the Choi state of the
complementary channel Ac

γ ,N as defined in (88). In order
to prove that E∗

N ◦Ac
γ ,N = A1−γ ,N , it suffices to show that

(E∗
N )E→B′ (ρ

γ ,N
AE ) = ρ

1−γ ,N
AB . In other words, it suffices to show

that the Choi state of the complementary channel Ac
γ ,N is

mapped to the Choi state of the channelA1−γ ,N .
We have

ρ
γ ,N
AB = 1

2 {(1 − γ N )|0, 0〉〈0, 0|AB +
√

1 − γ |0, 0〉〈1, 1|AB

+
√

1 − γ |1, 1〉〈0, 0|AB + γ N |0, 1〉〈0, 1|AB

+ γ (1 − N )|1, 0〉〈1, 0|AB

+ [1 − γ (1 − N )]|1, 1〉〈1, 1|AB}. (B3)

Let an isometric extension of the channel E∗
N be

W E∗
N

E→B′E ′ = E0 ⊗ |0〉E ′ + E1 ⊗ |1〉E ′ . (B4)

Then,

|φ〉γ ,N
ABB′E ′ ≡ W E∗

N
E→B′E ′ |ψ〉γ ,N

ABE

= 1√
2

[
√

1 − N |0, 0, 0, 0〉ABB′E ′

+
√

N (1 − γ )|0, 0, 1, 1〉ABB′E

+
√

Nγ |0, 1, 0, 1〉ABB′E ′

+
√

(1 − γ )(1 − N )|1, 1, 0, 0〉ABB′E ′

+
√

N |1, 1, 1, 1〉ABB′E ′

+
√

γ (1 − N )|1, 0, 1, 0〉ABB′E ′]. (B5)

Then

TrBE ′
[|φ〉〈φ|γ ,N

ABB′E ′
]

= (E∗
N )E→B′

(
ρ

γ ,N
AE

)
= 1

2

{
[1 − (1 − γ )N]|0, 0〉〈0, 0|AB′ + √

γ |0, 0〉〈1, 1|AB′

+√
γ |1, 1〉〈0, 0|AB′ + N (1 − γ )|0, 1〉〈0, 1|AB′

+ (1 − γ )(1 − N )|1, 0〉〈1, 0|AB′

+ [N + γ (1 − N )]|1, 1〉〈1, 1|AB′ }
= ρ

1−γ ,N
AB′ ,

(B6)
as required.

APPENDIX C: PROOF OF PROPOSITION 5

We start by recalling the convex decomposition of the
GADC as stated in (84):

Aγ ,N = (1 − N )Aγ ,0 + NAγ ,1 (C1)

for all γ , N ∈ [0, 1]. We also recall from (83) that

Aγ ,1(ρ) = σxAγ ,0(σxρσx )σx (C2)

for all γ ∈ [0, 1]. Next, note that it follows from (145) that
the quantity β(N ) in the definition of Cβ (N ) is convex in
the channel N : for any two channels N1 and N2 and any
λ ∈ [0, 1],

β[λN1 + (1 − λ)N2] � λβ(N1) + (1 − λ)β(N2). (C3)

Furthermore, β(N ) is invariant under pre- and postprocessing
of the channel N by unitaries. Therefore,

Cβ (Aγ ,N ) = Cβ[(1 − N )Aγ ,0 + NAγ ,1] (C4)

� (1 − N )Cβ (Aγ ,0) + NCβ (Aγ ,1) (C5)

= Cβ (Aγ ,0), (C6)

where to obtain the last line we used (C2) and the invariance
of Cβ under pre- and postprocessing of the given channel by
unitaries to find that Cβ (Aγ ,1) = Cβ (Aγ ,0).

Given the facts above, our proof strategy is as fol-
lows. First, we provide an upper bound of 1 + √

1 − γ

for the SDP in (145) in the case N = 0, i.e., for
the amplitude-damping channel, which establishes that
Cβ (Aγ ,N ) � log2 (1 + √

1 − γ ). Next, we consider the SDP
dual to the one in (145) and prove that 1 + √

1 − γ is a lower
bound on it. By strong duality, it follows that Cβ (Aγ ,N ) =
log2 (1 + √

1 − γ ) for all γ , N ∈ [0, 1].
We first recall from (145) that

β(N ) =
⎧⎨⎩

min. Tr[SB]
subject to −RAB �

(
	NAB

)TB � RAB,

−1A ⊗ SB � RTB
AB � 1A ⊗ SB,

(C7)
where the optimization is with respect to the Hermitian
operators SB and RAB. Note that it follows from the above
constraints that SB, RAB � 0.
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As a matrix in the standard basis, the Choi matrix for the
amplitude-damping channel is [see (104)]

	
γ ,0
AB = 2ρ

γ ,0
AB =

⎛⎜⎜⎜⎝
1 0 0

√
1 − γ

0 0 0 0

0 0 γ 0√
1 − γ 0 0 1 − γ

⎞⎟⎟⎟⎠, (C8)

so that the partial transpose is given by

(
	

γ ,0
AB

)TB =

⎛⎜⎜⎜⎝
1 0 0 0

0 0
√

1 − γ 0

0
√

1 − γ γ 0

0 0 0 1 − γ

⎞⎟⎟⎟⎠. (C9)

Let us choose the operators RAB and SB to be

RAB =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 − γ + a a 0

0 a 1 + a 0

0 0 0 1 − γ

⎞⎟⎟⎟⎠, (C10)

SB =
(

1 + a 0

0 1 − γ + a

)
, (C11)

where a = 1
2 [

√
1 − γ − (1 − γ )]. We first check that the con-

straint −RAB � (	γ ,0
AB )

TB � RAB is satisfied. Consider that

RAB − (
	

γ ,0
RB

)TB =

⎛⎜⎜⎜⎝
0 0 0 0

0 b −b 0

0 −b b 0

0 0 0 0

⎞⎟⎟⎟⎠, (C12)

where

b = 1
2 [
√

1 − γ + (1 − γ )]. (C13)

Due to the inequality b � 0 for all γ ∈ [0, 1] and the fact that
( 1 −1
−1 1 ) � 0, it follows that RAB − (	γ ,0

RB )
TB � 0. We also

have that

RAB + (
	

γ ,0
RB

)TB

=

⎛⎜⎜⎜⎝
2 0 0 0

0 b
√

1 − γ + a 0

0
√

1 − γ + a 1 + γ + a 0

0 0 0 2(1 − γ )

⎞⎟⎟⎟⎠.

(C14)

To determine whether RAB + (	γ ,0
RB )

TB � 0, it is clear that
we can focus on the inner 2 × 2 matrix. For the cases γ =
0 or γ = 1, one can directly confirm the condition RAB +
(	γ ,0

RB )
TB � 0. A general 2 × 2 matrix is positive definite if and

only its trace and determinant are strictly positive. The trace
of the inner 2 × 2 matrix in (C14) is√

1 − γ + 1 + γ > 0 (C15)

for all γ ∈ (0, 1), and its determinant is

(2 − γ )[
√

1 − γ − (1 − γ )] > 0 (C16)

for all γ ∈ (0, 1). It thus follows that RAB + (	γ ,0
AB )

TB
> 0 for

all γ ∈ (0, 1).

We now check the conditions −1A ⊗ SB � RTB
AB � 1A ⊗

SB. Consider that

1A ⊗ SB =

⎛⎜⎜⎜⎝
1 + a 0 0 0

0 1 − γ + a 0 0

0 0 1 + a 0

0 0 0 1 − γ + a

⎞⎟⎟⎟⎠,

(C17)

RTB
AB =

⎛⎜⎜⎜⎝
1 0 0 a

0 1 − γ + a 0 0

0 0 1 + a 0

a 0 0 1 − γ

⎞⎟⎟⎟⎠. (C18)

Then

1R ⊗ SB − RTB
AB =

⎛⎜⎜⎜⎝
a 0 0 −a

0 0 0 0

0 0 0 0

−a 0 0 a

⎞⎟⎟⎟⎠. (C19)

Due to the fact that a � 0 for all γ ∈ [0, 1], it follows that
1A ⊗ SB − RTB

AB � 0. We also need to consider

1R ⊗ SB + RTB
AB

=

⎛⎜⎜⎜⎝
a + 2 0 0 a

0 2a + 2(1 − γ ) 0 0

0 0 2a + 2 0

a 0 0 a + 2(1 − γ )

⎞⎟⎟⎟⎠.

(C20)

We have that 2a + 2(1 − γ ) � 0 and 2a + 2 � 0 for all γ ∈
[0, 1]. Thus, to determine whether 1A ⊗ SB + RTB

AB � 0, it is
clear that we can focus on the “corners” 2 × 2 submatrix:(

a + 2 a

a a + 2(1 − γ )

)
. (C21)

For γ = 0 or γ = 1, one can directly confirm that this corners
submatrix is positive semidefinite. For γ ∈ (0, 1), the trace of
the corners submatrix is

3 − γ +
√

1 − γ > 0, (C22)

and its determinant is given by

(1 − γ )(2 + γ ) + (2 − γ )
√

1 − γ > 0 (C23)

for all γ ∈ (0, 1). It thus follows that 1A ⊗ SB + RTB
AB > 0 for

all γ ∈ (0, 1). Thus, the proposed operators RAB and SB satisfy
the given constraints in (C7), and we conclude that

β(Aγ ,0) � Tr[SB] (C24)

= 1 + a + 1 − γ + a (C25)

= 2 + 2a − γ (C26)

= 2 + 2 1
2 [
√

1 − γ − (1 − γ )] − γ (C27)

= 1 +
√

1 − γ . (C28)

By the arguments presented at the beginning of the proof, we
thus conclude that

Cβ (Aγ ,N ) � log2(1 +
√

1 − γ ) (C29)

for all γ , N ∈ [0, 1].
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The SDP dual to the one in (C7) is given by

β̂(N ) ≡

⎧⎪⎨⎪⎩
max. Tr

[
	NAB(KAB − MAB)TB

]
subject to KAB + MAB � (EAB − FAB)TB ,

EB + FB � 1B,

KAB, MAB, EAB, FAB � 0.

(C30)
From (104) we have that the Choi matrix for the GADC is

	
γ ,N
AB =

⎛⎜⎜⎜⎝
1 − γ N 0 0

√
1 − γ

0 γ N 0 0

0 0 γ (1 − N ) 0√
1 − γ 0 0 1 − γ (1 − N )

⎞⎟⎟⎟⎠.

(C31)

Let us now make the following choice for the operators
KAB, MAB, EAB, FAB:

KAB = 1

2

⎛⎜⎜⎜⎝
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

⎞⎟⎟⎟⎠, MAB = 0,

(C32)

EAB = 1

2

⎛⎜⎜⎜⎝
1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1

⎞⎟⎟⎟⎠, FAB = 0. (C33)

We find that KAB = E TB
AB and EB = 1B, so that the constraints

in (C30) are satisfied and

Tr
[
	

γ ,N
AB (KAB − MAB)TB

] = Tr
[
	

γ ,N
AB KTB

AB

] = Tr
[
	

γ ,N
AB EAB

]
.

(C34)
We find that

	
γ ,N
AB EAB = 1

2

⎛⎜⎜⎜⎝
√

1 − γ − Nγ + 1 0 0
√

1 − γ − Nγ + 1

0 Nγ 0 0

0 0 −γ (N − 1) 0√
1 − γ + γ (N − 1) + 1 0 0

√
1 − γ + γ (N − 1) + 1

⎞⎟⎟⎟⎠, (C35)

so that

Tr
[
	

γ ,N
AB EAB

] = 1 +
√

1 − γ . (C36)

This implies that Cβ̂ (Aγ ,N ) ≡ log2 β̂(Aγ ,N ) �
log2 (1 + √

1 − γ ). By strong duality, it holds that
Cβ (Aγ ,N ) = Cβ̂ (Aγ ,N ). Therefore,

Cβ (Aγ ,N ) � log2(1 +
√

1 − γ ), (C37)

for all γ , N ∈ [0, 1]. Putting together (C29) and (C37), we
obtain Cβ (Aγ ,N ) = log2 (1 + √

1 − γ ), as required.
Let us now show that Cζ (Aγ ,N ) = log2 (1 + √

1 − γ ) for
all γ , N ∈ [0, 1]. Recall from (147) that

ζ (N ) =
⎧⎨⎩min. Tr[SB]

subject to VAB � 	NAB,

−1A ⊗ SB � V TB
AB � 1A ⊗ SB.

(C38)
The inequality Cζ (Aγ ,0) � log2 (1 + √

1 − γ ) has been
proven in Ref. [47, Theorem 14]. By inspecting the SDP in
(C38), it is clear that the quantity ζ (N ) is convex in the
channel N . Furthermore, it is invariant under unitary pre- and
postprocessing. Thus, proceeding in a way similar to the proof
of the upper bound Cβ (Aγ ,N ) � log2 (1 + √

1 − γ ) above,

we find that

ζ (Aγ ,N ) = ζ ((1 − N )Aγ ,0 + NAγ ,1) (C39)

� (1 − N )ζ (Aγ ,0) + Nζ (Aγ ,1) (C40)

= (1 − N )ζ (Aγ ,0) + Nζ (Aγ ,0) (C41)

= ζ (Aγ ,0) (C42)

� 1 +
√

1 − γ , (C43)

from which we conclude that

Cζ (Aγ ,N ) � log2(1 +
√

1 − γ ) (C44)

for all γ , N ∈ [0, 1].
To arrive at the opposite inequality, consider that the SDP

dual to the one in (C38) is given by

ζ̂ (N ) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max. Tr

[
KAB	NAB

]
subject to TrA [EAB + FAB] � 1B,

KAB � (EAB − FAB)TB ,

KAB, EAB, FAB � 0,

(C45)
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where the optimization is with respect to the operators
KAB, EAB, FAB. Now, for the GADC, let us make the following
choice for KAB, EAB, FAB:

KAB = 1

2

⎛⎜⎜⎜⎜⎝
1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1

⎞⎟⎟⎟⎟⎠, (C46)

EAB = 1

2

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠, (C47)

FAB = 0. (C48)

Then, we find that the conditions TrA[EAB + FAB] � 1B and
KAB � (EAB − FAB)TB are satisfied with equality. Now,

KAB	
γ ,N
AB = 1

2

⎛⎜⎜⎜⎝
√

1 − γ − Nγ + 1 0 0
√

1 − γ − γ (1 − N ) + 1

0 Nγ 0 0

0 0 γ (1 − N ) 0√
1 − γ − Nγ + 1 0 0

√
1 − γ − γ (1 − N ) + 1

⎞⎟⎟⎟⎠, (C49)

so that taking the trace yields

Tr
[
KAB	

γ ,N
AB

] = 1 +
√

1 − γ . (C50)

We thus conclude that

Cζ̂ (Aγ ,N ) ≡ log2 ζ̂ (Aγ ,N ) (C51)

� log2(1 +
√

1 − γ ). (C52)

By strong duality, it holds that Cζ (Aγ ,N ) = Cζ̂ (Aγ ,N ) for
all γ , N ∈ [0, 1]. Therefore, we have that Cζ (Aγ ,N ) �
log2(1 + √

1 − γ ), and combining this with (C44) means that
Cζ (Aγ ,N ) = log2(1 + √

1 − γ ), as required.

APPENDIX D: COVARIANCE PARAMETER
FOR THE GADC

Using the definition of the diamond norm in (11), we can
write the quantity εcov(Aγ ,N ) as

εcov(Aγ ,N ) = 1

2
max
ψRA

‖(Aγ ,N −Aγ , 1
2
)(ψRA)‖1. (D1)

We first show that the maximum is achieved by tak-
ing |ψ〉RA to be the maximally entangled state, i.e., tak-
ing |ψ〉RA = |�+〉RA = 1√

2
(|0, 0〉RA + |1, 1〉RA). We do this

by making use of Ref. [48, Lemma II.3]. Let |ψ〉RA be an
arbitrary pure state, and let ρA := TrR[ψRA]. We take the group
G = Z2 × Z2 and the Pauli operators {1, σx, σy, σz} and note
that

ρA := 1

4
(ρA + σxρAσx + σyρAσy + σzρAσz ) = 1A

2
. (D2)

Due to this fact, one purification of ρ is the maximally entan-
gled state |�+〉RA. Therefore, by applying Ref. [48, Lemma
II.3] (with the generalized divergence therein taken to be the
trace distance), we obtain

‖Aγ ,N (�+
RA) −Aγ , 1

2
(�+

RA)‖1

�

∥∥∥∥∥∥1

4

∑
g∈G

|g〉〈g|P⊗Ag
γ ,N (ψRA) −1

4

∑
g∈G

|g〉〈g|P⊗Ag
γ , 1

2

(ψRA)

∥∥∥∥∥∥
1

,

(D3)

where Ag
γ ,N := Sg ◦Aγ ,N ◦ Sg, with Sg(·) = Sg(·)Sg and

Sg ∈ {1, σx, σy, σz}. Then, recalling that

σxAγ , 1
2
(σx(·)σx )σx = Aγ , 1

2
(·), (D4)

σzAγ , 1
2
(σz(·)σz )σz = Aγ , 1

2
(·), (D5)

⇒ σyAγ , 1
2
(σy(·)σy)σy = Aγ , 1

2
(·), (D6)

we get thatAg
γ , 1

2

= Aγ , 1
2

for all g ∈ G. Therefore,

‖Aγ ,N (�+
RA) −Aγ , 1

2
(�+

RA)‖1 (D7)

�
∥∥∥∥1

4

∑
g∈G

|g〉〈g|P ⊗ (Ag
γ ,N −Aγ , 1

2
)(ψRA)

∥∥∥∥
1

(D8)

= 1

4

∑
g∈G

‖(Ag
γ ,N −Aγ , 1

2
)(ψRA)‖1, (D9)

where to obtain the last line we used the fact that all of the
operators in the sum in (D8) are supported on orthogonal
spaces. Then, using (80) and (83), which together imply that
σyAγ ,N (σy(·)σy)σy = Aγ ,1−N (·), we get

‖Aγ ,N (�+
RA) −Aγ , 1

2
(�+

RA)‖1 (D10)

� 1
2‖(Aγ ,1−N −Aγ , 1

2
)(ψRA)‖1 (D11)

+ 1
2‖(Aγ ,N −Aγ , 1

2
)(ψRA)‖1. (D12)

Next, we use the fact that Aγ ,N = (1 − N )Aγ ,0 + NAγ ,1 to
get that

‖(Aγ ,N −Aγ , 1
2
)(ψRA)‖1 (D13)

= ∥∥[( 1
2 − N

)
Aγ ,0 − (

N − 1

2

)
Aγ ,1

]
(ψRA)

∥∥
1 (D14)

= ∣∣N − 1
2

∣∣‖(Aγ ,0 −Aγ ,1)(ψRA)‖1 (D15)

and

‖(Aγ ,1−N −Aγ , 1
2
)(ψRA)‖1 (D16)

=
∥∥∥∥[(N − 1

2

)
Aγ ,0 −

(
1

2
− N

)
Aγ ,1

]
(ψRA)

∥∥∥∥
1

(D17)
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=
∣∣∣∣N − 1

2

∣∣∣∣‖(Aγ ,0 −Aγ ,1)(ψRA)‖1 (D18)

= ‖(Aγ ,N −Aγ , 1
2
)(ψRA)‖1. (D19)

Therefore,

‖Aγ ,N (�+
RA) −Aγ , 1

2
(�+

RA)‖1 (D20)

� ‖(Aγ ,N −Aγ , 1
2
)(ψRA)‖1 (D21)

for all pure states ψRA, which implies that

max
ψRA

‖(Aγ ,N −Aγ , 1
2
)(ψRA)‖1

� ‖Aγ ,N (�+
RA) −Aγ , 1

2
(�+

RA)‖1. (D22)

Combined with the inequality

max
ψRA

‖(Aγ ,N −Aγ , 1
2
)(ψRA)‖1 � ‖(Aγ ,N −Aγ , 1

2
)(�+

RA)‖1,

(D23)
which holds simply by restricting the maximization to the
state �+

RA, we obtain

εcov(Aγ ,N ) = 1
2‖(Aγ ,N −Aγ , 1

2
)(�+

RA)‖1 (D24)

for all γ , N ∈ [0, 1].
Finally, to calculate the right-hand side of (D24), we ob-

serve using (D15) that

‖(Aγ ,N −Aγ , 1
2
)(�+

RA)‖1

= ∣∣N − 1
2

∣∣‖(Aγ ,0 −Aγ ,1)(�+
RA)‖1 (D25)

= ∣∣N − 1
2

∣∣‖(Aγ ,1 +Aγ ,0 − 2Aγ ,0)(�+
RA)‖1 (D26)

= |2N − 1|∥∥( 1
2Aγ ,1 + 1

2Aγ ,0 −Aγ ,0
)
(�+

RA)
∥∥

1 (D27)

= |2N − 1|‖(Aγ , 1
2
−Aγ ,0)(�+

RA)‖1 (D28)

= 2|2N − 1|εcov(Aγ ,0). (D29)

Now, it has been shown in Ref. [48, Appendix C] that
εcov(Aγ ,0) = γ

2 . Therefore,

εcov(Aγ ,N ) = 1
2γ |2N − 1| = γ

∣∣N − 1

2

∣∣, (D30)

as required.

APPENDIX E: PROOF OF EQ. (200)

By restricting the optimization on the right-hand side of
(200) to pure states |θ p〉AA′ = √

1 − p|0, 0〉AA′ + √
p|1, 1〉AA′ ,

we obtain

1
2 max

φAA′
I (A; B|E1E2)τ � 1

2 max
θ

p
AA′

I (A; B|E1E2)τ p (E1)

= 1
2 max

p∈[0,1]
I (A; B|E1E2)τ p . (E2)

The remainder of the proof is dedicated to proving the reverse
inequality.

Let φAA′ be an arbitrary pure state, and let ρA′ := TrA[φAA′].
The state τ on which we evaluate the conditional mutual
information on the left-hand side of (E2) is given by

τABE1E2 = (idAB ⊗A 1
2 ,0 ⊗A 1

2 ,0)(|ψ〉〈ψ |ABE ′
1E ′

2
), (E3)

where

|ψ〉ABE ′
1E ′

2
= V γ N,1

B′→BE ′
2
V

γ (1−N )
1−γ N ,0

A′→B′E ′
1
|φ〉AA′ . (E4)

Note that the GADC has only two Kraus operators when the
second parameter is either zero or one. Consequently, for any
γ ′ ∈ [0, 1], we can take the isometric extensions in (E4) to be
of the following form:

V γ ′,0 = A1 ⊗ |0〉 + A2 ⊗ |1〉, (E5)

V γ ′,1 = A3 ⊗ |0〉 + A4 ⊗ |1〉. (E6)

By using an isometric extension of the same form for the
channelA 1

2 ,0, we can write τABE1E2 explicitly as

τABE1E2 = TrF1F2 [|ϕ〉〈ϕ|ABE1E2F1F2 ],

|ϕ〉ABE1E2F1F2

=
(
V

1
2 ,0

E ′
1→E1F1

⊗ V
1
2 ,0

E ′
2→E2F2

)
V γ N,1

B′→BE ′
2
V

γ (1−N )
1−γ N ,0

A′→B′E ′
1
|φ〉AA′ ,

(E7)

Now, the Pauli-z covariance of the GADC is equivalent
to the relations A1σz = σzA1, A2σz = −σzA2, A3σz = σzA3,
and A4σz = −σzA4. Therefore, writing V γ ′,0 as V γ ′,0 = A1 ⊗
σz|0〉 − A2 ⊗ σz|1〉, for any state |ψ〉, we obtain

V γ ′,0σz|ψ〉 = A1σz|ψ〉 ⊗ σz|0〉 − A2σz|ψ〉 ⊗ σz|1〉 (E8)

= σzA1|ψ〉 ⊗ σz|0〉 + σzA2|ψ〉 ⊗ σz|1〉 (E9)

= (σz ⊗ σz )(A1|ψ〉 ⊗ |0〉 + A2|ψ〉 ⊗ |1〉)

(E10)

= (σz ⊗ σz )V γ ′,0. (E11)

Similarly, we have

V γ ′,1σz|ψ〉 = (σz ⊗ σz )V γ ′,1|ψ〉 (E12)

for all states |ψ〉.
Next, we observe that by using the definition of the condi-

tional mutual information in (51), along with the definition of
the conditional entropy, we can write I (A; B|E1E2)τ as

I (A; B|E1E2)τ = H (B|E1E2)τ − H (B|E1E2A)τ

= H (B|E1E2)ϕ + H (B|F1F2)ϕ, (E13)

where to obtain the last line we used the fact that the state
|ϕ〉ABE1E2F1F2 in (E7) is pure; in particular,

H (B|E1E2A)τ = H (ABE1E2)τ − H (E1E2A)τ (E14)

= H (F1F2)ϕ − H (BF1F2)ϕ (E15)

= −H (B|F1F2)ϕ. (E16)

Now, since the right-hand side of (E13) does not contain the
A system, the quantity is a function solely of the state ρA′ . For
convenience, let us define a function F by

F (ρA′ ) = I (A; B|E1E2)τ = H (B|E1E2)ϕ + H (B|F1F2)ϕ,

(E17)
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where

ϕBE1E2F1F2 ≡ ϕBE1E2F1F2 (ρA′ )

=
(
V

1
2 ,0

E ′
1→E1F1

⊗ V
1
2 ,0

E ′
2→E2F2

)
V γ N,1

B′→BE ′
2
V

γ (1−N )
1−γ N

A′→B′E ′
1
ρA′

×
(

V
γ (1−N )
1−γ N

A′→B′E ′
1

)†(
V γ N,1

B′→BE ′
2

)†(
V

1
2 ,0

E ′
1→E1F1

⊗ V
1
2 ,0

E ′
2→E2F2

)†

(E18)
Using the relations in (E11) and (E12), we get

ϕBE1E2F1F2 (σzρA′σz ) = σ⊗5
z ϕBE1E2F1F2 (ρA′ )σ⊗5

z , (E19)

which implies that F (σzρA′σz ) = F (ρA′ ). Furthermore, since
the conditional entropy is concave, so is the function F . We
thus obtain

F
(

1
2ρA′ + 1

2σzρA′σz
)
� 1

2 F (ρA′ ) + 1
2 F (σzρA′σz ) (E20)

= F (ρA′ ). (E21)

Now, observe that the state 1
2ρA′ + 1

2σzρA′σz is diagonal in
the standard basis, meaning that it has a purification of
the form |θ p〉AA′ = √

1 − p|0, 0〉AA′ + √
p|1, 1〉AA′ for some

p ∈ [0, 1], say, p∗. Therefore, by restricting the optimization
1
2 maxp∈[0,1] I (A; B|E1E2)τ p = 1

2 maxθ
p
AA′ I (A; B|E1E2)τ p to p∗,

we get

1
2 max

p∈[0,1]
I (A; B|E1E2)τ p � F

(
1
2ρA′ + 1

2σzρA′σz
)

(E22)

� 1
2 F (ρA′ ) (E23)

= 1
2 I (A; B|E1E2)τ . (E24)

Since the state ρA′ was arbitrary, we get that
1
2 max

p∈[0,1]
I (A; B|E1E2)τ p � 1

2 max
φAA′

I (A; B|E1E2)τ . (E25)

Combining with the inequality in (E2), we get
1
2 max

φAA′
I (A; B|E1E2)τ = 1

2 max
p∈[0,1]

I (A; B|E1E2)τ p, (E26)

as required.

APPENDIX F: PROOF OF PROPOSITION 9

We start by showing that

Emax(Aγ ,N ) = log2

[
1 − γ

2
+ 1

2

√
(γ (2N − 1))2 + 4(1 − γ )

]
(F1)

for all γ , N such that the GADC Aγ ,N is not entanglement
breaking. If the channel Aγ ,N is entanglement breaking, then
the Choi matrix 	

γ ,N
AB is separable and PPT, so that we can

pick the variable YAB in the SDP (66) to be 	
γ ,N
AB , for which

we have ‖ TrB[YAB]‖∞ = 1. This means that Emax(Aγ ,N ) = 0
in this case. In what follows, we thus assume thatAγ ,N is not
entanglement breaking.

We first establish an upper bound on �(Aγ ,N ) by employ-
ing the SDP in (66). To determine an ansatz for the variable
YAB therein, we first consider the positive partial transpose of
the Choi matrix 	

γ ,N
AB from (104):(

	
γ ,N
AB

)TB

=

⎛⎜⎜⎜⎝
1 − γ N 0 0 0

0 γ N
√

1 − γ 0

0
√

1 − γ γ (1 − N ) 0

0 0 0 1 − γ (1 − N )

⎞⎟⎟⎟⎠.

(F2)

To determine the positive semidefiniteness of this matrix,
it suffices to focus on the inner 2 × 2 matrix, given that
1 − γ N � 0 and 1 − γ (1 − N ) � 0 for all γ , N ∈ [0, 1]. The
eigenvalues of the inner 2 × 2 matrix are given by

λ± ≡ 1
2 {γ ±

√
[γ (2N − 1)]2 + 4(1 − γ )}. (F3)

We have that λ+ � 0 for all γ , N ∈ [0, 1]. The condition
λ− � 0 is equivalent to the channel not being entanglement
breaking. If we add −λ−1 to the inner 2 × 2 matrix, then
it becomes positive semidefinite. This leads to the following
ansatz for the matrix YAB:

YAB = 	
γ ,N
AB −

⎛⎜⎜⎜⎝
0 0 0 0

0 λ− 0 0

0 0 λ− 0

0 0 0 0

⎞⎟⎟⎟⎠ (F4)

=

⎛⎜⎜⎜⎝
1 − γ N 0 0

√
1 − γ

0 γ N − λ− 0 0

0 0 γ (1 − N ) − λ− 0√
1 − γ 0 0 1 − γ (1 − N )

⎞⎟⎟⎟⎠. (F5)

By construction, we have that

YAB − 	
γ ,N
AB � 0, (F6)

Y TB
AB � 0, (F7)

so that YAB satisfies the constraints of the SDP in (66). Now,
computing TrB[YAB] gives

TrB[YAB] =
(

1 − λ− 0
0 1 − λ−

)
, (F8)
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which implies that ‖ TrB[YAB]‖∞ = 1 − λ−. Therefore,

�(Aγ ,N ) � 1
2 {2 − γ +

√
[γ (2N − 1)]2 + 4(1 − γ )}. (F9)

We now establish a lower bound on �(Aγ ,N ) by consider-
ing the SDP dual to the one in (66), namely,

�̂(N ) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max. Tr

[
	NABPAB

]
subject to PAB, QAB � 0,

PAB + QTB
AB � ρA ⊗ 1B,

ρA � 0,

Tr[ρA] � 1.

(F10)

By strong duality, it follows that these optimization problems
have equal solutions, i.e., �̂(N ) = �(N ) for all quantum
channels N .

Now, let

a ≡
√

[γ (2N − 1)]2 + 4(1 − γ ), (F11)

b ≡ a − (2N − 1)γ

2a
. (F12)

Note that b ∈ [0, 1] for all γ , N ∈ [0, 1]. Then, let

ρA =
(

b 0

0 1 − b

)
, (F13)

PAB =

⎛⎜⎜⎜⎝
b 0 0 1

a

√
1 − γ

0 0 0 0

0 0 0 0
1
a

√
1 − γ 0 0 1 − b

⎞⎟⎟⎟⎠, (F14)

QAB =

⎛⎜⎜⎜⎝
0 0 0 0

0 b − 1
a

√
1 − γ 0

0 − 1
a

√
1 − γ 1 − b 0

0 0 0 0

⎞⎟⎟⎟⎠. (F15)

We have that ρA � 0 and Tr[ρA] = 1 for all γ , N ∈ [0, 1].
Also, for all γ , N ∈ [0, 1], the eigenvalues of the corners
submatrix of PAB are equal to zero and one, implying that
PAB � 0. Similarly, for all γ , N ∈ [0, 1], the eigenvalues of
the inner submatrix of QAB are equal to zero and one, implying
that QAB � 0. Furthermore, we have that

QTB
AB =

⎛⎜⎜⎜⎝
0 0 0 − 1

a

√
1 − γ

0 b 0 0

0 0 1 − b 0

− 1
a

√
1 − γ 0 0 0

⎞⎟⎟⎟⎠, (F16)

ρA ⊗ 1B =

⎛⎜⎜⎜⎝
b 0 0 0

0 b 0 0

0 0 1 − b 0

0 0 0 1 − b

⎞⎟⎟⎟⎠, (F17)

and so we have that PAB + QTB
AB � ρA ⊗ 1B (in fact, this in-

equality is saturated). Thus, all the constraints in (F10) are
satisfied. Then, since

Tr
[
	

γ ,N
AB PAB

] = 1
2 {2 − γ +

√
[γ (2N − 1)]2 + 4(1 − γ )},

(F18)
we have that

�̂(Aγ ,N ) � 1
2 {2 − γ +

√
[γ (2N − 1)]2 + 4(1 − γ )}.

(F19)

This means that

�(Aγ ,N ) = 1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ ), (F20)

thus establishing (F1).
We now show that

Rmax(Aγ ,N ) = log2

{
1−γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ )

}
.

(F21)
Due to the inequality in (67), namely, Rmax(Aγ ,N ) �
Emax(Aγ ,N ), it suffices to show that

Rmax(Aγ ,N ) � log2

{
1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ )

}
(F22)

whenAγ ,N is not entanglement breaking.
When the channel Aγ ,N is entanglement breaking, then

the Choi matrix 	
γ ,N
AB is separable and PPT. This means

that we can pick VAB = (	γ ,N
AB )TB and YAB = 0 in (62),

for which ‖ TrB[VAB + YAB]‖∞ = ‖ TrB[VAB]‖∞ = 1, imply-
ing that Rmax(Aγ ,N ) = 0 in this case. In what follows, we thus
assume thatAγ ,N is not entanglement breaking.

First, the SDP dual to the one in (62) is

̂(N ) =

⎧⎪⎨⎪⎩
max. Tr

[
	

γ ,N
AB RAB

]
subject to −ρA ⊗ 1B � RTB

AB � ρA ⊗ 1B,

ρA � 0, Tr[ρA] � 1.

(F23)
By strong duality, it holds that ̂(N ) = (N ).

Let a ∈ [0, 1], which we will specify in more detail later as
a function of γ and N . We pick

ρA =
(

a 0

0 1 − a

)
, (F24)

RAB =

⎛⎜⎜⎜⎝
a 0 0 2a(1−a)

0 a(1 − 2a) 0 0

0 0 −(1−a)(1−2a) 0

2a(1 − a) 0 0 1 − a

⎞⎟⎟⎟⎠.

(F25)

Note that ρA � 0 and Tr[ρA] = 1. Also, consider that

RTB
AB =

⎛⎜⎜⎜⎝
a 0 0 0

0 a(1 − 2a) 2a(1 − a) 0

0 2a(1 − a) −(1 − a)(1 − 2a) 0

0 0 0 1 − a

⎞⎟⎟⎟⎠,

(F26)

ρA ⊗ 1B =

⎛⎜⎜⎜⎝
a 0 0 0

0 a 0 0

0 0 1 − a 0

0 0 0 1 − a

⎞⎟⎟⎟⎠, (F27)

implying that

RTB
AB + ρA ⊗ 1B = 2

⎛⎜⎜⎜⎝
a 0 0 0

0 a(1 − a) a(1 − a) 0

0 a(1 − a) a(1 − a) 0

0 0 0 1 − a

⎞⎟⎟⎟⎠,

(F28)
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which is positive semidefinite since a ∈ [0, 1]. Also, we have
that

ρA ⊗ 1B − RTB
AB = 2

⎛⎜⎜⎜⎝
0 0 0 0

0 a2 −a(1 − a) 0

0 −a(1 − a) (1 − a)2 0

0 0 0 0

⎞⎟⎟⎟⎠,

(F29)
which has eigenvalues equal to zero and 2(1 − 2a(1 − a)), the
latter being non-negative for all a ∈ [0, 1]. Thus, our choice of
ρA and RAB satisfies the constraints in (F23). Now, computing
Tr[	γ ,N

AB RAB], we find that

Tr
[
	

γ ,N
AB RAB

] = g(a, γ , N )

≡ 1 − 2(1 − N )γ − 2a2(2
√

1 − γ + γ )

+4a[
√

1 − γ + γ (1 − N )]. (F30)

We now choose a such that the equation

1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ ) = g(a, γ , N ) (F31)

is satisfied. It has solutions

a =
c1 ±

√
c2

1 + c2[(4N − 3)γ − c3]

c2
, (F32)

where

c1 ≡ 4[
√

1 − γ + γ (1 − N )], (F33)

c2 ≡ 4(2
√

1 − γ + γ ), (F34)

c3 ≡
√

[γ (2N − 1)]2 + 4(1 − γ ) (F35)

Note that the solutions for a in (F32) satisfy a ∈ [0, 1] for all
γ , N such that the GADC is not entanglement breaking. Thus,
for this choice of a, we conclude that

̂(N ) � 1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ ). (F36)

We thus have that

Rmax(Aγ ,N ) = Emax(Aγ ,N )

= 1 − γ

2
+ 1

2

√
[γ (2N − 1)]2 + 4(1 − γ ),

(F37)

as required.
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