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Quantum parameter estimation of the frequency and damping of a harmonic oscillator
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We determine the quantum Cramér-Rao bound for the precision with which the oscillator frequency and
damping constant of a damped quantum harmonic oscillator in an arbitrary Gaussian state can be estimated. This
goes beyond standard quantum parameter estimation of a single-mode Gaussian state for which typically a mode
of fixed frequency is assumed. We present a scheme through which the frequency estimation can nevertheless be
based on the known results for single-mode quantum parameter estimation with Gaussian states. Based on these
results, we investigate the optimal measurement time. For measuring the oscillator frequency, our results unify
previously known partial results and constitute an explicit solution for a general single-mode Gaussian state.
Furthermore, we show that with existing carbon nanotube resonators see J. Chaste et al. [Nat. Nanotechnol. 7,
301 (2012)] it should be possible to achieve a mass sensitivity of the order of an electron mass Hz−1/2.
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I. INTRODUCTION

The harmonic oscillator is one of the most important model
systems in all of physics. It is exactly solvable, both classically
and quantum mechanically, and plays a fundamental role in
quantum field theories, where its elementary excitations can
be identified with, e.g., photons or phonons. The harmonic
oscillator arises as the low-amplitude limit of a much wider
class of nonharmonic oscillators, and its regular motion is at
the basis of time and frequency measurements. Indeed, the
most precise measurements of a physical quantity are often
achieved when transducing their variations into frequency
changes. It is therefore of utmost importance to figure out
how precisely the two characteristic quantities of a harmonic
oscillator, namely, its frequency and its damping, can be
measured in principle. A partial answer was provided in
[1], where the quantum Cramér-Rao bound (QCRB) for the
frequency measurement of an undamped harmonic oscilla-
tor in an arbitrary pure quantum state was calculated. The
QCRB is the ultimate lower bound for the uncertainty with
which a parameter can be estimated. It is optimized over
all possible positive operator-valued measurements (a class
of measurements that includes but is more general than the
usual projective von Neumann measurements) and over all
data analysis procedures (in the sense of unbiased estimator
functions of the measurement results alone). It becomes rele-
vant when all technical noise sources are eliminated, and only
the noise inherent in the quantum state remains. Importantly,
the QCRB can be saturated in the limit of a large number of
measurements.

A damped harmonic oscillator leads, however, naturally to
mixed quantum states, and for those the calculation of the
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QCRB is much more difficult than for pure states, owing to
the need to diagonalize the density operator in an infinitely
dimensional Hilbert space. In [2] an attempt was made to
obtain the QCRB for the frequency of a kicked and damped
oscillator [3], by using the formulas for Gaussian states.
Indeed, in [4] the exact QCRB was found for any of the five
parameters that uniquely fix an arbitrary Gaussian state of a
harmonic oscillator. However, those formulas were derived for
an oscillator of fixed frequency, and they cannot be directly
applied for frequency estimation. Doing so would amount to
considering the Hamiltonian H = h̄ωa†a as a generator of a
phase shift, i.e., the unknown parameter ω multiplies a Her-
mitian generator, whose variance gives, up to a factor of 4, the
pure-state quantum Fisher information (QFI). However, this
ignores that the annihilation and creation operators themselves
depend on ω. That they do so is most easily seen by writing
them in the Fock basis and realizing that the wave functions
corresponding to the energy eigenstates depend on ω through
the oscillator length. Physically, ignoring the ω dependence
of a, a† hence implies that one neglects the ω dependence
of the energy eigenstates, which is particularly important
at small times, i.e., much smaller than the period of the
oscillator.

One might then think that calculating the QCRB for
the damped harmonic oscillator is a hopeless endeavor if the
formulas for the Gaussian states cannot be applied, and the
state is not already diagonalized. Here we show, however,
that there is a well-defined procedure that allows one to use
these formulas nevertheless for the large and experimentally
most relevant class of initial Gaussian states, by carefully
incorporating the consequences of a change of frequency. This
allows us to fully solve the problem of parameter estimation
of a (weakly) damped harmonic oscillator, described by a
Lindblad master equation (ME).
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II. GENERAL FRAMEWORK

We start by briefly describing the dynamics of a damped
harmonic oscillator. Afterwards we review the closed-form
expression for the general quantum Fisher information for
single-mode Gaussian states [4].

A. Dynamics

We consider a quantum harmonic oscillator with bare
frequency ω weakly coupled to a Markovian environment.
Assuming the validity of the Born-Markov approximation and
the rotating-wave approximation, the density matrix ρ of the
oscillator evolves according to the quantum optical ME [5,6],

dρ

dt
= −iω[â†â, ρ] + γ

2
n̄(2â†ρâ − ââ†ρ − ρââ†)

+ γ

2
(n̄ + 1)(2âρâ† − â†âρ − ρâ†â), (1)

where we have introduced the mean thermal photon number
of the bath n̄ = (ex − 1)−1 at frequency ω, the dimensionless
inverse temperature x ≡ h̄ω/kBT , and the damping constant
γ . Quantum mechanical oscillators are more commonly de-
scribed in the literature by a quantum Brownian motion ME,
expressed in terms of position and momentum operators q̂ and
p̂. However, the two are closely related: it has been shown
that the most general Markovian ME bilinear in q̂ and p̂ turns
into the quantum optical ME when requesting a thermal steady
state and phase covariance in the creation and annihilation op-
erators a†, a, whereas the quantum Brownian motion master
equation is obtained when requesting translational invariance
of the dissipative part [7,8]. When the latter is formulated in
terms of creation and annihilation operators, it takes a form
very similar to Eq. (1) (compare Eqs. (10) and (18) in [8]).
For the sake of simplicity we therefore restrict ourselves to
Eq. (1).

By introducing the quadrature operator X = (q̂, p̂)T,
the three-dimensional vector S(t ) = (Mωσqq, σpp/Mω, σpq )T,
where σAB ≡ 1/2 × 〈AB + BA〉 − 〈A〉〈B〉, and by using the
ME, (1), one finds the equations of motion [9]

d〈X〉(t )

dt
= G〈X〉(t ), (2a)

dS(t )

dt
= KS(t ) + Sinh, (2b)

where

G =
( −γ /2 1/M

−Mω2 −γ /2

)
, K =

⎛
⎝−γ 0 2ω

0 −γ −2ω

−ω ω −γ

⎞
⎠,

(2c)
and Sinh = γ h̄(2n̄ + 1)/2 (1, 1, 0)T. The solutions of the time
evolution of the first-order moments are given by 〈X〉(t ) =
exp(Gt )〈X〉(0). For the second-order moments we get S(t ) =
exp(Kt )S(0) + K−1(exp(Kt ) − I )Sinh, where I denotes the
identity operator.

The two phase-space coordinates q̂ and p̂ are linked to
the annihilation and creation operators âω and â†

ω of the

mode by

q̂ =
√

h̄

2Mω
(â†

ω + âω ), (3a)

p̂ = i

√
h̄

2
Mω(â†

ω − âω ). (3b)

Summing up, ω, γ , and n̄ are coded into a state by the
dynamics, (1), but in addition, a state specified initially, e.g.,
in the Fock basis acquires an ω dependence due to the ω

dependence of the harmonic oscillator energy eigenstates
(oscillator length).

B. QFI of single-mode Gaussian states

1. Gaussian state

The Wigner function for an arbitrary density matrix ρ of
a continuous variable system with a single degree of freedom
(such as a single harmonic oscillator) is defined by [10]

W (q, p) = 1

π h̄

∫ ∞

−∞
e−2ipy/h̄〈q − y|ρ|q + y〉dy. (4)

By definition, a Gaussian state is a state whose Wigner
function is Gaussian. Thus, for a Gaussian state of a single
harmonic oscillator (such as a single mode of an electromag-
netical field) the Wigner function takes the general form [11]

W (q, p) = P

π
exp

[
−1

2
(X − 〈X〉)T�−1(X − 〈X〉)

]
, (5)

where X = (q̂, p̂)T is the quadrature operator, � is the covari-
ance matrix, 〈. . .〉 ≡ tr(ρ . . .) defines the expectation value,
and P = trρ2 is the purity. For single-mode Gaussian states
the purity is completely described by the covariance matrix
and is given by [12]

P = h̄

2
√

det(�)
. (6)

Next, we recall that a general single-mode Gaussian state
ρ can always be represented as a rotated squeezed displaced
thermal state ν [11,13], i.e.,

ρ = R(ψ )D(α)S(z)νS†(z)D†(α)R†(ψ ), (7)

where S(z) = exp[(1/2)(zâ†2 − z∗â2)] is the squeezing oper-
ator, R(ψ ) = exp(iψ â†â) denotes the rotation operator, and
D(α) = exp(αâ† − α∗â) introduces the displacement opera-
tor. By introducing Nth = tr(νâ†â), which denotes the number
of initial thermal photons, and z = reiχ , the general Gaussian
state can be parametrized by five real parameters: α, ψ, r, χ ,
and Nth ∈ R. Note that we keep Nth and n̄ as independent
parameters.

2. Quantum Fisher information

We start from a density operator ρθ , which depends on
an unknown real scalar parameter θ . To estimate this pa-
rameter, m independent measurements with the outcome ξ =
(ξ1, ξ2, . . . , ξm)T are taken. From the outcome we construct
an estimator θ̂est. For unbiased estimators the sensitivity with
which a parameter θ can be measured has a lower bound, the
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so-called quantum Cramér-Rao bound, given by [14–17]

Var[θ̂est] �
1

m I (ρθ ; θ )
, (8)

where I (ρθ ; θ ) denotes the QFI. The fidelity, defined by
F (ρ1, ρ2) = {tr[(√ρ1ρ2

√
ρ1)1/2]}2, for two arbitrary single-

mode Gaussian states ρ1 and ρ2 is given by [18]

F (ρ1, ρ2) = 2 exp
[− 1

2 (〈X1 − X2〉)T(�1 + �2)−1〈X1 − X2〉
]

√|�1 + �2| + (1 − |�1|)(1 − |�2|) − √
(1 − |�1|)(1 − |�2|)

. (9)

This formula is valid generally for two Gaussian Wigner
functions, regardless of the underlying physical system. It
therefore remains valid if the two Wigner functions represent
states of two different harmonic oscillators, notably harmonic
oscillators that can differ in frequency. Using, further, the fact
that the fidelity is linked to the QFI through [4]

I (ρθ ; θ ) = −2
∂2F (ρθ , ρθ+ε )

∂ε2

∣∣∣∣
ε=0

, (10)

one obtains the general QFI for Gaussian states of a single
harmonic oscillator of fixed frequency [4],

I(ρθ ; θ ) = 1

2

tr
[
(�−1∂θ�)2

]
1 + P2

+ 2
(∂θP)2

1 − P4

+ (∂θ 〈X〉)T�−1∂θ 〈X〉. (11)

By following the approach adopted by Jiang in Ref. [19] the
same result can be obtained [20].

III. UNDAMPED CASE

This section provides a scheme for the calculation of and
results for the QFI relevant for estimating the frequency ω

in the case of no damping. One can distinguish physical
situations that differ in the way the parameter ω is imprinted
on the state. The situation we focus on is an initial state
independent of ω, i.e., a Gaussian state prepared starting
from a thermal state of an oscillator with frequency ω0,
and squeezing, shift, and rotation performed with operators
of frequency ω0 as well. This is the typical situation for
measuring an adsorbed mass through a frequency shift: the
oscillator has an initial frequency ω0 and a state (thermal,
coherent, squeezed, or other) is prepared for that oscillator.
An adsorbed mass instantaneously changes the frequency of
the oscillator to ω, and the initial state is hence propagated
with a new Hamiltonian Hω corresponding to frequency ω,
including creation and annihilation operators at frequency ω.
Hence, the full dependence of Hω on ω must be taken into
account, but not of the initial state.

Another physical situation results if also the initial state
depends on ω rather than on ω0. It has as a consequence that
an initial thermal state at frequency ω shows no dynamics
under the propagation with Hω. On the other hand, in such
a situation quantum Fisher information is finite even for
zero measurement time, as the ω dependence is imprinted
on the state not via the dynamics, but simply through the ω

dependence of all the Fock states (and the Boltzmann weights
in the case of a thermal state). We briefly comment on this
unusual situation in Sec. III B.

A. Scheme for the estimation of the quantum Fisher information

We first illustrate that by directly using Eq. (11) for a
frequency measurement while ignoring the frequency depen-
dence of â†, â, one does not get the full QFI. Then we justify
that one can still use Eq. (11) if one treats the squeezing due
to frequency change correctly, which leads to the scheme we
propose.

To see that by ignoring the ω dependence of â and â†,
one does not get the correct QFI, we use the known and
simple results of the QFI for pure states and a phase shift
Hamiltonian, i.e., where the parameter to be measured multi-
plies a Hermitian generator. The Hamiltonian of the harmonic
oscillator H = h̄ω(â†â + 1/2) clearly has this form of a phase
shift Hamiltonian if ω is the parameter and â, â† are taken as
independent of ω. The dynamics of the system is described
by ρω(t ) = U (t )ρ(0)U †(t ), where U (t ) = exp(−itH/h̄) is
the time evolution operator. For an initial pure state ρ0 =
|ψ0〉〈ψ0| independent of ω and neglecting the ω dependence
of a, a†, the QFI is then simply given by (four times) the
variance of the generator in the initial state [21,22],

I (ρω(t ); ω) = 4 Var[t (â†â + 1/2), |ψ0〉], (12)

where Var[A, |ψ0〉] ≡ 〈ψ0|A2|ψ0〉 − 〈ψ0|A|ψ0〉2 denotes the
variance. For a general pure Gaussian state in the form of
Eq. (7), i.e., |ψ0〉 = R(ψ )D(α)S(reiχ )|0〉, evaluation of (12)
leads straightforwardly to the QFI

I(ρω(t ); ω) = 4α2t2[cosh(2r) + cos(χ ) sinh(2r)]

+ 2t2 sinh2(2r). (13)

Now we show that exactly the same result for the QFI is found
by directly using Eq. (11), i.e., without taking into account the
ω dependence of a, a†. For this we first use that we can write
the time-evolved density operator as

ρω(t ) = R(ζ )D(α)S(z)|0〉〈0|S†(z)D†(α)R†(ζ ), (14)

where ζ = ψ − ωt . The general formula, (11), was evaluated
in [4] for a ρω(t ) of this form, with the result

I(ρω(t ); ζ ) = 4α2

(
σ 2 cos2(χ ) + 1

σ 2
sin2(χ )

)

+ (1 − σ 4)2

2σ 4
; (15)

see Eq. (16) in [4] for purity P0 = 1. With σ = e−r , Eq. (15)
can be rewritten as [23]:

I(ρω(t ); ζ ) = 4α2[cosh(2r) + cos(χ ) sinh(2r)]

+ 2 sinh2(2r). (16)

The error propagation law based on d/dω = −td/dζ leads
to multiplication of (16) by t2 if we calculate the QFI with
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respect to ω rather than with respect to ζ , and so we get the
same result as obtained with Eq. (13), for which we have
demonstrated that it does not contain the ω dependence of
the basis. Hence, direct evaluation of (11) without taking into
account the ω dependence of â and â† gives an incomplete
result for the QFI.

Having demonstrated that naively applying Eq. (11), i.e.,
without taking into account the frequency dependencies of
â and â†, leads to the wrong result, we now introduce the
scheme that we have developed for calculating the full QFI:

(1) Start with an initial Gaussian state given in the Fock
basis {|n〉ω0}.

(2) Perform a sudden change of frequency ω0 → ω, which
corresponds to a squeezing, at time t = 0.

(3) Evolve the quantum state with respect to the new
frequency ω.

(4) Estimate the QFI I(ρω(t ); ω) by using Eq. (11).
(5) Take the limit ω → ω0.
The sudden change in frequency ω0 → ω at time t = 0

ensures that also the frequency dependence of the basis is
considered. Furthermore, it can be shown that the frequency
jump corresponds to squeezing (see Appendix A), i.e.,

|n〉ω0 = Sω(s)|n〉ω, (17)

where s = − tanh−1(y1) and y1 = (ω0 − ω)/(ω0 + ω).
It should be noted that the introduced scheme is only

needed to determine the QFI for a frequency measurement
using Eq. (11). For pure states, for example, the QFI can be
determined directly from the overlaps of the states propagated
with slightly different frequencies [1] or, equivalently, from
the variance of the local generator, if the ω dependence of
âω, â†

ω is taken into account (see Appendix B). In Appendix D
we show that the same result as the one from the scheme
introduced above is also obtained from (11) when taking into
account the ω dependence of all the operators (squeezing,
shift, and rotation) through their dependence on âω and â†

ω.
Furthermore, since the Fock basis does not depend on the
damping constant, the introduced scheme is not needed for
calculating the QFI for the estimation of γ .

B. ω dependence of the initial state

We here briefly consider the second physical situation
where the initial state depends on ω rather than on ω0. Such
a situation arises, e.g., if a harmonic oscillator with variable
frequency ω thermalizes due to contact with a thermal heat
bath at fixed temperature T . It is clear that in this case the
QFI should be different from 0 even without any propagation
at all, with the consequence that one could get information
about the frequency of the oscillator, e.g., solely observing its
noise, without the need to observe any oscillations. Using (11)
leads to

I (ν; ω) = 1

2ω2

[
1 + 2Nth(1 + Nth )

1 + 2Nth(1 + Nth)

+ 2Nth(1 + Nth) ln2

(
1 + Nth

Nth

)]
. (18)

In particular, this implies the finite QFI I(|0〉〈0|; ω) = 1/2ω2

for the ground state. One can infer the frequency of the

oscillator from measuring the fluctuations of the quadratures
in the ground state. The resulting signal-to-noise ratio is of
order 1 and hence cannot compete with a frequency measure-
ment of an excited oscillator [see, e.g., (25)]. However, in
a multimode case, where another parameter to be measured,
e.g., the length of a cavity, modifies the frequency of all modes
at the same time [24], a QFI proportional to the number of
modes can be obtained, which makes such a scheme more in-
teresting. For experimentally relevant sensitivities per square
of hertz, also the preparation and measurement times have to
be taken into account, such that the information gain per unit
time remains finite.

C. Result for the QFI for vanishing damping

By using the introduced scheme we now determine the QFI
for the estimation of ω for the general Gaussian state given
by Eq. (7). For the time evolution of the Gaussian state with
the harmonic oscillator H = h̄ω(â†

ωâω + 1/2) the result below
follows (see Appendix C)

ω2I(ρ(τ ); ω) = C3 + 2C1 sin2(τ ){sinh2(2r)

× cos2(χ+2ψ−τ )+1+2C2α
2[cosh(2r)

+ cos(χ + 4ψ − 2τ ) sinh(2r)]}
+ 2C1τ sin(τ ){4C2α

2 cos(2ψ − τ ) cosh(2r)

+ cos(χ + 2ψ − τ )[4C2α
2 sinh(2r)

+ sinh(4r)]} + 2C1τ
2{2C2α

2[cosh(2r)

+ cos χ sinh(2r)] + sinh2(2r)}, (19)

where τ = ωt and

C1 = (1 + 2Nth )2

1 + 2Nth(1 + Nth )
, (20a)

C2 = 1

C1(1 + 2Nth )
, (20b)

C3 = Nth(1 + Nth )

[
ln

(
1 + Nth

Nth

)]2

. (20c)

The first term (C3) in Eq. (19) results from the ω depen-
dence of the initial photon number Nth, the second term is due
to the ω dependence of the Fock basis, and the term ∝t2 arises
from â†, â as the generator of the time evolution.

For an initial thermal state ρ(0) = ν, Eq. (19) reduces to

I(ν(τ ); ω) = 2C1 sin2(τ ) + C3

ω2
. (21)

Thus, a measurement with t > π/2ω does not provide any ad-
ditional information regarding the frequency and the QFI has
an upper bound (2C1 + C3)/ω2—where C1 itself is bounded
by C1 ∈ [1, 2] ∀Nth and C3 is bounded by C3 ∈ [0, 1] ∀Nth.
Furthermore, the result demonstrates that one can measure the
frequency of a mode of an electromagnetic field without any
light at all, just from the vacuum fluctuations. The latter have
been measured directly in [25].

While our results from Eq. (19) agree with the obtained
QFI for a coherent state [1], our result in Eq. (21) contains
an extra term, C3/ω

2, due to the consideration of the ω

dependence of Nth neglected in [1]. It should also be noted
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that our result agrees with the result by calculating the QFI
via the variance in the case of a general pure Gaussian state
(see Appendix B).

D. Optimal state

The QFI can be drastically increased by displacing and/or
squeezing the initial thermal state. In both cases, the QFI
acquires a part proportional to t2 that always dominates at
sufficiently large times. For an initial state displaced with
α ∈ R, the part proportional to t2 has its maximum at χ = 0.
We further point out that the long-term behavior of the QFI
for a squeezed thermal state also improves due to additional
displacing.

The optimal choice of thermal photons Nth depends on
the initial state. If the QFI is dominated by the terms due
to the squeezing, a large number of photons is favorable. If,
on the other hand, the terms due to the displacement, which
are ∝(1 + 2Nth)−1, dominate, the lowest possible number of
photons is desirable. The behavior can be well explained by
the Wigner function. A larger Nth is equivalent to a wider
distribution of the state. This means that a small shift in the
Wigner function of the displaced state, e.g., due to the time
evolution, is less measurable for larger Nth. Consequently, the
enlargement of the thermal photons counteracts the additional
gain of the displacement. The benefits of squeezing, on the
other hand, increase with the thermal photon number. This can
be seen directly from Eq. (19), since its QFI is proportional to
C1, which is also the only term that increases with Nth.

IV. DAMPED CASE

In this section we calculate the QFI for mixed Gaussian
states for the damped harmonic oscillator for estimating the
oscillator frequency and damping constant. Furthermore, we
determine the optimal measuring scheme and the optimal
measuring time and we demonstrate that with existing carbon
nanotube resonators it should be possible to achieve a mass
sensitivity of the order of an electron mass Hz−1/2.

A. Measuring the oscillator frequency

By sticking to the scheme explained in Sec. III A, we obtain
the exact expression for the QFI for a general initial Gaussian
state by considering the time evolution given by the ME,
(1), which can be found in Appendix C, Eqs. (C7) to (C12).
However, since the solution is too heavy to report here, we
first look at the long-term behavior and then limit ourselves to
specific initial states—the coherent state and squeezed state.

1. Long-term behavior

For longer periods, the solution of ME, (1), relaxes to the
thermal equilibrium state, i.e., for t � γ −1,

ρ
t�γ −1

−−−→ e−h̄ω/kBT /tr(e−h̄ω/kBT ) ≡ ρ∞. (22)

It should be remembered that the thermal equilibrium state as
well as the mean thermal photon number n̄ also depends on
the oscillator frequency ω itself. It can therefore be expected
that the QFI does not vanish due to the dependency of the final
state on the frequency. Since both first-order moments vanish,

FIG. 1. The long-term behavior of the dimensionless QFI,
ω2 I (ρ∞; ω), for a damped Gaussian state for measuring ω is shown
as a function of the thermal photon number of the bath. In the limit
of validity of (1), the result is independent of the damping constant.

i.e., limt→∞〈X〉 = 0, only the first two terms in Eq. (11)
contribute to the QFI and calculation yields

I(ρ∞; ω) = 1

2ω2

[
2n̄(1 + n̄) ln2

(
1 + n̄

n̄

)

+ 1 + 4n̄(1 + n̄)

1 + 2n̄(1 + n̄)

]
. (23)

This means that for large times, the QFI has an upper bound
given by 2/ω2 (see Fig. 1). The upper bound can be reached
in the high-temperature limit. As a consequence, a longer
measurement does not necessarily yield a better result for the
experiment. In other words, there is an optimal measurement
time (OMT) in which the frequency can be measured best,
which is in accordance with the physical expectations.

2. Optimal measurement time and maximal quantum
Fisher information

Coherent state: We start by considering an initial coherent
state ρα (0) = D(α)|0〉〈0|D†(α). Recall that displacing the
initial state is one of the possibilities to strongly increase the
QFI in the undamped case. Since displacing the ground state
affects only the expectation values of the quadrature operators
and not the covariance matrix, the QFI of the coherent state
can be written as

I(ρα (τ ); ω) = I(ρ0(τ ); ω) + Iα (τ ), (24)

where ρ0(τ ) denotes the time-evolved ground state and
Iα (τ ) = (∂ω〈X〉)T�−1∂ω〈X〉. The QFI of the ground state is
bounded by 2.135/ω2 (see Appendix C). Thus, the upper
bound of the QFI for the ground state is increased by in-
troducing the system-bath coupling, which can be explained
by the ω dependence of n̄. That is, also in the damped
case, the frequency can be measured when the system is ini-
tially prepared in the ground state. Straightforward calculation
leads to

Iα (τ ) = 4α2

ω2

sin2(τ ) + τ sin(2τ ) + τ 2

(2n̄ + 1)egτ − 2n̄
, (25)
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FIG. 2. The dimensionless QFI, ω2 I (ρα; ω), for an initial coher-
ent state (solid curves) is compared with the lower bound ω2 Iα (τ )
(dashed curves) [see Eq. (24)] for measuring ω. Results are depicted
for n̄ = 5 and g = 0.1: blue (lower two curves), α = 1/2; orange
(upper two curves), α = 1.

where g = γ /ω introduces a dimensionless damping constant.
Thus, for frequency measurements a displacement as large as
possible is recommended.

Since the QFI of the ground state is bounded (and small),
I(ρα (τ ); ω) ≈ Iα (τ ) applies for α2 � g2n̄ (by assuming n �
1 and g � 1). For high enough temperatures, n̄ � α2/g2,
Iα (τ ) becomes arbitrarily small and the QFI is then described
by the QFI of the ground state. In other words, displacement
only improves frequency measurements for resulting mean
energies higher than the thermal energy. By neglecting small
oscillations, maximization of Eq. (25) provides the maxi-
mal QFI Imax(ρ; θ ) ≡ maxτ I(ρ; θ ) and the OMT τmax with
I(ρ(τmax); θ ) = Imax(ρ; θ ), i.e.,

Imax(ρα (τ ); ω) = − 2α2

n̄g2ω2
W

(
− 4n̄

e2(1 + 2n̄)

)

×
[

2 + W
(

− 4n̄

e2(1 + 2n̄)

)]
, (26)

τmax = 1

g

[
2 + W

(
− 4n̄

e2(1 + 2n̄)

)]
, (27)

where W (z) denotes the Lambert W function defined by
z = W (z)eW (z), z ∈ C.

The Taylor series for I(ρ0(τ ); ω) at n̄ � 1 is

I(ρ0(τ ); ω) = 2

ω2

[
1 − cos2(τ )

(egτ − 1)n̄

]
+ O(1/n̄2). (28)

This means that for high temperatures, n̄ � 1, the QFI of
the ground state decays more rapidly (∼e−gτ ) than Iα (τ )
(∼τ 2e−gτ ) and varies only slightly close to the time τmax.
Consequently, the use of Iα (τ ) for estimating the optimal
measurement time leads, even in this range, to a good result
for the OMT (see Fig. 2).

Furthermore, it should be noted that the smaller g is,
the larger n̄ can be, so that the OMT is still very well
described by Iα (τ ). By reducing the system-bath coupling, the
maximal QFI increases proportionally to ∝g−2. However, it

FIG. 3. The dimensionless QFI, ω2 I (ρr ; ω), for an initial
squeezed state (solid curve) is compared with the approximation
from Eq. (32) (dashed curve) for measuring ω. Results are depicted
for n̄ = 0.01, g = 0.1, and r = 2.5.

should be noted that the OMT also increases proportionally to
∝g−1.

Thus, it is natural to consider time as a resource and to in-
troduce the rescaled maximal QFI I(t )

max(ρ; θ ) ≡ maxt I(ρ; θ )/t
and the OMT τ (t )

max that maximizes it. For an initial coherent
state we get

I(t )
max(ρα (t ); ω) = − 2α2

n̄gω
W

(
− 2n̄

e(1 + 2n̄)

)
, (29)

τ (t )
max = 1

g

[
1 + W

(
− 2n̄

e(1 + 2n̄)

)]
. (30)

Taking time into account as a resource leads to a reduction in
the OMT.

Squeezed state. Besides displacement, squeezing the initial
state is another possibility for increasing the QFI in the un-
damped case. Therefore, we determine the QFI for a squeezed
state ρr (0) = S(r)|0〉〈0|S†(r). For the coherent state we have
seen that reducing the temperature leads to an increase in
the QFI. This behavior is reasonable, since an increased tem-
perature implies increased damping according to the master
equation, (1). A similar behavior can be observed here with
the squeezed state. The QFI for a vanishing bath temperature,
i.e., n̄ = 0, reads

I(ρr (t ); ω) = {8ω2[2egτ sinh2(r) + e2gτ − cosh(2r) + 1]}−1

×{16τ sinh(2r) sin(2τ )[egτ + cosh(2r) − 1]

− 4(egτ − 1) cosh(2r)[2 cos(2τ ) − 3]

+ 4egτ (egτ − 1) + (8τ 2 + 1) cosh(4r)

− 8 sinh2(r) cosh2(r) cos(4τ ) − 8τ 2

− 8 cos(2τ ) + 7}. (31)

Alternatively, for high squeezing and low temperatures,
i.e., r � 1 and n̄ � 1, the QFI can be approximated as
(see Fig. 3)

I(ρr (τ ); ω) ≈ e2r[2τ + sin(2τ )]2

4ω2(egτ − 1)(1 + 2n̄)
. (32)
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Thus, the QFI can be significantly increased by squeezing also
for an initial thermal state.

Neglecting the oscillations, the OMT can be determined
as

τmax = 1

g
[2 + W (−2/e2)] ≈ 1.59

g
. (33)

For sufficiently high squeezing and low temperatures, the
OMT no longer depends on the squeezing and temperature.

B. Measuring the damping constant

Next we consider the QFI for estimation of the damp-
ing constant. First, the QFI disappears for large times, i.e.,
I(ρ∞; γ ) = 0. This can be seen directly from the fact that
the final thermal state (for the ME approach) itself no longer
depends on the damping constant. In other words, there is
again an OMT.

After a straightforward but long and tedious calculation we
find for the QFI of a general Gaussian state

I(ρ(τ ); γ ) = P2(τ )g2τ 2

γ 2e4gτ

{
α2e2gτ {A1[cosh(2r) − cos(χ ) sinh(2r)] + a1,τ } + 2P4(τ )

1 − P4(τ )

[
A2

1 + A1(a1,τ − a1) cosh(2r) − a1a1,τ

]2

+ P2(τ )

1 + P2(τ )

[
A4

1+A2
1

(
a2

1+a2
1,τ

)
cosh(4r)+2A1(a1,τ−a1)

(
A2

1−a1a1,τ

)
cosh(2r)−4a1a1,τ A2

1+a2
1a2

1,τ

]}
,

(34)

where a1 = 1 + 2n̄, a1,τ = (egτ − 1)a1, A1 = 1 + 2Nth, and

P(τ ) = egτ
[
A2

1 + a2
1,τ + 2a1,τ A1 cosh(2r)

]−1/2
. (35)

The result does not depend on the rotation angle ψ , but
only on the squeezing angle χ . In contrast to the frequency
measurement, the QFI for measuring γ is maximized for χ =
π . This is in agreement with the physical expectation, as the
relevant dynamic here is the relaxation of 〈X〉. To illustrate the
result, we again consider specific initial states—the thermal
state, displaced thermal state, and squeezed state.

1. Thermal state

The QFI of a propagated thermal state ν can be written as

I(ν(τ ); γ ) = (n̄ − Nth )2g2τ 2

γ 2[(egτ − 1)n̄ + Nth][egτ (1 + n̄) + Nth − n̄]
.

(36)

The greater the deviation of the initial temperature from the
bath temperature, the better γ can be measured (see Fig. 4).
In particular, for a vanishing deviation, i.e., Nth = n̄, the QFI
vanishes, since in this case the state has no dynamics at all.
For n̄ = 0, the OMT is given by

τmax = 2 + W (2Nthe−2)

g
. (37)

2. Displaced thermal state

For an initial displaced thermal state ρα,Nth (0) =
D(α)νD†(α) the QFI for measuring γ reads

I(ρα,Nth (τ ); γ )= I (ν(τ ); γ )+ α2g2τ 2

γ 2[2Nth − 2n̄ + egτ (1 + 2n̄)]
.

(38)

For Nth = n̄, the QFI simplifies to

I(ρα,n̄(τ ); γ ) = α2g2τ 2

γ 2egτ (1 + 2n̄)
(39)

and the OMT is given by τmax = 2/g. For Nth = n̄
only the third part of Eq. (11) contributes to the QFI,

i.e., the QFI results solely from the relaxation of 〈p〉, 〈q〉.
Upon considering the rescaled QFI the OMT reduces to
τ (t )

max = 1/g.

3. Squeezed state

The low-temperature-limit behavior, i.e., n̄ = 0, of the QFI
for an initial squeezed state ρr is given by

I(ρr (τ ); γ ) = [e2gτ − 2(egτ − 1)]g2τ 2 sinh2(r)

γ 2(egτ − 1)[2(egτ − 1) sinh2(r) + e2gτ ]
. (40)

Examples of how the sensitivity with which the damping
parameter can be measured improves with squeezing, dis-
placing, and/or increasing the difference Nth − n̄ are shown
in Fig. 5.

FIG. 4. The dimensionless QFI of a propagated thermal state
maximized over time τ for measuring γ . Due to the large vari-
ation of the QFI over the parameter range shown the quantity
log[ω2 Imax (ν(τ ); γ ) + 1] is shown. Results are depicted for g = 0.1.
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FIG. 5. The dimensionless QFI, ω2 I (ρ; γ ), for measuring γ .
Results are depicted for n̄ = 1, g = 0.1, χ = π and (blue circles)
Nth = 5, α = r = 0; (orange triangles) Nth = 10, α = r = 0; (red
stars) Nth = 10, α = 1, r = 0; and (purple diamonds) Nth = 10,
α = 1, r = 1/2.

C. Nanomechanical resonators

In the following we apply the results obtained to nanome-
chanical resonators, which function as precision mass sensors,
as their resonance frequency changes when additional mass
is adsorbed. More precisely, we consider carbon nanotube
resonators. Using the QCRB, (8), and ω = √

D/M, where D
is the effective spring constant of the harmonic oscillator, the
smallest δM that can be resolved from m measurements of the
resonance frequency is given by

δMmin = 2M

ω
√

m Imax(ρ; ω)
. (41)

Assuming a coherent state with an oscillation amplitude of
about 10 nm for the carbon nanotube resonator in [26] (M =
3×10−22 kg, ω = 2π×1.865 GHz, T = 4 K, and Q ∼ 103),
δMmin according to (41) is slightly below one proton mass.
Using the OMT given by tmax = 270 ns, the sensitivity cor-
responds to δMmin

√
tmax = 0.8me Hz−1/2, which is less than

1/4000 of the experimentally determined mass sensitivity of
slightly more than one proton mass after a 2-s averaging time.

In [1] the theoretically achievable δMmin for the car-
bon nanotube resonator in [27] (M = 10−21 kg, ω =
2π×328.5 MHz, T = 300 K, and Q ∼ 103) was determined
to the order of a thousandth of an electron mass. Includ-
ing the system-bath coupling, δMmin increases to about 74
proton masses, where the OMT is given by tmax = 1.5 μs.
This result is equivalent to 0.8 u/

√
Hz, which corresponds to

approximately one-hundredth of the 78 u/
√

Hz achieved in
the experiment.

V. CONCLUSIONS

In summary, we have derived the quantum Cramér-Rao
bound for measuring the oscillator frequency and damping
constant encoded in the dynamics of a general mixed single-
mode Gaussian state of light, including damping through
photon loss described by a Lindblad master equation. First, we
demonstrated that the known solution for the QFI for Gaussian

states of a single harmonic oscillator of fixed frequency cannot
be directly applied to frequency measurements. Next, we
presented a scheme through which the frequency estimation
can nevertheless be based on the results of Pinel et al. [4].

Furthermore, we have shown that displacing and/or
squeezing the initial state significantly increases the precision
with which ω and γ can be estimated. For measuring ω and
r �= 0, χ = 0 is optimal, whereas for measuring γ , χ = 0
maximizes the QFI.

Our results can serve as important benchmarks for the pre-
cision of frequency measurements of any harmonic oscillator
with given damping. In particular, we found optimal mea-
surement times that limit the sensitivity per

√
Hz with which

frequencies can be measured, in contrast to the undamped
case, where, e.g., coherent states lead to an increasing QFI
for arbitrarily large times.

APPENDIX A: CHANGE OF BASIS

In presenting the scheme for the estimation of the QFI
for measuring ω we made use of the fact that the frequency
jump corresponds to squeezing. Next we prove the statement,
i.e., the formula

|n〉ω0 = Sω(s)|n〉ω, (A1)

where s = − tanh−1(y1). For the sake of simplicity the two
parameters

y1 = ω0 − ω

ω0 + ω
, y2 = 2

√
ω0ω

ω0 + ω
(A2)

are introduced. A squeezed number state is given by [28]

ω〈m|Sω(s)|n〉ω

=
√

n!

coshn+1/2 |s|
�n/2�∑
j=0

(−d ) j cosh2 j |s|
(n − 2 j)! j!

×
∞∑

k=0

dk√(n − 2 j + 2k)!

k!
ω〈m|n − 2 j + 2k〉ω︸ ︷︷ ︸

=δm,n−2 j+2k

, (A3)

where d ≡ (s/2|s|) tanh |s| and �n/2� denotes the floor func-
tion. With m = n − 2 j + 2k and k ∈ N we get k = j + m−n

2 ∈
N. This means, in particular, that m and n must be both even
or both odd numbers; otherwise, the overlap disappears. If
m and n satisfy this condition and by using cosh |s| = 1/y2

and d = −y1/2, the expression can be further simplified as
follows:

ω〈m|Sω(s)|n〉ω

=
√

y2m!n!
�n/2�∑
j=0

(−1) j+ m−n
2

( y1

2

)2 j+ m−n
2

(n − 2 j)! j!
(

j + m−n
2

)
!
yn−2 j

2 . (A4)

By changing the index of summation to l = n − 2 j we get
the new upper bound of min(m, n), where min(m, n) denotes
the smaller of the two integers m and n. l is also bounded by
m, since k = j − n−m

2 = m−l
2 ∈ N and thus l � m. Using the
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new index of summation we get [29]

ω〈m|Sω(s)|n〉ω

=
√

y2m!n!

2m+n

min (m,n)∑
l=0,1

(2y2)l

l!

y(m+n−2l )/2
1 (−1)(m−l )/2(

n−l
2

)
!
(

m−l
2

)
!

= Rωω0 (m, n)

= ω〈m|n〉ω0 , (A5)

where Rωω0 (m, n) denotes the overlap matrix element between
energy eigenstates of the two oscillators with frequency ω and
ω0. Since this is true for all m, we have proven the formula.
Thus, for any density operator

ρω0 = Sω(s)ρ̃ωS†
ω(s), (A6)

where s = − tanh−1(y1) and ρ̃ω corresponds to the initial state
ρω0 by replacing the frequency ω0 of the basis with the new
frequency ω. Thus, we have shown that the initial frequency
change corresponds to a squeezing. It should be noted that in
the case of a vanishing frequency change, i.e., ω0 = ω, y1 = 0,
s = 0 and S(s = 0) = I follow and thus ρω0 = ρω is ensured.

APPENDIX B: THE QFI FOR PURE STATES

In the following it is shown that the introduced scheme
provides the correct QFI for an undamped pure Gaussian
state. Therefore, the QFI is calculated analogously to that in
Sec. III A, but this time also the ω dependence of â†, â is taken
into account.

This means that we consider the case where only the
dynamics of the state, and not the initial state

ρ0 = |ψ0〉〈ψ0|, (B1)

where |ψ0〉 = R(ψ )D(α)S(reiχ )|0〉, depends on the fre-
quency ω to be measured. For the given Hamiltonian Hω =
h̄ω(â†

ωâω + 1/2), the dynamics of the system is described
by ρω = Uωρ0U †

ω , where Uω = exp[−iωt (â†
ωâω + 1/2)] is the

time evolution operator. With the help of the local generator

K = iU †
ω (t )

∂Uω(t )

∂ω
(B2)

the QFI can be rewritten as follows [30]:

I (ρω; ω) = 4 Var [K , |ψ0〉]. (B3)

If A is a matrix depending on the parameter x, A = A(x), then
[31]

∂

∂x
eA(x) =

(∫ 1

0
eαA(x) ∂A(x)

∂x
e−αA(x)dα

)
eA(x). (B4)

Using this formula we can rewrite the local generator K as
[32]

K = t

h̄

∫ 0

−1
V (α)

∂Hω

∂ω
V †(α)dα, (B5)

where V (α) = exp(−iαtHω/h̄). The derivative of the Hamil-
tonian Hω with respect to the oscillator frequency ω reads

∂Hω

∂ω
= h̄a†

ωâω + h̄

2

[
(â†

ω )2 + â2
ω + 1

]
, (B6)

where we have made use of ∂ωa†
ω = âω/2ω and ∂ωâω =

â†
ω/2ω, which can be seen from their representation in the

Fock-state basis |n〉ω. With the help of

e−iψ â†
ω âω âωeiψ â†

ω âω = eiψ âω (B7)

we get

V (α)
∂Hω

∂ω
V †(α)

= h̄â†
ωâω + h̄

2

[
e−2iαωt (â†

ω )2 + e2iαωt â2
ω + 1

]
. (B8)

Insertion and subsequent integration provide the local genera-
tor

K = t

(
â†

ωâω + 1

2

)

− i

4ω

[
(1 − e−2iωt )â2

ω + (1 − e2iωt )â†2
ω

]
. (B9)

Next, the QFI is calculated. The annihilation and creation
operators ĉω and ĉ†

ω, defined by

ĉω = S†
ω(reiχ )D†

ω(α)R†
ω(ψ )âωRω(ψ )Dω(α)Sω(reiχ )

= eiψ (cosh(r)âω + eiχ sinh(r)â†
ω + α) (B10)

and (ĉω )† = ĉ†
ω, can be used to rewrite the expectation values

of K as follows:

〈ψ0|K k|ψ0〉 = 〈0|K k|â† = ĉ†

â = ĉ

|0〉. (B11)

Using the formulas â|n〉 = √
n|n − 1〉 and â†|n〉 =√

n + 1|n + 1〉, we obtain the QFI after a straightforward
calculation:

I(ρ(t ); ω) = 2t

ω
sin ωt[4α2 cos(2ψ − ωt ) cosh 2r

+ cos(χ + 2ψ − ωt )(4α2 sinh 2r + sinh 4r)]

+ 2

ω2
sin2 ωt[sinh2 2r cos2(χ + 2ψ − ωt ) + 1

+ 2α2(cosh 2r + cos(χ + 4ψ − 2ωt ) sinh 2r)]

+ 2t2[2α2(cosh 2r + cos χ sinh 2r) + sinh2 2r].

(B12)

Comparison with Eq. (19) for a pure Gaussian state, i.e.,
Nth = 0, shows that the results are identical.

APPENDIX C: CALCULATION OF THE QFI

Here we report the calculation of the QFI for measuring ω.
First, the dynamics resulting from the ME, (1), is determined.
Then the QFI for the undamped case is calculated. Finally, the
exact QFI for the damped case is given.

The solutions of the ME, (1), are given by [9]

〈q〉t = e− γ t
2

[
cos(ωt )〈q〉0 + 1

Mω
sin(ωt )〈p〉0

]
, (C1a)

〈p〉t = e−γ t/2[cos(ωt )〈p〉0 − Mω sin(ωt )〈q〉0] (C1b)
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and

σqq(t ) = h̄

2Mω
(1 + 2n̄)(1 − e−γ t )

+ e−γ t

[
cos2(ωt )σqq(0) + sin2(ωt )

M2ω2
σpp(0)

+ sin(2ωt )

Mω
σpq(0)

]
, (C2a)

σpp(t ) = h̄Mω

2
(1 + 2n̄)(1 − e−γ t )

+ e−γ t [cos2(ωt )σpp(0) + M2ω2 sin2(ωt )σqq(0)

− Mω sin(2ωt )σpq(0)], (C2b)

σpq(t ) = e−γ t

[
cos(2ωt )σpq(0) + 1

Mω
sin(ωt ) cos(ωt )

× (σpp(0) − M2ω2σqq(0))

]
. (C2c)

Indeed, Eq. (C1b) is an immediate consequence of p =
M∂t q. For the general single-mode Gaussian state in Eq. (7)
the initial expectation values are given by

〈q〉0 = α

√
2h̄

Mω0
cos(ψ ), (C3a)

〈p〉0 = α
√

2h̄Mω0 sin(ψ ), (C3b)

σqq(0) = h̄

2Mω0
(2Nth + 1)

× [cosh(2r) + cos(χ + 2ψ ) sinh(2r)], (C3c)

σpp(0) = h̄Mω0

2
(2Nth + 1)

× [cosh(2r) − cos(χ + 2ψ ) sinh(2r)], (C3d)

σpq(0) = h̄

2
(2Nth + 1) sin(χ + 2ψ ) sinh(2r). (C3e)

Here we give the expectation values with respect to the
initial frequency ω0. The time evolution of the ME, (1), on
the other hand, is with respect to the new frequency ω, as
described in the scheme.

1. Undamped case

We start with the calculation of the QFI for the undamped
case of Eq. (19). The undamped dynamic corresponds to the

expectation values from Eq. (C1) and Eq. (C2) for γ → 0.
By using these results we calculated the five parameters of
interest: �−1, ∂ω�, P, ∂ωP, and ∂ω〈X〉. For the sake of
clarity we give the results after executing the limit ω0 → ω

and, additionally, use the dimensionless time τ = ωt . The
derivative of the quadrature operator is given by

∂ω〈X〉 = α

√
2Mh̄

ω

(
τ sin(ψ−τ )−sin(ψ ) sin(τ )

Mω−τ cos(ψ − τ ) − cos(ψ ) sin(τ )

)
.

(C4)

The purity and its derivative read

P = 1

1 + 2Nth
, (C5a)

∂ωP = 2Nth(1 + Nth ) ln(1 + 1/Nth )

ω(1 + 2Nth )2
, (C5b)

whereas the derivative of the covariance matrix is described
by the following equations:

2Mω

h̄
∂ωσqq(t ) = 1

ωP
{−2 cosh(2r) sin2(τ )+[cos(χ + 2ψ )

− cos(2τ − χ − 2ψ ) − 2τ

× sin(2τ − χ − 2ψ )] sinh(2r)}
− ∂ωP

P2
[cosh(2r) + cos(2τ − χ − 2ψ )

× sinh(2r)], (C6a)

2

h̄Mω
∂ωσpp(t ) = 1

ωP
{2 cosh(2r) sin2(τ ) + [cos(χ + 2ψ )

− cos(2τ − χ − 2ψ ) + 2τ

× sin(2τ − χ − 2ψ )] sinh(2r)}− ∂ωP

P2

×[cosh(2r)− cos(2τ − χ−2ψ ) sinh(2r)],

(C6b)

2

h̄
∂ωσpq(t ) = ∂ωP

P2
sin(2τ − χ − 2ψ ) sinh(2r)

− 1

ωP
[sin(2τ ) cosh(2r) + 2τ

× cos(2τ − χ − 2ψ ) sinh(2r)]. (C6c)

By inserting Eqs. (C4)–(C6) into Eq. (11) one obtains
Eq. (19).

2. Damped case

By repeating the previous calculations with a nonvanishing γ , we estimate the QFI for damped Gaussian states for measuring
ω. Since the solution is too heavy, we specify the three terms in Eq. (11) separately, i.e.,

I(ρ(t ); ω) = I1,ω + I2,ω + I3,ω, (C7)

where

I1,ω = [2(1 + P2)]−1tr[(�−1∂θ�)2], (C8a)

I2,ω = 2(∂θP)2(1 − P4)−1, (C8b)

I3,ω = (∂θ 〈X〉)T�−1∂θ 〈X〉. (C8c)
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Repeating the previous calculation for a nonvanishing damping leads to the following exact result of the QFI:

I1,ω = P4(τ )

2ω2e4gτ [1 + P2(τ )]

{
8A2

1

(
A2

1 + a2
1,τ + 2a1,τ A1Cr

)
S2

r τ 2

+ 8A1
(
A2

1 + a2
1,τ + 2a1,τ A1Cr

)
[A1 sin(ξ )Cr + (a1,τ + A1Cr ) sin(2τ − ξ )]Srτ

+ A2
1

2

[
4A2

1

(
S2

r + 2
) + A2

2A2
3 + 2A2A3a2,τ a3Cr + a2

2,τ a2
3

(
2S2

r + 1
)

− 2A1[4A1 cos(2τ ) + A1[cos(2ξ ) + cos(4τ − 2ξ ) + 4 sin(ξ ) sin(2τ − ξ )]S2
r − 4a2,τ a3 sin(τ ) sin(τ − ξ )Sr]

+ A1a1,τ

[
2A1

[
4A1Cr sin2(τ )

[
3 + 2 cos2(τ − ξ )S2

r

] + Sr cos(2τ − ξ )(A2A3 − 2a2,τ a3Cr ) − 2A2A3Sr cos(ξ )
]

+ A2
2A2

3Cr + 2A2A3a2,τ a3 + a2
2,τ a2

3Cr
]

+ a2
1,τ

2

(
4A2

1

(
7 + 6S2

r

) + a2
2,τ a2

3 + A2A3
[
2a2,τ a3Cr + A2A3

(
1 + 2S2

r

)]
+ 2A1

{
A1S2

r [2[cos(2τ − 2ξ ) − 5 cos(2τ )] − cos(4τ − 2ξ ) + cos(2ξ )] − 12A1 cos(2τ )

+ 8A2A3CrSr sin(τ ) sin(τ − ξ ) − 4a2,τ a3Sr cos(τ ) cos(τ − ξ )
})

+ a3
1,τ [2A2A3Sr cos(2τ − ξ ) − 4A1Cr (cos(2τ ) − 2)] + 2a4

1,τ

}
, (C9)

I2,ω = e−4gτ P6(τ )

2ω2[(1 − P4(τ )]
[A1A2A3 + a1,τ a2,τ a3 + (A1a2,τ a3 + a1,τ A2A3)Cr − 2a1,τ A1 cos(ξ )Sr]2, (C10)

I3,ω = 4e−2gτ α2P2(τ )

ω2
{[a1,τ + A1(Cr + cos(χ )Sr )]τ 2 + [cos(τ − 2ψ )(a1,τ + A1Cr ) + A1 cos(τ − ξ )Sr]2τ sin(τ )

+ [a1,τ + A1(Cr + cos(2τ − ξ − 2ψ )Sr )] sin2(τ )}, (C11)

where we have introduced a new angle ξ = χ + 2ψ , Cr = cosh(2r), Sr = sinh(2r), and

a1 = 1 + 2n̄, A1 = 1 + 2Nth, (C12a)

a2 = 4n̄(1 + n̄), A2 = 4Nth(1 + Nth ), (C12b)

a3 = ln(1 + 1/n̄), A3 = ln(1 + 1/Nth ), (C12c)

a1,τ = (egτ − 1)a1, a2,τ = (egτ − 1)a2. (C12d)

Finally, the maximum of the QFI of an initial ground state, which was used to approximate the QFI of the coherent state, is
determined. For an initial ground state, the QFI simplifies to

ω2 I(ρ; ω) = 1 + [egτ (1 + 2n̄) − 2n̄]2 − 2[egτ (1 + 2n̄) − 2n̄] cos(2τ )

2[2n̄2 − 2egτ n̄(1 + 2n̄) + e2gτ (1 + 2n̄ + 2n̄2)]
+ (egτ − 1)n̄(1 + n̄)2 ln2(1 + 1/n̄)

egτ (1 + n̄) − n̄
. (C13)

Numerical maximization of I (ρ; ω) with respect to the three parameters τ , g, and n̄ returns the value 2.135/ω2.

APPENDIX D: ALTERNATIVE WAY OF CALCULATING THE QFI

Next, we show that by considering the full ω dependence of the time evolution operator and assuming that the initial state
does not depend on ω, we obtain the same result as we did using our scheme introduced in Sec. III A. This means that we redo
the calculation from Eq. (16), but this time we consider the ω dependence correctly.

Let ρ(0) be the initial Gaussian state according to Eq. (7), i.e.,

ρω0 (0) = Rω0 (ψ )Dω0 (α)Sω0 (z)νω0 S†
ω0

(z)D†
ω0

(α)R†
ω0

(ψ ) . (D1)

For the given Hamiltonian Hω = h̄ω(â†
ωâω + 1/2), the dynamics of the system is described by

ρ(t ) = Uω(t )ρω0 (0)U †
ω (t ) = Rω(−ωt )ρω0 (0)R†

ω(−ωt ) , (D2)

where Uω(t ) is the time evolution operator. Keeping in mind that we want to use Eq. (11) for estimating the QFI, we need to
calculate the expectation values of p, q, p2, q2, and 1

2 (qp + pq). The expectation value of an arbitrary operator A is given by

〈A〉t = tr[ρ(t )A] = tr[ρω0 (0)R†
ω(−ωt )ARω(−ωt )]. (D3)
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It is therefore useful to express R†
ω(−ωt )qωRω(−ωt ) and R†

ω(−ωt )pωRω(−ωt ) in terms of qω0 and pω0 . By using the formulas

aω = 1

2
√

ω0ω
[(ω0 + ω)aω0 − (ω0 − ω)a†

ω0
], (D4a)

R†
ω(ψ )aωRω(ψ ) = eiψaω, (D4b)

we obtain

R†
ω(−ωt )qωRω(−ωt ) = cos(ωt )qω0 + sin(ωt )

Mω
pω0 , (D5a)

R†
ω(−ωt )pωRω(−ωt ) = cos(ωt )pω0 − Mω sin(ωt )qω0 . (D5b)

Inserting Eq. (D5) into the expectation value yields

〈q〉t = cos(ωt )〈q〉0 + 1

Mω
sin(ωt )〈p〉0, (D6a)

〈p〉t = cos(ωt )〈p〉0 − Mω sin(ωt )〈q〉0 (D6b)

and

σqq(t ) = cos2(ωt )σqq(0) + sin2(ωt )

M2ω2
σpp(0) + sin(2ωt )

Mω
σpq(0), (D7a)

σpp(t ) = cos2(ωt )σpp(0) + M2ω2 sin2(ωt )σqq(0) − Mω sin(2ωt )σpq(0), (D7b)

σpq(t ) = cos(2ωt )σpq(0) + 1

Mω
sin(ωt ) cos(ωt )[σpp(0) − M2ω2σqq(0)]. (D7c)

These equations are the same as Eqs. (C1) and (C2) (for γ = 0) and therefore the following calculations are the same. Thus,
considering all ω dependencies correctly results in the same QFI as using the scheme introduced in Sec. III A.
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