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Phase-space quantum mechanics as a Landau-level problem
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We point out the connection between the problem of formulating quantum mechanics in phase space and
projecting the motion of a quantum-mechanical particle onto a particular Landau level. In particular, we show
that lowest Landau-level wave functions, which are widely used in studies of quantum Hall effect, are actually
phase-space wave functions in this context. We demonstrate the usefulness of this understanding by analyzing
some simple problems, and propose other utilities.
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I. INTRODUCTION

Quantum-mechanical motion of particles are described by
complex wave functions, usually written in position basis
(or equivalently, real space). Square of the absolute value
of such wave functions represents the probability density
of finding the particle at the corresponding position. Over
the years attempts have been made to formulate quantum
mechanics (QM) in phase space, and in particular describe the
motion of particle using phase-space wave functions, which
are functions of position and momentum. Conceptually such a
formulation may allow for a more direct connection with clas-
sical mechanics (CM), which is formulated in phase space. At
a more practical level the phase-space wave function allows
one to talk about the joint distribution function of position and
momentum, which is indeed relevant in many measurement
schemes. While the community has witnessed significant
formal developments along this direction, one also gets the
impression that phase-space QM has yet to demonstrate its
power in solving the Schrödinger equation for specific cases,
where the traditional real space (or position basis) formulation
appears to be easier to use.

One of the purposes of this paper is to point out that in
the field of quantum Hall effect (QHE), where (to very good
approximations) the electron motion is confined to a given
Landau level (LL), people have actually been using phase-
space QM [1] and in particular the phase-space wave function
with great success, perhaps without realizing it. The other
(more important) purpose is to deepen our understanding
of the phase-space QM by using the insights gained from
studies of QHE, and to propose possible utilities of these
insights, especially in understanding the connection between
QM and CM.

In the remainder of this paper we start by reviewing
the LL problem (largely following Ref. [2]) and pointing
out its equivalence to the formulation of phase-space QM
initiated in Ref. [3], in the limit of large LL spacing. The
usefulness of this understanding is then demonstrated by
using it to analyze both the ordinary and inverted harmonic-
oscillator problems. We end with a proposal of formulat-
ing QM in terms of the nodes of the phase-space wave
functions.

II. LANDAU-LEVEL PROJECTION AND PHASE-SPACE
QUANTUM MECHANICS

Consider the Hamiltonian (kinetic energy only for the
moment) of an electron confined to the xy plane and subject
to a uniform perpendicular magnetic field:
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is the 2D mechanical momentum of the electron. Unlike the
canonical momentum �p, the different components of �� do not
commute:
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where � =
√

h̄c
eB is the magnetic length and for convenience

we choose �B = −Bẑ. We thus find the commutation relation
between �x and �y is similar to that between x and px; thus
Eq. (1) takes the form of a 1D harmonic-oscillator Hamilto-
nian. We therefore introduce

a = �√
2h̄

(�x + i�y), a† = �√
2h̄

(�x − i�y), (4)

yielding [a, a†] = 1 and

T = h̄ωc(a†a + 1/2). (5)

We thus immediately obtain the Landau-level spectrum

En = h̄ωc(n + 1/2), (6)

without specifying the gauge (here ωc = eB
mc is the cyclotron

frequency). How do we see that the Landau levels have
(massive) degeneracy? To this end we introduce another set of
conjugate variables (similar to �x and �y), known as guiding
center coordinates:

�R = (Rx, Ry) = �r − �2(ẑ × ��)/h̄, (7)

from which it is easy to show

[Rx, Ry] = −i�2. (8)
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We can thus introduce another set of harmonic-oscillator
operators

b = 1√
2�

(Rx − iRy), b† = 1√
2�

(Rx + iRy), (9)

with [b, b†] = 1. More importantly,

[Ri,� j] = [Ri, T ] = [a, b] = [a, b†] = 0, (10)

which means Ri only has nonzero matrix elements between
states within the same Landau level, and so do b and b†. We
thus have two independent harmonic oscillators, described by
operators a and b, whose (number operator) eigenstates span
the Hilbert space of a 2D quantum particle.

In QHE one often takes the limit h̄ωc → ∞ (by either
sending B → ∞ or more often, theoretically, m → 0); as a
result the motion of electron is confined to a given (often the
lowest) LL. Consequently, the harmonic oscillator a is frozen
(say to its ground state), and the remaining degree of freedom
is that of the harmonic oscillator b, which describes a 1D
Hilbert space. To see this explicitly, we note �R is in fact the
position operator �r ≡ (x, y) projected onto a given Landau
level:

�R = Pn�rPn, (11)

where Pn is the projection operator onto the nth Landau level.
The degenerate states within the same Landau level can be
generated using �R or b and b†. Again everything we said
above is independent of the choice of gauge. We thus find
x and y, which commute with each other and (along with
their conjugate momenta px and py) span the 2D Hilbert
space, becoming a conjugate pair [cf. Eq. (8)] like x and px

themselves. In particular all LL projected operators can be
expressed in terms of Rx and Ry, just like all operators in
1D QM can be expressed in terms of x and px. Thus once
projection to a given LL is performed we have reduced a 2D
QM problem to a 1D QM problem.

We are now in a position to discuss the relation between the
LL problem discussed above with one particular approach to
phase-space formulation of QM [3–6]. In order to construct
phase-space wave functions, Torres-Vega and Frederick [3]
postulated the existence of an abstract Hilbert space spanned
by a complete and orthonormal basis set {|�〉} = {|q, p〉},
which are simultaneous eigenstates of an abstract conjugate
pair (q̂, p̂), which commute with each other in this abstract
Hilbert space. The physical conjugate pair (Q̂, P̂), which are
operators defined in the physical Hilbert space, have the non-
trivial commutation relation [Q̂, P̂] = ih̄, and can be written as
proper combinations of q, p and ∂q, ∂p. Later on it was pointed
out [7] that the abstract Hilbert space can be constructed by
supplementing the physical Hilbert space by introducing an
auxiliary (or “relative”) conjugate pair. It should be clear by
now that, in the LL problem we just discussed, the pair (q̂, p̂)
corresponds to (x, y) which indeed commute with each other
in the full Hilbert space, and (Q̂, P̂) corresponds to (Rx, Ry),
which are projected versions of (x, y) which no longer com-
mute in an LL subspace. The physical Hilbert space (of a
specific LL) is that spanned by the pair (b, b†), while the
auxiliary (or “relative”) conjugate pair correspond to (a, a†).
We thus find that QM in a LL, if viewed as QM in the original

full Hilbert space, provides a physical realization of the phase-
space QM envisioned by Torres-Vega and Frederick.

III. LOWEST LANDAU-LEVEL WAVE FUNCTION
AS PHASE-SPACE WAVE FUNCTION

As it should be clear by now, following the traditional QM
approach a state in a specific LL should be described by a
1D wave function, written say in the Rx basis. However, in
QHE one almost always works with 2D (real space) wave
functions in the original 2D Hilbert space, even though they
are actually constrained to a much smaller subspace, say the
lowest LL (LLL). Obviously such wave functions must be
heavily constrained, and such constraint is well understood
in QHE [2]: In the symmetric gauge, all LLL wave functions
must take the form

�(x, y) = f (z)e− 1
4 |z|2 , (12)

where z = (x + iy)/� and f (z) is an analytic function of z.
The analytic structure of Eq. (12) has been extremely helpful
to understand various aspects of QHE, and we will suggest
its applications in phase-space QM later on. For the moment
though we would like to point out that, in the context of
the present discussion, Eq. (12) is actually a phase-space
wave function [8], written as a function of x and y, which
have become a conjugate pair Rx and Ry after projecting to
the LLL. In particular, |�(x, y)|2 can be understood either
as the probability density in the original 2D real space, or
(in the present context) the phase space (Rx, Ry) of the relevant
1D system. Note the uncertainty dictated by Eq. (8) is not
violated here, due to the analytic constraint Eq. (12) must
satisfy [2].

IV. HARMONIC-OSCILLATOR EXAMPLE

In 1D QM one has a Hamiltonian of the form

H = p2

2
+ v(x), (13)

which is equivalent to

H = R2
y

2
+ v(Rx ), (14)

with proper normalizations, like setting h̄ = � = 1. Equation
(14) can be obtained by adding

V (x, y) = y2

2
+ ṽ(x) (15)

to T of Eq. (1) and then projection to (say) the LLL, provided
P0ṽ(x)P0 = v(Rx ). Note in general P0ṽ(x)P0 �= ṽ(P0xP0) =
ṽ(Rx ). In the following we consider a specific case in which

V (x, y) = x2 + y2

2
. (16)

In this case we have ṽ = v up to an irrelevant constant. This
corresponds to the harmonic-oscillator problem in the 1D
QM problem (13) with v(x) = x2/2. We now demonstrate
the power of our understanding by obtaining the Hamiltonian
eigenstate wave functions in phase space using the symmetry
of the corresponding 2D problem with H = T + V , without
solving the Schrödinger equation. The key to the “solution”
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is the observation that the potential (16) is rotationally in-
variant, as a result of which Hamiltonian eigenstates must
be angular momentum eigenstates in the symmetric gauge
(where rotation symmetry is maintained) as well. However,
due to the analyticity constraint discussed above, there is
only one angular momentum eigenstate for each non-negative
integer m with f (z) = zm, and none for negative integers
that is normalizable. We have thus found the phase-space
Hamiltonian eigenstate wave functions to be [2]

ϕm(z) = 1√
2π2mm!

zme− 1
4 |z|2 , (17)

which are the familiar Bargmann functions [9]. The eigenen-
ergies can be obtained simply by taking the expectation value
of V (x, y). We have thus “solved” the harmonic-oscillator
problem using the symmetry of the (phase-space formulation
of this) problem alone.

V. DUALITY, SELF-DUALITY,
AND QUANTUM SYMMETRY

To gain deeper understanding of this symmetry, we now
take a little digression and briefly review the concept of
duality in both classical and quantum physics [10]. A duality
transformation refers to a nonlocal change of variable that
allows for two (usually different) mathematical descriptions
of the same physical system or theoretical model. Perhaps the
best known example of such duality is the Kramers-Wannier
duality of the classical 2D Ising model, and its quantum
analog, 1D transverse-field Ising model [10]. It plays a crucial
role in our understanding of strongly interacting field theory,
string theory, and in particular many-body systems near quan-
tum criticality [10].

It is perhaps not widely appreciated that ordinary quantum
mechanics provides an elementary example of such duality,
when one goes from the usual position basis in which the
Hamiltonian takes the form

H = −1

2

d2

dx2
+ v(x) (18)

to the momentum basis in which

H̃ = p2

2
+ v

(
i

d

d p

)
. (19)

H and H̃ are dual descriptions of the same Hamiltonian but
look quite different in general. The reason we normally prefer
to work with the real-space version (18) is because it is
local, while for a generic v(x) Eq. (19) represents a highly
nonlocal Hamiltonian in momentum space, which, while still
well defined, is something we prefer to avoid due to our lack
of intuition with them. But for special v’s like v(x) = xn for
(small) integer values of n this (nonlocal) change of basis
(or Fourier transformation) is a perfectly legitimate duality
transformation, yielding an ordinary differential operator just
like (18).

As already mentioned such duality transformations usually
yield different looking theories, like Eqs. (18) and (19) for
generic v. But there are special cases in which they yield
the same theory (but in general with different parameters).
Such self-duality, when present, can be extremely useful; for

example, the 2D Ising model is self-dual under the Kramers-
Wannier duality transformation, and this allowed for the de-
termination of its critical temperature before its exact solution
was known, using the fact that the duality transformation must
yield exactly the same Ising model at the critical temperature.
As the reader must have realized by now the harmonic oscilla-
tor, with v(x) = x2/2, serves as a perfect example of such self-
duality as Eqs. (18) and (19) take exactly the same form in this
case, just like the 2D Ising model at its critical temperature.
Among other consequences this implies eigenwave functions
must be self-dual under Fourier transformation.

Obviously such self-duality is a symmetry [11], since the
Hamiltonian is invariant under the duality transformation,
which is nothing but a change of basis that is realized via a
unitary transformation. However, this is a somewhat unusual
and perhaps unfamiliar type of symmetry, because this change
of basis is highly nonlocal. To illustrate this point let us
compare it with more familiar examples of symmetry trans-
formation like translation x → x + l , or spatial rotation above
1D. In these cases we are actually using the same real-space
basis, but only relabeling the basis states. Obviously there is
nothing nonlocal with such transformations. A slightly less
trivial example is spin rotation, which mixes up states in, say,
the Sz basis, albeit only locally. But if one uses a coherent-
state path integral, this again reduces to a relabeling of the
(coherent) basis states. More formally, in these examples
the symmetry transformations leave the classical Lagrangian
invariant, and are thus present at the classical level. The
self-duality symmetry, on the other hand, is invisible (or at
least hidden deeply) in the classical Lagrangian. As a result
such symmetry was termed quantum symmetry [10]. We thus
found the harmonic oscillator has this quantum symmetry,
in addition to the (more obvious) classical symmetries like
parity.

Once again harmonic oscillator is very special, even in this
regard. Taking the literal meaning of the word duality, one
would expect the self-duality symmetry to be a Z2 or Ising
type symmetry. However, the x ↔ p duality transformation
discussed above turns out to be just a member of a continuous
family of such nonlocal transformations:

x → x cos θ + p sin θ, p → p cos θ − x sin θ, (20)

parametrized by the angular parameter θ , and the correspond-
ing basis state wave function written in the original position
basis is

φθk (x) = 1√
2π

eik[x−(x2 cos θ )/2]/ sin θ , (21)

where k is the eigenvalue of x cos θ + p sin θ , and the x ↔ p
transformation corresponds to θ = π/2. It is obvious that

Hho = p2 + x2

2
(22)

is invariant under the transformation (20). We thus find Hho

has a continuous set of self-dualities.
We now return to the discussion of phase-space QM. It

should be clear by now this continuous self-duality symmetry
of Hho is nothing but the rotation symmetry of (16). We
thus find by formulating QM in phase space with the way
we are doing it, this (somewhat abstract) quantum symmetry
becomes a very familiar classical symmetry. And this is not
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too surprising—in order to formulate QM in phase space,
we have to enlarge the Hilbert space by turning the phase
space into an enlarged configurational space, which supports
more classical symmetry operations. We argue this is an
advantage of the phase-space formulation of QM.

Before we leave the topic of duality let us consider a less
trivial example, in which

v(x) = −x2/2 (23)

is known as the inverted harmonic-oscillator potential, which
is still attracting research activities [12]. In this case the x ↔ p
duality transformation is almost a symmetry but not quite—it
reverses the sign of the Hamiltonian. It is actually some-
what similar to the particle-hole or chiral symmetry, whose
generator anticommutes (instead of commutes as in ordinary
symmetry) with the Hamiltonian. As a result it entails certain
relations between a state with energy E and its particle-hole
partner, whose energy is −E ; namely, their wave functions are
related to each other by Fourier transformation. However, for
the special case of E = 0, this becomes an ordinary symmetry,
because the Schrödinger equation

H |ψ〉 = 0 (24)

is indeed invariant under this duality transformation that re-
sults in H → −H . As a result the usual consequences of
symmetry follow; for example, the E = 0 wave functions
should be self-dual (or invariant) under Fourier transformation
just like harmonic-oscillator eigenwave functions. Comparing
with the 2D Ising model, here energy plays a role similar
to temperature under the duality transformation and E = 0
corresponds to the critical temperature which is self-dual.

Now let us inspect this duality transformation and corre-
sponding symmetry consequences in the phase-space formu-
lation. This corresponds to

V (x, y) = (y2 − x2)/2 (25)

in (15), which is a saddle point potential studied by Fer-
tig and Halperin [13] in the context of integer QHE. This
problem is of importance in the understanding of localization
properties of electrons in a magnetic field [14]. Now the
x ↔ p duality transformation corresponds to a transformation
x ↔ y in the 2D plane, which is a standard reflection. Thus
the (quantum) self-duality symmetry becomes a (classical)
reflection symmetry at E = 0, which means the phase-space
wave function should be invariant (up to an overall phase)
under such reflection. One immediate consequence is an E =
0 particle approaching the saddle point has equal probability
of turning left and right. This implies in the corresponding 1D
problem an E = 0 particle has half and half probability for
transmission and reflection, which is not entirely obvious in
the usual real-space formulation of QM.

VI. ANALYTICITY OF THE PHASE-SPACE WAVE
FUNCTION AND ITS POTENTIAL UTILITIES

As is clear from Eq. (12), the LLL or, equivalently, phase-
space wave function takes an analytic form. This means f (z)
can be expanded as combinations of monomials zk , and the
resultant polynomial is uniquely determined by the positions
of its nodes, and the number of nodes in f (z) is the same as

the degree of the polynomial [2]. For an infinite 2D plane of
the LL problem and corresponding unconstrained phase space
for a 1D system, a generic f (z) involves an infinite number
of monomials and this property is not particularly useful. On
the other hand, once such spaces are compactified (say into
a finite-size sphere or torus), then the number of nodes is
fixed to be the number of flux quanta (or LL degeneracy) of
the 2D problem, which corresponds to the size of the Hilbert
space supported by the phase space of the 1D system. Now the
quantum-mechanical state of the particle is determined by the
positions of these nodes. It is interesting to note that in CM
the state is given by the particle’s precise position in phase
space; in QM this is no longer possible due to the constraint
from uncertainty principle, but the precise locations of the
nodes, which correspond to positions in phase space where the
particle will not be found, are well defined, and they determine
the state that the particle is in.

We can push this observation further and suggest the
following way to formulate QM in a way to make it look as
close to CM as possible.1 In CM the dynamics of a particle
is determined by the (set of two in 1D) Hamilton-Jacobi
equations, which are first-order differential equations in time
and determine its trajectory in phase space. In QM time
evolution of the state (or wave function) is given by another
first-order differential equation in time, the Schrödinger equa-
tion. Since the phase-space wave function is determined by
the positions of their nodes, it must be possible to formulate
the Schrödinger equation as a set of equations that determine
the trajectory of the N nodes, where N is the size of the Hilbert
space. And that is the reason QM is much harder than CM.

To make the discussion above more concrete let us consider
a 1D Bloch electron confined to a specific Bloch band whose
dispersion is ε(k), where −π/a � k < π/a is restricted to
the 1st Brillouin zone, and a is the periodicity of the periodic
potential that gives rise to the Bloch bands, or lattice constant.
We further confine the electron in real space to 0 � x < L,
and impose periodic boundary condition, thus making the
configuration space a ring. As a result the phase space (x, k) is
indeed compact and has the torus topology. The corresponding
size of the Hilbert space is N = L/a. In the presence of an
additional external potential v(x) (which is not part of the
periodic potential and smooth on the scale a), the effective
Hamiltonian is

H = ε(p) + v(x). (26)

Formulating this problem in phase space, the state of the
electron is described by a LLL wave function of the form (12),
with additional constraints imposed by the magnetic periodic
conditions that correspond to a finite-size system enclosing N
magnetic flux quanta [2]. Such wave functions have N nodes,
whose positions [which are actually independent of the gauge
choice that led to the form (12)] determine the state.

Let us first check the consistency of the above by counting
the number of independent variables. To determine the po-
sitions of N nodes in the 2D phase space we need 2N real

1Note one of the motivations to formulate QM in phase space is to
make closer contact with CM; see Ref. [3].
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parameter or, equivalently, N complex parameters. Naively
this would match the N complex coefficients when expanding
a state in an N-dimensional Hilbert space. However, the
overall magnitude and phase of the state are meaningless;
thus only N − 1 complex coefficients are needed. As it turns
out the center of mass of the N nodes is actually fixed by
the boundary condition angles, as a result the state is already
determined by positions of N − 1 nodes once the boundary
conditions have been specified [15]. We thus have the correct
number of independent variables. At this point we already
see parametrizing the wave function in terms of its nodes is
more efficient than the wave function itself: Not only is the
irrelevant overall magnitude and phase automatically factored
out, the node positions are independent of gauge choice, as
a result of which the equations below are completely gauge
invariant.

In this “node” representation, the time-dependent
Schrödinger equation reduces to a set of N − 1 equations of
the form

∂t �Ri = �Fi({ �Rj}), (27)

where �Ri is the phase-space position of the ith node and
the “force” �Fi({ �Rj}) on it depends on the positions of all
the nodes and the Hamiltonian (26) in complicated but well-
defined ways. We argue Eq. (27) can be viewed as a quantum
analog of the Hamilton-Jacobi equation. Compared to the
Heisenberg equations of motion for observables, here only
real c-number variables are involved. Steady states, which
correspond to solutions of the time-independent Schrödinger
equation, satisfy

�Fi({ �Rj}) = 0, (28)

the solutions of which yield the energy eigenstates, and the
eigenenergies can be obtained by taking the Hamiltonian
expectation values.

VII. CLASSICAL LIMIT AND QUANTUM
LIOUVILLE EQUATION

The standard way of making connection with CM is to
analyze the motion of a wave packet. This might seem hard to
do in the present formulation in terms of the node positions,
which are where the wave function vanishes instead of peaks.
In fact it is very easy to construct a well-localized wave packet
by placing the N − 1 nodes together, say at (x, k), which
corresponds to a wave packet localized at its opposite point
([x + L/2], [k + π/2]), where [· · · ] stands for the reduced
value after subtracting an integer multiple of the period L
and 2π/a, respectively. This is because the nodes act like

repulsive charges that push the particle away from them in the
so-called plasma analogy of LLL wave functions [2]. If these
nodes were to stick together, the N − 1 equations of motion
(27) would reduce to one, corresponding to nothing but the
classical Hamilton-Jacobi equation once we replace �R by the
location of the corresponding wave-packet peak. This is how
CM emerges in our formulation.

Of course these nodes will spread out under time evolution,
which corresponds to wave-packet dispersion in QM. As a
result it is technically hard to keep track of the positions of
all the nodes, when N is large. This is what happens in the
classical limit of h̄ → 0, as a result of which the density of
states and thus density of nodes in phase space become very
large.2 In this case instead of tracking the precise locations
of these nodes, it is more sensible to coarse grain the phase
space and keep track of the density of nodes, ρ( �R), and the
“Schrödinger equation” (27) reduces to a “quantum Liouville
equation” of the form

∂tρ( �R) = L[ρ( �R)], (29)

where L is the Liouville operator. We leave the pursuit of this
approach to future work.

VIII. CONCLUSIONS

To summarize, we have shown in this paper that lowest
Landau level (LLL) projection provides a physical realization
of the phase-space formulation of quantum mechanics in the
manner of Torres-Vega and Frederick [3], and the LLL wave
functions widely used in studies of quantum Hall effect are
actually phase-space wave functions. Analytic properties of
such wave functions are of great potential utilities, especially
in making connections between quantum and classical me-
chanics.
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