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Coherent control of dissipative dynamics in a periodically driven lattice array
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We find a different mechanism for suppression of decay in an open one-dimensional lattice system, which
originates from a dark Floquet state, a sink state to which the system is asymptotically driven, whose overall
probability is determined only by the parameters of the periodic driving field. The zero-quasienergy of dark
Floquet state is shown to be not a real zero, but a vanishingly small negative imaginary number which will
cause undesirable physical effect in long-time evolution of quantum states, being extremely different from the
conservative counterpart. Another intriguing finding is that the value of the system’s effective decay, determined
by the size of the nonzero imaginary part of the dark-Floquet-state-related quasienergy, depends not on how
many localized lossy sites there are but on which one of the lossy sites is nearest to the driven site. Thus, for
specially designed local dissipation, by controlling the driving parameters, it is possible for us to drive the system
to a dark Floquet state with a much lower level of overall probability loss as compared to the undriven case and
with good stability over longer evolution time. These results are applicable to the multisite lattice system with an
odd number of sites and may be significant for long-time control of decay in a vast family of multistate physical
systems with localized dissipation.
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I. INTRODUCTION

Understanding the influence of dissipation on the dynam-
ics of physical systems is both of fundamental and techno-
logical importance and has triggered a plethora of exciting
investigations [1–43]. In general, dissipation is considered
as an undesirable destructing factor for long-time coherent
control of quantum states. However, in recent decades it has
been recognized that dissipation can play constructive roles
in tuning properties of the system and therefore enables an
additional way of steering the dynamics of quantum systems
[44–56]. In view of the striking experimental advances on the
single-site addressability in the optical lattices where the loss
can be made truly localized in selected sites [57,58], ultracold
atoms in optical lattices with localized dissipation provide a
distinguished model system for the study of fully governable
open quantum systems [59]. These systems with the dissipa-
tion process have been investigated from a nonlinear dynam-
ics viewpoint based on a mean-field approximation [60–63],
where the loss is introduced as negative imaginary chemical
potential, giving origin to stable dissipative structures and
diverse nonlinear excitations such as dynamical breathers and
dissipative solitons. At the same time, the dissipative dynam-
ics of interacting system have also been studied in terms of
the master equations beyond mean-field treatment [64–70]. So
far, it has been shown both theoretically and experimentally
that the suppression of atom losses can be achieved under
the increase of the spatially localized dissipation (interpreted
also as the quantum Zeno effect) [59,64], and that the system
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stability can be improved by a suitable amount of dissipation
[66,69]. We also mention that the nearest-neighbor interac-
tions can play a dominant role in the suppression of atom
losses in Bose-Hubbard model system with localized dissi-
pation [70]. When nearest-neighbor interactions are dominant
over the hopping and induce a supersolid phase, the process
of dissipation is strongly suppressed and effective loss rates
decrease (see Ref. [70]).

Very recently, Guo et al. have considered the dissipative
dynamics of a single particle confined to a three-site system
with local loss from the central site, and found that the
system will asymptotically evolve into one of its eigenstates
(i.e., dark state) and meanwhile its total probability will also
gradually decrease to half of the initial value which then
remains unchanged [71]. Li et al. have studied the localiza-
tion in a periodically driven nonlinear three-site system with
loss acting on the end site, and reported two different types
of localization: chaos-related localization and loss-induced
localization [72]. The two above-mentioned research papers
both dealt with purely dissipative systems without additional
gain mechanisms. However, there is difference between them:
In the former case, no matter how long the evolution time is,
the very existence of dark state will prevent the full leakage
of wave packet, while in the latter case, the inhibition of
decay induced by localized dissipation only exists in a certain
evolution time rather than an infinite time. In addition, it
has also been reported that increasing the loss will lead to a
dramatically increased localization in some specially designed
parity-time symmetric systems [73].

On the other hand, control of quantum states via periodi-
cally oscillating external field has been of long-lasting interest
[74–77], due to its potential application in quantum-based
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technologies. The coherent destruction of tunneling (CDT) is
one of the seminal effects in this field, upon the occurrence of
which the driven site would be decoupled from the undriven
ones in the lattice chains provided that the system parameters
are carefully chosen [78]. One may naturally expect that
applying CDT effect to dissipative quantum systems will give
rise to decoupling between the lossy and lossless sites, thereby
protecting the particle at lossless site from dissipation. How-
ever, because CDT occurs only at isolated system parameters,
it is impossible to precisely define a parameter point and
hence genuine CDT through experiment. Thus, one significant
disadvantage of the application is that the pseudo-CDT cannot
really prevent the particles from reaching the leaking sites.
Recently, a quantum phenomenon called dark Floquet state,
with zero quasienergy and negligible population at all the
even-number sites, has been predicted in periodically driven
three-site (or odd-N-site) systems [79], which can serve as
an alternative tool for coherent quantum control [79–81].
Generally, from previous studies [79–81], it can be concluded
that the population of dark Floquet state at the even-number
sites is actually not zero but an extremely small number, and
especially, only in the high-frequency limit (the case that
the driving frequency goes to infinity) can the corresponding
quasienergy perfectly equal to zero. As to conservative sys-
tems, it is known that such an exceedingly small population at
the even-number sites can not build up physical effect on the
long-time evolution of quantum states. Yet, what effects dark
Floquet state will have in the dissipative quantum systems is
still an open issue which deserves to be addressed.

In this paper, we study how the controlled localized dis-
sipation and periodic driving influence the decay dynamics
of a single quantum particle initially prepared in the left-end
site of one-dimensional quantum lattice systems. We find a
different mechanism for suppression of decay in an open
one-dimensional lattice system, which stems from a peculiar
dark Floquet state, a state to which the system is eventually
driven, whose overall probability is determined only by the
parameters of the periodic driving field, not by the strength
of loss coefficient. By controlling the driving parameters, it is
possible for us not only to tune the transition from oscillating
decay to overdamping decay in precise manner, but also to
produce a much lower probability loss as compared to the
undriven case. Another counterintuitive finding is that the sys-
tem’s effective decay, determined by the size of the nonzero
imaginary part of the dark-Floquet-state-related quasienergy,
does not depend on the number of localized lossy sites but on
which lossy site is nearest to the driven site. The results may
offer much flexibility in the control of decay in a wide variety
of physical systems with localized dissipation.

Our presentation is structured as follows. In Sec. II, we
introduce the model equations of a single quantum particle
hopping on a lattice chain subjected to periodic driving and
localized dissipation. In Sec. III, we study how the decay
dynamics can be manipulated by periodic driving and lo-
calized dissipation. In Sec. III A, we begin the discussion
with the simplest three-site system, where the approximate
analytical solutions of the Schrödinger equation are derived.
The analytical results provide an informative starting point
for considering the effects of dark Floquet state in dissipative
lattice systems. In Secs. III B and III C, we then turn to

FIG. 1. Schematic representation of the setup. Here the left-end
site is driven periodically with amplitude A1 and frequency ω, and the
right-end site driven with amplitude A2 but with the same frequency.
The system is subjected to localized losses from the even nth (n �= N ,
that is, the right-end site is lossless irrespective of the value of N)
sites with loss (dissipation) coefficient αn.

the numerical analysis on four-site system and other lattice
systems, respectively. Finally, in Sec. IV, we present our main
conclusion and outlook.

II. MODEL SYSTEM

We consider here the dissipative dynamics of a single
quantum particle hopping on a lattice chain comprising N
sites, with the end sites driven by an external periodic field, as
shown in Fig. 1. In our setup, only the even nth sites (n �= N ,
i.e., excluding the right-end site when N is even) are designed
to be subjected to losses with dissipation strength αn (here the
index n is even number). Meanwhile, we assume that the two
end sites are driven with amplitudes A1 and A2 respectively,
but with the same frequency ω. The high tunability of external
field makes it possible for us to adjust the driving parameter,
and by doing so it can readily make one of the two end sites
driven and the other undriven. In the tight-binding approxi-
mation and assuming a coherent dynamics, the single-particle
motion can be described by the tight-binding Hamiltonian
[82–84]

H =
N∑

n=1

εn(t )|n〉〈n| − v

N−1∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|)

− i
N−1∑
n=1

{
[1 + (−1)n]

αn

2

}
|n〉〈n|,

ε1(t ) = A1 cos(ωt ), εN (t ) = A2 cos(ωt ),

εn(t ) = 0, (n �= 1, N ), (1)

where |n〉 represents the Wannier state localized in the nth
site, v is the coupling strength connecting nearest-neighboring
sites, and the negative imaginary part of site energies denotes
the effective loss with loss coefficient αn acting only on the
even nth (n �= N ) sites.

In the Wannier basis representation, the quantum state
of system (1) can be expanded in the form |ψ (t )〉 =∑N

n=1 cn(t )|n〉, where cn(t ) represents complex amplitude for
occupation of the |n〉 Wannier state. From the Schrödinger
equation i∂t |ψ (t )〉 = H |ψ (t )〉, the evolution equation for the
probability amplitudes cn(t ) reads

i
dcn

dt
= ε1(t )c1 + εN (t )cN − v(cn−1 + cn+1)

− i[1 + (−1)n]
αn

2
cn, (2)
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where cn�0 = cn>N = 0 and αN = 0.
In this work, we mainly illustrate how the decay of a single

particle initially localized at the left-end site can be suppressed
by the interplay of periodic driving and controllable localized
dissipation, with focus on the following two cases: (i) when
the total site number N is odd, the periodic driving is acting
only on the left end; and (ii) when the total site number N is
even, the periodic driving is acting only on the right end.

III. CONTROL OF DYNAMICS BY PERIODIC DRIVING
AND LOCALIZED DISSIPATION

A. Three-site system

First, we take into account the control of dynamics by
driving and dissipation in the three-site model, which is the
simplest quantum system for our consideration. In this case,
the dynamical equations are of the form

i
∂

∂t

⎛
⎝c1

c2

c3

⎞
⎠ =

⎛
⎝A1 cos(ωt ) −v 0

−v −iα2 −v

0 −v A2 cos(ωt )

⎞
⎠

⎛
⎝c1

c2

c3

⎞
⎠.

(3)

It is difficult for us to obtain exactly analytical solutions
of Eq. (3) except for the undriven case. However, in the high-
frequency regime ω � v, the Schrödinger equation (3) can be
investigated analytically by using the high-frequency approx-
imation method. To that end, we introduce the transformation
c1 = a1e−i

∫
A1 cos(ωt )dt , c2 = a2, and c3 = a3e−i

∫
A2 cos(ωt )dt ,

where ai(t ) are slowly varying functions. Using the Fourier
expansion exp(±ik sin ωt ) = ∑

n Jn(k) exp(±int ) in term of
nth-order Bessel functions Jn(k), and neglecting all of the
orders except n = 0 in the high-frequency limit, we arrive at
the effective equations of motion,

i
∂

∂t

⎛
⎝a1

a2

a3

⎞
⎠ =

⎛
⎝ 0 −vJ0(A1/ω) 0

−vJ0(A1/ω) −iα2 −vJ0(A2/ω)
0 −vJ0(A2/ω) 0

⎞
⎠

×
⎛
⎝a1

a2

a3

⎞
⎠. (4)

As is well known, the periodic time-dependent
equation (2) admits solutions in the form of Floquet
states (c1, c2, ..., cN ) = (c′

1, c′
2, ..., c′

N ) exp(−iεt ), where
ε is the quasienergy and the amplitudes (c′

1, c′
2, ..., c′

N )
are periodic with the driving period T = 2π/ω.
Applying the well-established Floquet theorem to
the periodic system (3), we can construct the
approximate Floquet solutions cn = c′

n(t ) exp(−iεt ) =
an exp[−i

∫
εn(t )dt] � a′

n exp[−i
∫

εn(t )dt − iEt] with
c′

n(t ) � a′
n exp[−i

∫
εn(t )dt], ε � E , an = a′

n exp(−iEt ), n =
1, 2, 3, where constants a′

n and E are the eigenvector
components and the eigenvalue of the time-independent
version of Eq. (4) respectively. Inserting such a form of
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FIG. 2. Time evolution of occupation probabilities, Pn = |cn|2,
(n = 1, 2, 3), of the three sites for the undriven (A1 = 0, A2 = 0,
left column) and driven (A1 = 20, A2 = 0, right column) three-site
systems with ω = 20, v = 1, and different values of α2. From top
to bottom: [(a), (d)] α2 = 1; [(b), (e)] α2 = 2; [(c), (f)] α2 = 3. The
particle is initialized in the first site. Shown here are the numerical
probabilities P1 = |c1|2 (blue dashed line), P2 = |c2|2 (green dotted
line), P3 = |c3|2 (red dashed-dotted line), and the total probability
P(t ) = ∑3

n=1 Pn (black solid line).

an = a′
n exp(−iEt ) into Eq. (4), we obtain the eigenvalues

(approximate quasienergies)

ε1 = 0, ε2,3 = 1
2 (−iα2 ± 	), (5)

and the corresponding Floquet modes

|u1(t )〉 = −J0(A2/ω)e−i A1
ω

sin(ωt )|1〉 + 0|2〉
+ J0(A1/ω)e−i A2

ω
sin(ωt )|3〉,

|u2,3(t )〉 = J0(A1/ω)e−i A1
ω

sin(ωt )|1〉 + 1

2
(iα2 ∓ 	)|2〉

+ J0(A2/ω)e−i A2
ω

sin(ωt )|3〉, (6)

where 	 =
√

γ 2 − α2
2 with γ 2 = 4v2[J2

0 (A1/ω) +
J2

0 (A2/ω)]. The Floquet mode |u1(t )〉 corresponds to a
so-called dark Floquet state in the dissipative system, which
seemingly has zero quasienergy and zero population at the
intermediate state |2〉.

At time t , the wave function evolves according to

|ψ (t )〉 =
3∑

n=1

Fne−iεnt |un(t )〉, (7)

where Fn are superposition coefficients determined by the
initial states, which can be calculated as

⎛
⎝F1

F2

F3

⎞
⎠ = T −1

⎛
⎝c1(0)

c2(0)
c3(0)

⎞
⎠, (8)
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T −1 = 1

|T |

⎛
⎜⎝

−	J0(A2/ω) 0 	J0(A1/ω)
1
2 (iα2 + 	)J0(A1/ω) −J2

0 (A1/ω) + J2
0 (A2/ω) 1

2 (iα2 + 	)J0(A2/ω)
1
2 (iα2 − 	)J0(A1/ω) J2

0 (A1/ω) + J2
0 (A2/ω) − 1

2 (iα2 − 	)J0(A2/ω)

⎞
⎟⎠. (9)

Here |T | = 	[J2
0 (A1/ω) + J2

0 (A2/ω)].
As an example, throughout our paper, we only consider the

case in which the particle is initially prepared in the site 1.
Applying the initial condition c1(0) = 1, c2(0) = 0, c3(0) =
0 to Eqs. (7) and (8) yields the analytical solutions of Eq. (3)
in the forms

c1(t ) = e−i A1
ω

sin(ωt )

[
J2

0 (A2/ω)

J2
0 (A1/ω) + J2

0 (A2/ω)
e−iε1t

+ 1

2
f+(t )J2

0 (A1/ω)

]
,

c2(t ) = J0(A1/ω)
(
α2

2 + 	2
)

4|T | (e−iε3t − e−iε2t ),

c3(t ) = e−i A2
ω

sin(ωt )J0(A1/ω)J0(A2/ω)

×
(

− e−iε1t

J2
0 (A1/ω) + J2

0 (A2/ω)
+ 1

2
f+(t )

)
, (10)

where

f+(t ) = iα2 + 	

|T | e−iε2t − iα2 − 	

|T | e−iε3t

= 1

|T |e− 1
2 α2t (iα2(e− 1

2 i	t − e
1
2 i	t )

+	(e− 1
2 i	t + e

1
2 i	t )). (11)

The analytical solutions of Eq. (3) incorporate all available
time-dependent information about the system. Specifically,
the probability Pn(t ) of finding the system to be in state |n〉
at time t (here also termed the population of site n) is the
absolute square of the occupation amplitude in each local state

Pn(t ) = |cn|2, (12)

and the sum gives the total population (probability),

P(t ) =
∑

n

|cn|2. (13)

Substituting (5) into (10) and (12), we have

P1(t ) =
∣∣∣∣ J2

0 (A2/ω)

J2
0 (A1/ω) + J2

0 (A2/ω)
+ 1

2
f+(t )J2

0 (A1/ω)

∣∣∣∣
2

, (14)

P2(t ) = 4J2
0 (A1/ω)

|	|2 e−α2t

{
sin2 1

2 |	|t, α2 < γ ,

sinh2 1
2 |	|t, α2 > γ ,

(15)

P3(t ) =
∣∣∣∣ − J0(A1/ω)J0(A2/ω)

J2
0 (A1/ω) + J2

0 (A2/ω)

+ 1

2
f+(t )J0(A1/ω)J0(A2/ω)

∣∣∣∣
2

. (16)

As can be observed from the above expression, the solu-
tions (14)–(16) are distinguished as two classes: underdamped

or overdamped, relying on whether the value of 	 is taken of
a real or complex number. When the loss coefficient is small,
α2 < γ , then 	 is a positive and real number, 	 = |	|, and
thus the function f+ in the solutions (14)–(16) is of the form

f+(t ) = 2

J2
0 (A1/ω) + J2

0 (A2/ω)
e− 1

2 α2t sin
(

1
2 |	|t + β

)
sin β

,

(17)

where cos β = α2/γ . In this regime, the solutions exhibit
underdamped oscillations, which occur at the frequency of
|	|/2 but with a decaying amplitude proportional to the ex-
ponential exp(−α2t/2), and an increase of the loss coefficient
α2 will increase the rate at which the total probability decays
to approach the equilibrium value. When the loss coefficient
is large, α2 > γ , then 	 becomes a purely imaginary number,
	 = i|	|, and the function f+ is expressible using hyperbolic
sines as

f+(t ) = 2

J2
0 (A1/ω) + J2

0 (A2/ω)
e− 1

2 α2t sinh
(

1
2 |	|t + β ′)
sinh β ′ ,

(18)

where cosh β ′ = α2/γ . In this case, the system enters the
overdamping regime, where the solutions evolve in the expo-
nential form of exp[(−α2 ± |	|)t/2], and the decaying term
exp(−α2t/2) will be partly compensated by the monotonic
increasing hyperbolic sine function, thereby enabling the sys-
tem to access the equilibrium much more slowly than that
predicted by expression (17). In the overdamped regime, a
surprising result is that an increase in the loss coefficient will
produce a slower decay rate of the total probability. Equations
(14)–(16) also show that in the limit of indefinitely large
loss coefficient (thus |	| → α2), the initial-state population
tends to unity, P1(α2 → ∞) → 1, and the particle will remain
frozen in its initially occupied lossless site for long times.
This behavior seems reminiscent of the effect of loss-induced
localization studied in Ref. [72], and the Zeno-like effect ad-
dressed in other literatures[59,64,85]. The boundary between
underdamped oscillation and overdamping occurs when α2 =
γ , which is called critical damping. When critical damping
occurs, the functions of (17) and (18) coalesce to the same
form, and the system evolves in time toward the equilibrium
in the form of exponential exp(−α2t/2). From the expression
of γ 2 = 4v2[J2

0 (A1/ω) + J2
0 (A2/ω)], it can be apparently seen

that the critical value of α2 = γ can be tuned by adjusting the
driving parameters, which provides a fascinating avenue for
manipulation of the transition from underdamped oscillation
to overdamping.

In addition, we are particularly interested in the asymptotic
behavior of the populations (Pn)asy ≡ Pn(t → ∞) and Pasy ≡∑

n Pn(t → ∞) at t → ∞. According to the results of high-
frequency Floquet analysis, in the limit of t → ∞, we have
e−iε2,3t → 0 and f+(t ) → 0; for the given initial state c1(0) =
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1, c2(0) = 0, c3(0) = 0, the wave function |ψ (t )〉 will be
asymptotically driven to a sink state,

|ψ (t → ∞)〉 = F1e−iε1t

⎛
⎝−J0(A2/ω)e−i A1

ω
sin(ωt )

0

J0(A1/ω)e−i A2
ω

sin(ωt )

⎞
⎠ (19)

with ε1 = 0, F1 = −J0(A2/ω)/[J2
0 (A1/ω) + J2

0 (A2/ω)], and
the associated norms are given by

(P1)asy = J4
0 (A2/ω)[

J2
0 (A1/ω) + J2

0 (A2/ω)
]2 , (20)

(P2)asy = 0, (21)

(P3)asy = J2
0 (A1/ω)J2

0 (A2/ω)[
J2

0 (A1/ω) + J2
0 (A2/ω)

]2 , (22)

Pasy = J2
0 (A2/ω)

J2
0 (A1/ω) + J2

0 (A2/ω)
. (23)

As indicated in Eq. (19), the sink state is just the so-called
dark Floquet state, which seemingly has zero quasienergy
and zero population at the intermediate state |2〉. As the dark
Floquet state is reached by dissipative dynamics, the lossy
site is not excited and the system is projected onto the loss-
free dynamics. From Eqs. (20)–(23), we readily observe the
following circumstances.

1. Case I

If A2 = 0, A1 is taken arbitrarily, that is, the periodic
driving applied only to the left-end site, then

(P1)asy = 1[
1 + J2

0 (A1/ω)
]2 � 1

4
, (24)

(P3)asy = J2
0 (A1/ω)[

1 + J2
0 (A1/ω)

]2 � 1

4
, (25)

and the total population

Pasy = 1

1 + J2
0 (A1/ω)

� 1

2
. (26)

In this case, the ratio of asymptotic probability (P1)asy

to (P3)asy is given by [|c1(t )|2/|c3(t )|2](t → +∞) =
1/J2

0 (A1/ω) � 1. From Eq. (26), it follows that the periodic
driving, applied only to the left-end site, may lead to a
enhanced value of Pasy and thus to a reduced loss of the
total population, as compared with the undriven case where
Pasy = 1/2. This important finding can be exploited for
improvement of the antileakage capability in the dissipative
system. Specifically, if we choose A1/ω to be the zeros of
the Bessel function J0(A1/ω), then we obtain (P1)asy = 1,
(P3)asy = 0 and Pasy = 1. In such a case, it seems that the
particle remains fixed in its initial site and the system is
effectively lossless, which recovers the CDT effect.

2. Case II

If A1 = 0, A2 is arbitrary, that is, the periodic driving
applied only to the right-end site, then we have

(P1)asy = J4
0 (A2/ω)[

1 + J2
0 (A2/ω)

]2 � 1

4
, (27)

(P3)asy = J2
0 (A2/ω)[

1 + J2
0 (A2/ω)

]2 � 1

4
, (28)

and the total population

Pasy = J2
0 (A2/ω)

1 + J2
0 (A2/ω)

� 1

2
. (29)

Contrary to case I, the periodic driving, applied merely to the
right-end site, instead makes the ratio of (P1/P3)asy to be small
than 1, that is, [|c1(t )|2/|c3(t )|2(t → +∞)] = J2

0 (A2/ω) � 1,
and produces a greater total population loss than the undriven
counterpart. This case is not in the focus of the following
study.

3. Case III

If A1 = A2 �= 0, that is, the periodic driving applied equally
to the two end sites, then we have (P1)asy = |c1(t )|2(t →
+∞) = 1

4 , (P3)asy = |c3(t )|2(t → +∞) = 1
4 , and Pasy =

P(t → +∞) = 1
2 . Under this circumstance, the asymptotic

evolution at t → +∞ seems to behave exactly the same as
the undriven case.

Following the high-frequency approximation analysis
mentioned above, we summarize the main results as follows:
(i) The periodic driving can be utilized not only to manipulate
the damping form from underdamped oscillation to over-
damping, but also to reduce the decay of the total population
in the dissipative three-site system; and (ii) the sink state (dark
Floquet state), to which the system is asymptotically driven,
has unique population distribution which depends not on the
strength of loss coefficient but only on the driving parameters.

To verify the above analytical arguments, we solve Eq. (3)
numerically with the particle initially localized in the first
site. The time evolutions of all probabilities with increasing
values of loss coefficient for the undriven and driven cases
are shown in Figs. 2(a)–2(c) and Figs. 2(d)–2(f) respectively,
in both of which different types of damping are possible as
we have predicted. Figures 2(a)–2(c) illustrates representative
examples of the undriven model, for the three regimes of
damping: underdamped oscillation (α2 = 1), critical damping
(α2 = 2), and overdamping (α2 = 3). In the undriven model,
the total population will decrease to half of its initial value,
independently of the values of loss coefficient. By contrast,
as exhibited in Figs. 2(d)–2(f), for the driven model with the
periodic driving field acting only on the first site, the system
still undergoes the transition from underdamped oscillation to
overdamping as the loss coefficient gets stronger (α2 = 1, 2, 3
from top to bottom), but the total probability approaches the
same equilibrium value (independent of α2) after a period of
time, which nevertheless becomes higher as compared with
the undriven counterpart (the value of 0.5).

In fact, the real integration time cannot be infinite for the
time integration of Eq. (2). For comparison, we define the
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FIG. 3. Three-site model (3) with A2 = 0. (a) Comparison be-
tween analytical and numerical results of asymptotic (equilibrium)
value of the total probability vs the driving parameter A1/ω. The an-
alytical results Pasy = P(t → ∞) are given by the formula (26), and
the numerical correspondences 〈P〉equ = 1

�

∫ t f
t f −� P(t )dt are obtained

from the original three-site system (3) with different integration
times t f . (b) (Pn/P)asy, given by the analytical formulas (20)–(23), vs
A1/ω. Circles are for numerical correspondences 〈Pn/P〉equ with t f =
100. (c) Imaginary and real (upper-right corner) parts of numerical
quasienergies vs A1/ω for the three-site system (3). The inset of panel
(c) shows an enlargement of imaginary part of the zero quasienergy
(red line). (d) The time-averaged probability distribution of the dark
Floquet state corresponding to a nearly zero quasienergy in panel (c).
In all panels, we only consider the case the periodic driving field is
only applied to site 1. The other parameters and initial condition are
the same as those in Fig. 2(d): A2 = 0, ω = 20, v = 1, α2 = 1, and
(c1(0), c2(0), c3(0)) = (1, 0, 0). The averaging time used in panels
(a) and (b) is � = t f /2.

numerical correspondence of asymptotic (equilibrium) value
of all probabilities as 〈Pn〉equ = 1

�

∫ t f

t f −�
Pn(t )dt and 〈P〉equ =∑

n〈Pn〉equ with appropriate averaging time interval �. In the
late calculations, we will take � = t f /2 to ensure that the ini-
tial nonsteady process is omitted. In Fig. 3(a), we have shown
the analytical results of Pasy (yellow dashed line) given by (26)
versus the driving parameters A1/ω with other parameters as
in Fig. 2(d) and found that as A1/ω is increased from zero, the
value of Pasy grows from 0.5 and reaches its maximum (of 1)
at A1/ω = 2.4, the zero of J0(A1/ω). We also compare the an-
alytical results with the numerical correspondences calculated
via integration of Eq. (3) with different integration times. As
shown in Fig. 3(a), the numerical correspondences with t f =
20 are in good agreement with the analytical results, whereas
the numerical results (remain to be greater than or equal to
0.5) are principally below the analytical ones if we extend the
integration time to t f = 100. Another important observation is
that the numerical results of ratio 〈Pn/P〉equ (circles) obtained
with t f = 100 (or even indefinitely longer), nevertheless, fit
quite well to the analytical results of (Pn/P)asy, as seen in
Fig. 3(b). To gain more insight into this problem, we have
numerically computed the quasienergies and Floquet states
of the original system model (3). The numerically computed

quasienergies are shown in Fig. 3(c). It is clear from Fig. 3(c)
that there exists a dark Floquet state whose quasienergy (red
line) seems to be zero for all of the values of A1/ω. Notice,
however, as shown in the inset, that the zero quasienergy spec-
trum is in fact a complex quasienergy spectrum with small
negative imaginary parts. This dark Floquet state stands out
not only for its nearly zero quasienergy but also for its unique
population distribution among the local sites. We display the
time-averaged population 〈P′

n〉 = [
∫ T

0 dt |c′
n|2]/T correspond-

ing to the dark Floquet state in Fig. 3(d). Remarkably, the
time-averaged population distribution of dark Floquet state
seems to be equivalent to the behaviors of ratio (Pn/P)asy

shown in Fig. 3(b), and accordingly, the dark Floquet state
has negligible population at site 2.

The above numerical simulations reveal that for the three-
site system (3), driven by the localized dissipation at the
central site and by the periodic field acting only on the left-end
site, the short-time evolution of all probabilities obtained from
the original model (3) agrees well with the analytical results
given by the high-frequency approximation. However, a sig-
nificant deviation between them emerges in the long-time evo-
lution. Interestingly, the numerical results of ratio 〈Pn/P〉equ at
any long-enough evolution time are well consistent with the
analytical (Pn/P)asy at t → ∞ and the time-averaged popula-
tion 〈P′

n〉 corresponding to the dark Floquet state as well. The
underlying physics can be understood by noting that the sink
state (dark Floquet state) itself will continue to decay very
slowly as exp[Im(ε1)], with Im(ε1) being nonzero but a small
negative number. The transient nature of sink (equilibrium)
state is quite natural, since the losses are not balanced by
any gain, and apparently, the very small negative imaginary
part of quasienergy would be intrinsically related to a small
nonzero population at the lossy site 2, which can be numeri-
cally confirmed by amplified examination (not shown) of the
population distribution of the associated dark Floquet state. In
practice, the application of periodic driving field merely to the
left-end site offers an efficient and feasible tool to increase the
equilibrium value of total probability, and thus to attenuate
the effective decay in the dissipative three-site system for a
certain long interval of time. The foreseeable disadvantage for
this scheme, however, is that the probabilities approach zero
and all probabilities will be lost in the long run. This transient
nature presents a major obstacle for practical applications in
the control of the dynamics of an open quantum system with
localized dissipation. Finally, it is worth emphasizing again,
in the dissipative system, the fact that the quasienergy of the
dark Floquet state has a very small nonzero imaginary part
will produce a nontrivial physical effect, which is extremely
different from the conservative system, where the nonzero
but vanishingly small all-real quasienergy of dark Floquet
state accumulates no physical effect in long-time evolution of
quantum states.

Figure 4 illustrates a representative example of tuning the
transition from underdamped oscillation to overdamping by
the periodic driving field. For the undriven case, A1 = A2 =
0, we find that both P1 and P3 exhibit oscillations in the
initial time interval, and then tend to a constant of 0.25,
which signals a form of underdamped oscillation, as shown
in Fig. 4(a). As the periodic field is applied equally to the two
end sites, A1 = A2 �= 0, both P1 and P3 have no oscillations,
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FIG. 4. Time evolutions of the occupation probabilities, Pn =
|cn|2, (n = 1, 2, 3), in the three-site system (3) for the particle ini-
tially occupying the first site. (a) A1 = 0, A2 = 0; (b) A1 = 40, A2 =
40. The other parameters are set as ω = 20, v = 1, α2 = 1. Shown
here are the numerical probabilities P1(t ) (blue dashed line), P2(t )
(green dotted line), P3(t ) (red dash-dotted line), and the total proba-
bility P(t ) (black solid line).

and only exhibit a monotonic approach toward the equilibrium
that is exactly the same as the undriven counterpart, as shown
in Fig. 4(b). This behavior of the driven case is a manifestation
of overdamping. These numerical results demonstrate that the
transition between underdamped oscillation and overdamping
can be controlled with high precision by adjusting the driving
parameters.

B. Four-site system

We now turn to the case of the four-site system where the
dynamical equations are

i
∂

∂t

⎛
⎜⎝

c1

c2

c3

c4

⎞
⎟⎠

=

⎛
⎜⎝

A1 cos(ωt ) −v 0 0
−v −iα2 −v 0
0 −v 0 −v

0 0 −v A2 cos(ωt )

⎞
⎟⎠

⎛
⎜⎝

c1

c2

c3

c4

⎞
⎟⎠. (30)

As far as the four-site system (N is even) is concerned,
the focus of our studies is on the situation where the periodic
driving field is applied only to the right-end site. We plot in
Fig. 5(a) the time evolutions of the total population by direct
numerical integration of the Schrödinger equation (30) with
A1 = 0. We start a particle at site 1 and fix the loss coefficient
as α2 = 1. The results are presented in Fig. 5(a) for three
typical driving conditions, where the total probabilities are
found to decay from 1 to 0 rapidly for both cases of A2/ω = 0
and A2/ω = 1. For A2/ω = 2.4, however, we observe a quite
different behavior: The total probability decays to reach a
equilibrium value of 0.5, showing a remarkable coincidence
with the counterpart of undriven three-site system. The basic
explanation of this phenomenon is as follows. If the driving
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FIG. 5. Four-site system described by Eq. (30). (a) Time evo-
lutions of the total probability P(t ) = ∑4

n=1 |cn(t )|2 under various
driving conditions. (b) Numerically asymptotic (equilibrium) value
of the total probability, 〈P〉equ = 1

�

∫ t f
t f −� P(t )dt , as a function of

driving parameter A2/ω, with two different integration times t f =
100 and t f = 1000. In both panels, we start the system with the
particle at site 1, and set other parameters as A1 = 0, ω = 20, v =
1, α2 = 1,� = t f /2.

parameters A2/ω are tuned to satisfy the zeroth-order Bessel
function J0(A2/ω) = 0, CDT occurs between the driven right-
end site and the undriven lattice sites, and therefore the system
behaves like an undriven three-site system with localized
dissipation at site 2. Thus, the coaction of CDT effect and dark
state (existing in the three-site system) will give origin to the
phenomenon that the dissipative four-site system evolves in
time toward a steady state which keeps the total probability
at a constant level of 0.5. Such a suppression of the total
probability loss is more clearly demonstrated in Fig. 5(b),
where the numerical equilibrium 〈P〉equ versus the driving
parameter A2/ω is presented with two different evolution
times. It is observed that there exist the peaks in this quantity
〈P〉equ centered on A2/ω = 2.4, the zero of J0(A2/ω), for both
evolution times. As the evolution time is extended, the peak
becomes narrower, but the maximum value of 〈P〉equ remains
unchanged nevertheless.

To better understand the phenomenon presented in Fig. 5,
we carefully investigate the time-dependent behaviors of all
probabilities, as illustrated in Fig. 6(a). The inset of Fig. 6(a)
gives an enlargement of the time evolutions of probabilities
P2 and P4, where we observe that the two quantities keep
very small values over the evolution time but the probability
P4 is nonetheless more appreciable. The exceedingly small
and less appreciable value of time-dependent probability P2

implies that the equilibrium value will keep good stability
over sufficiently long evolution time. This implication is
collaborated by our numerical simulation (not shown) if we
extend the integration time to a larger order of magnitude.
It might be taken for granted that due to the occurrence of
CDT, application of the periodic driving field solely to the
first site will lead to a decoupling of the site 1 and the lossy
site 2 (hence to prevention of the particle from reaching the
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FIG. 6. Four-site system (30) for the particle initially occupying
the first site. (a) Time evolutions of the occupation probabilities,
Pn = |cn|2, (n = 1, 2, 3, 4), of four sites and the total probability
P(t ) = 4

n=1|cn|2, with A1 = 0, A2/ω = 1 and the same parameters
as in Fig. 5. Inset shows amplification of the time evolutions of P2

and P4. (b) Time evolutions of the total probability P(t ) = 4
n=1|cn|2

for two cases of A1 = 0, A2/ω = 2.4 and A1/ω = 2.4, A1 = 0, with
ω = 20, v = 1, α2 = 1.

leaking site), therefore protecting the system from dissipation.
However, the fact is not so simple as is thought. In Fig. 6,
we give the direct comparison of the time-dependent total
probabilities between the case of A1 = 0, A2/ω = 2.4 and
A2 = 0, A1/ω = 2.4. We easily observe from Fig. 6 that for
the case of A2 = 0, A1/ω = 2.4 (here the periodic driving
is applied only to the left-end site, and approximate CDT
occurs between site 1 and the undriven lattice sites), the total
probability slowly falls from its initial value to zero as the time
is increased, whereas for the case of A1 = 0, A2/ω = 2.4 (the
periodic driving is applied only to the the right-end site, and
approximate CDT occurs between the right-end site and other
undriven lattice sites), the total probability decays to approach
a steady value with long-term stability.

C. System with other number of sites

Our analysis above is given for three- and four-site sys-
tems, but similar behavior can be obtained for other lattice
systems as well.

The dissipative dynamics of the driven N-site systems
is elaborated by directly integrating the time-dependent
Schrödinger equation (2) with the particle initially localized
at site 1. Figure 7 shows some examples of the dynamics for
other finite number of sites with different driving parameters
and with different values of loss coefficient. The left column
shows the dynamics for N = 5 with the periodic driving field
applied only to the left-end site and the right column for
N = 6 with the periodic driving field only to the right-end
site. For the system with N = 5, it can be seen that (i) when
the periodic driving is not presented, that is, A1/ω = 0, the
total probabilities P(t ) rapidly decay to the same equilibrium
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FIG. 7. Time evolutions of the total probability P(t ) = 5
n=1|cn|2

for the five-site system with A2 = 0 (left column) and P(t ) =
6

n=1|cn|2 for the six-site system with A1 = 0 (right column), starting
from the particle at site 1. From top to bottom on the left: (a)
A1/ω = 0; (b) A1/ω = 2; (c) A1/ω = 2.4. From top to bottom on the
right: (d) A2/ω = 0; (e) A2/ω = 2; (f) A2/ω = 2.4. Other parameters
are ω = 20, v = 1, α2 = 1. Shown here are the numerical results
for the parameter set of loss coefficient (α2, α4) = (0, 1) (blue dotted
line), (α2, α4) = (1, 1) (red dashed line), and (α2, α4) = (1, 0) (black
solid line). The inset of panel (b) illustrates the long-time evolution
of the total probability in the five-site system for the parameter set
(α2, α4) = (0, 1), with A2 = 0, A1/ω = 2.

value of 0.3333 for all values of loss coefficient; (ii) as the
periodic driving is switched on, for both parameter sets of
loss coefficient (α2, α4) = (1, 1) and (α2, α4) = (1, 0) (where
the parameter sets both correspond to the same case in which
the first lossy site from the left is site 2), the probabilities
exhibit the same behavior with persistently slow decay though
the total number of lossy sites for both are distinct; while for
the parameter set (α2, α4) = (0, 1) (i.e., the case that the first
lossy site from the left is site 4), the loss of total probabilities
can be greatly reduced with respect to the undriven case
and the enhanced equilibrium value of total probabilities can
be kept at a stable level even though total evolution time
is extended to a much larger order of magnitude [see the
inset of Fig. 7(b)]. Notice that at A1/ω = 2.4, the zero of
J0(A1/ω), the total probability P(t ) remains near unity over
the evolution time for the parameter set (α2, α4) = (0, 1),
which means a vanishing decay of total population of the
quantum wave packet. For the system with N = 6, on the
other hand, we observe that the total probabilities P(t ) tend
rapidly to zero for both cases of A2/ω = 0 and A2/ω = 2.
However, it is interesting to note that at A2/ω = 2.4, the zero
of J0(A2/ω), the total probabilities P(t ) decay to approach the
steady value of 0.3333 for any set of loss coefficient, which
works in analogy to the undriven five-site system [one can see
by comparing Figs. 7(f) and 7(a)].

To further shed light on the physics of the system (2)
with N = 5 and N = 6, we present in Fig. 8 the numerical
equilibrium value 〈P〉equ as functions of the driving param-
eters with integration time t f = 100. Figure 8(a) represents
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FIG. 8. (a) Numerically asymptotic (equilibrium) value of the
total probability, 〈P〉equ = 1

�

∫ t f
t f −� P(t )dt , as a function of driving

parameter A1/ω for the five-site system with A2 = 0 for different
parameter sets of loss coefficient. Other parameters are the same
as the ones in Figs. 7(a)–7(c). (b) 〈P〉equ vs A2/ω for the six-site
system with A1 = 0 for different parameter sets of loss coefficient.
Other parameters are the same as the ones in Figs. 7(d)–7(f). In
both panels, we assume that t f = 100, � = t f /2 are set, and the
system is initialized with the particle at site 1. The inset of panel
(a) gives the ampliation of imaginary part of nearly zero quasienergy
corresponding to the dark Floquet state for both parameter sets
(α2, α4) = (1, 1) and (α2, α4) = (1, 0).

the quantity 〈P〉equ versus A1/ω for the system with N = 5,
where the right-end site is undriven. We observe that for the
parameter set (α2, α4) = (0, 1), the quantity 〈P〉equ increases
from 0.333 as the driving parameter A1/ω varies, and takes its
maximum value of 1 at A1/ω = 2.4. Actually, the dependence
of 〈P〉equ on A1/ω remains roughly unchanged even if the total
evolution time is extended to six orders of magnitude (not
listed here). This provides a promising application that the
dissipative configuration with given parameter set (α2, α4) =
(0, 1) may be used to keep its total population on a much
higher level in the long-lived steady state. We also note that for
both parameter sets (α2, α4) = (1, 1) and (α2, α4) = (1, 0),
the numerical equilibrium values 〈P〉equ produced are the same
and stay considerably smaller than that of (α2, α4) = (0, 1).
Moreover, the quantities 〈P〉equ produced for both (α2, α4) =
(1, 1) and (α2, α4) = (1, 0) will become lower if we extend
the evolution time. Figure 8(b) shows how the quantity 〈P〉equ

in a six-site system varies as the driving parameter A2/ω is
increased, assuming that the left-end site is undriven. We can
observe in Fig. 8(b) that, as seen previously in the four-site
system, the quantities 〈P〉equ for all sets of loss coefficient
peak again at A2/ω = 2.4, the zero of J0(A2/ω). In Figs. 9(a)
and 9(b), we plot the quasienergies for the five-site sys-
tem with (α2, α4) = (0, 1) and with other parameters as in
Fig. 8(a), and can note that, like the three-site system, this
five-site system possesses a dark Floquet state with nearly
zero quasienergy and negligible population at all of the even
nth sites [see Fig. 9(c)]. A careful examination reveals that the
imaginary part of the seeming zero quasienergy for (α2, α4) =
(0, 1) is not a real zero but an extremely small negative
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FIG. 9. Five-site system with A2 = 0. [(a), (b)] Real (left) and
imaginary (right) parts of the quasienergies as a function of A1/ω.
Inset of panel (b) shows amplification of imaginary part of the zero
quasienergy (red line). (c) The time-averaged probability distribution
of the dark Floquet state corresponding to a nearly zero quasienergy
in panels (a) and (b). (d) The detailed results for time evolution of the
occupation probabilities Pn = |cn|2 of the five sites corresponding to
the inset of panel (b) in Fig. 7. Other parameters are the same as in
the inset of panel (b) in Fig. 7: ω = 20, v = 1, and (α2, α4) = (0, 1).

nonzero number, which is of the order of 10−8 [see inset of
Fig. 9(b)], whereas for both (α2, α4) = (1, 1) and (α2, α4) =
(1, 0), the Floquet-dark-state-related quasienergy’s imaginary
part is of order of 10−3 [see inset of Fig. 8(a)], typically 105

times larger than that of (α2, α4) = (0, 1). It is noted that the
magnitude of the nonzero imaginary part of the quasienergy
determines (inversely correlates to) the temporal length of
the system remaining in the corresponding dark Floquet state
without decay. This explains the reason why applying the
periodic driving solely to the left-end site of five-site system
will give rise to an equilibrium state with good stability
over a sufficiently long evolution time for the given set of
loss coefficient (α2, α4) = (0, 1). In addition, we also plot
in Fig. 9(d) the time dependence of all probabilities for the
corresponding five-site system. As expected, the system has
negligible population at all of the even nth sites during the
dynamical evolution.

In what follows, we proceed to carry out the numerical sim-
ulation of model equation (2) with N = 7, where the periodic
driving is applied to address only the left-end site. As before,
the particle is initially localized in site 1. The results are shown
in Fig. 10, and we can expect to encounter the qualitatively
similar results as in five-site system. For both the parameter
sets (α2, α4, α6) = (1, 1, 1) and (α2, α4, α6) = (1, 0, 0) (in
either case, the first lossy site from the left is site 2), the total
populations show the same slow decay [see Fig. 10(a)], both
of which are closely related to the existence of dark Floquet
states whose quasiernergies have small nonzero imaginary
parts with the exactly same magnitudes (of order of 10−3)
[see Fig. 10(b)]. By contrast, for both cases of (α2, α4, α6) =
(0, 1, 1) and (α2, α4, α6) = (0, 1, 0) (i.e., the first lossy site
from the left is site 4), the dynamics are almost identical and
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FIG. 10. Seven-site system with A2 = 0. (a) Time evolutions of
the total probability P(t ) = 7

n=1|cn|2 for both parameter sets of
loss coefficient (α2, α4, α6) = (1, 1, 1) and (α2, α4, α6) = (1, 0, 0)
with A1/ω = 2, and starting the system with particle at site 1.
(b) Imaginary part of the nearly zero quasienergy for the associ-
ated dark Floquet state with the same parameters as in panel (a).
(c) Time evolutions of the total probability P(t ) = 7

n=1|cn|2 for both
(α2, α4, α6) = (0, 1, 1) and (α2, α4, α6) = (0, 1, 0) with A1/ω = 2,
and starting the system with particle at site 1. (d) Imaginary part
of the nearly zero quasienergy for the associated dark Floquet state
with the same loss coefficients as in panel (c). In panel (b), we have
incorporated the other case (α2, α4, α6) = (0, 0, 1) as blue dotted
lines in the main panel and inset (amplification). Other parameters
are ω = 20, v = 1.

the total populations are found to decay to the same steady
values with long-term stability [see Fig. 10(c)], which occurs
as a consequence of the existence of dark Floquet states with
exceedingly small nonzero imaginary parts of quasienergies
[of order of 10−8; see the coincided curves of black and red
lines in Fig. 10(d)]. For comparison, we also consider the case
of (α2, α4, α6) = (0, 0, 1) (i.e., the case that the first lossy
site from the left is site 6), and plot the imaginary part of
quasienergy of the dark Floquet state as the blue-dotted lines
in both the main panel and inset of Fig. 10(d). We find that
for (α2, α4, α6) = (0, 0, 1), the associated dark Floquet state
has a much smaller imaginary part (of order of 10−13), which
means that the system will be driven to a steady state (i.e., the
dark Floquet state) with much longer lifetime.

Taking both the five- and seven-site systems into consid-
eration, our studies suggest that the numerical value of the
system’s effective decay depends not on how many lossy sites
there are but on which of the lossy sites is nearest to the driven
site. When the first lossy site from the left is far enough away
from the driven left-end site, the magnitude of the imaginary
part of quasienergy corresponding to dark Floquet state will
become extremely small, and the period of time for the system
remaining in the stable dark Floquet state without decay will
become exceedingly long. These notable features are also
supported by numerical studies of the systems with other odd
numbers of sites (not displayed here). Previous research has
given a mathematical proof that the dark Floquet state exists in
all of the odd-N-state conservative systems, which is naturally

validated for non-Hermitian Hamiltonian systems [79]. Thus,
for specially designed local dissipation, applying the periodic
field only to the left-end site could drive the arbitrary odd-
N-site system to a long-lived steady state (i.e., stable dark
Floquet state) which has a higher level of total probability
(lower probability loss) as compared to the undriven case.

IV. CONCLUSIONS

We have discussed the effects of interplay between the
periodic driving and localized dissipation for a single quantum
particle initially loaded in the left-end site of one-dimensional
quantum lattice systems. To be concrete, we take the number
of lattice sites N = 3, 5, and 7 as examples, and find that for
an odd-N-site system, there always exists a dark Floquet state
whose quasienergy has an extremely small negative nonzero
imaginary part, which will produce a nontrivial physical effect
in dissipative systems. Such a feature is different from that
of the conservative system where the quasienergy of the
dark Floquet state is not zero either but an extremely small
nonzero all-real number, which, however, is negligible and
has no observable physical effect. Furthermore, we elucidate
the prominent role played by the dark Floquet state in the
suppression of decay in open quantum systems with localized
dissipations. When subjected to localized dissipations from
the even nth sites, the system will evolve in time toward
the dark Floquet state, in which the population distributions
among sites depend only on the driving parameters. In partic-
ular, applying the periodic driving only to left-end site will
produce a higher level of total population (lower probabil-
ity loss) compared to the undriven case. The occurrence of
nonzero imaginary part of the quasienergy means that the
associated dark Floquet state will continue to decay with
a very slow decay rate. We have discovered, fortunately, a
nontrivial effect that the system’s effective decay depends not
on the total number of lossy sites, but instead only on the
number of the first lossy lattice site from the driven left-end
site. Particularly, the farther is the first lossy site away from
the driven left-end site, the longer is the time for the system
staying in the dark Floquet state. The interplay between these
effects enables the system to be driven to a long-lived stable
dark Floquet state with much higher level of total probability
(lower probability loss), which opens additional possibilities
for long-term suppression of decay in fully governable open
quantum systems.

In addition, we have also numerically explored the multi-
site lattice systems with even numbers of sites. By studying
the number of lattice sites N = 4, 6, we have found that by
application of the periodic driving to the right-end site, the
CDT effect makes it possible to switch off the tunneling
between the right-end site and other undriven sites, and thus
enable the system to be driven to a steady state without decay
as in the undriven odd-number-site system. In essence, the
existence of such a steady state originated from the dark
state, which emerges from the resulting effective undriven
system with an odd number of sites, as the single driven
right-end site is effectively removed from the dynamics due
to the occurrence of CDT effect. It is noteworthy that the
steady state, caused by the CDT between the driven right-end
site and the remaining odd numbers of undriven sites, has a
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more stable overall probability over sufficiently long evolution
time, in comparison with that caused by the CDT between
the left-end site (initially occupied by the particle) and its
neighboring lossy site 2. This interesting finding indicates that
the CDT effect alone is not enough to efficiently suppress the
probability decay in the long-time dynamics, and the interplay
(cooperation) between the effects of CDT and dark state is
required. We have considered only the simplest four- and
six-site systems. In general, we should expect quantitatively
similar results for other even numbers of lattice sites, con-
trolled by local dissipation and periodic driving.

This investigation may be a first step toward understanding
the leading role played by the dark Floquet state in the
suppression of decay in fully governable open quantum
systems. We have highlighted the essential differences of dark
Floquet state in the dissipative systems with respect to the
conservative systems. In view of the advancing experiments
on the single-site addressability in the optical lattices, where
controlled losses can be made truly localized in selected
sites of optical lattice [57,58], we expect that our results

can be tested in open quantum systems under currently
available experimental conditions. Our conclusions are also
applicable to a large variety of systems. For instance, due to
the equivalence between the Schrödinger equation and the
optical wave equation, our results can be used to suppress
the decay of optical signals in waveguides with specially
designed imaginary refractive index.
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