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Open quantum walks (OQWs) describe a quantum walker on an underlying graph whose dynamics is
purely driven by dissipation and decoherence. Mathematically, they are formulated as completely positive trace
preserving (CPTP) maps on the space of density matrices for the walker on the graph. Any microscopically
derived OQW must include the possibility of remaining on the same site on the graph when the map is applied.
We extend the CPTP map to describe a lazy OQW. We derive a central limit theorem for lazy OQWs on a
d-dimensional lattice, where the distribution converges to a Gaussian. We show that the properties of this
Gaussian computed using conventional methods agree with the general formulas derived from our central
limit theorem.
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I. INTRODUCTION

Random walks have been applied to a vast number of
areas in science including physics, computer science, financial
economics, and biology [1–6]. Elevating the random walk
onto the quantum level was first performed in the context of
closed systems undergoing unitary evolution. Models for uni-
tary quantum walks in discrete and continuous time have been
proposed in [7,8], respectively. Comprehensive overviews for
some of these early quantum walk models can be found
in [9,10]. These models are comprised of a walker on an
underlying graph. The walker possesses internal degrees of
freedom (for example, spin or polarization) which play a non-
trivial role in determining the probability distribution on the
graph. The unitary operator driving the evolution performs a
transformation of the walker’s internal degrees of freedom and
then, depending on this resulting state, shifts the walker from
one position on the graph to another. This unitary operator
is applied at each time step and a coherent superposition
between all the possible positions emerges.

It is well known that quantum walks display very different
behavior compared to their classical counterparts. In particu-
lar, it is interesting to study and compare the asymptotic, or
long-time, behavior of the walks. The unitary quantum walks
propagate outwards from the initial position quadratically
faster than the classical random walk. A central limit theorem
was derived in [11] in which the limit distribution was found
not to be Gaussian, as it is for the classical case. Instead the
distribution density was a function of the form

f (x) =
√

1 − |a|2(1 − λx)

π (1 − x2)
√

|a|2 − x2
, (1)
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where λ and a are constants. Quantum walks have proved to
be important when designing algorithms to perform a variety
of search related tasks [12]. A significant feature omitted
in these models is an additional nonzero probability for the
walker to remain on the same site on the graph. In [13] a
lazy unitary quantum walk was constructed to establish a rela-
tionship between discrete time and continuous time quantum
walks in certain limits. Grover’s search algorithm [14] was
formulated as a lazy unitary quantum walk in [15]. For the
discrete quantum walk case, adding additional self-loops at
the graph vertices, i.e., increasing the probability of the walker
staying put, was found to affect the performance of the search
algorithm, either improving the success probability (for a
single self-loop) or hindering it (for more than one self-loop).
The continuous quantum walk case was also studied with the
number of self-loops having no effect. Aspects of probability
distributions for lazy quantum walks were studied in [16,17].
One notable feature to have been discovered is that of localiza-
tion. Depending on the unitary evolution operator possessing
eigenvalues isolated from its continuous spectrum, the walker
exhibits a nonvanishing probability to remain at any position
on its underlying graph. The lazy quantum walk model con-
structed in [18] used a 3 × 3 discrete Fourier transform as its
coin operator and compared its probability distribution to that
of the nonlazy quantum walk with the usual 2 × 2 Hadamard
coin. The two distributions are different but have very similar
probability distribution concentrated intervals. Furthermore,
the nth moment of the two respective probability distributions
were both shown to be order n in time. It was also learned
that lazy quantum walks have higher occupancy rate than
other walks, classical or quantum. Improvements and further
discoveries for the above models have been found in [19–21].
Quantum walks have by now extensively been demonstrated
experimentally. See, for example, the recent work of [22] and
references therein.
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Unitary evolution is indicative of a closed quantum system.
In this work, we will be concerned with a discrete time
open quantum system random walk model, one in which the
walk is driven by a dissipative environment. Open system
quantum walk models were first introduced in [23–25]. These
open quantum walks (OQWs) describe a system comprised
of the walker possessing internal degrees of freedom and
the underlying graph. The evolution of the walker is driven
by a dissipative environment, where the interaction with this
environment takes place between any two connected nodes.
These nonunitary dynamics are described mathematically by
completely positive trace preserving (CPTP) maps. These
maps transform the internal degrees of freedom while shifting
the walker from one position on the graph to another, thus
again building up a statistical mixture of terms for each
possible position contributing to the system’s density matrix.
The probability distribution of the walker’s position for large
times converges to a Gaussian, reminiscent of the classical
random walk behavior.

With an appropriate choice of map, the OQW reproduces
the classical Markov chain. A “physical realization” proce-
dure establishes a relation between the OQW and the unitary
quantum walk [23]. An OQW formulation of dissipative
quantum computing (DQC) was presented in [26], in which
the OQW based algorithms converged faster to the desired
steady state, and had a higher probability of detection, than the
canonical DQC models. Furthermore, the OQW allows for a
quantum trajectory [27] description which, in turn, allows for
a quantitative analysis of the long-time, or asymptotic, behav-
ior of the OQW. Using quantum trajectories the work of [28]
formulated a central limit theorem (CLT) for the discrete time
homogeneous OQW where the underlying graph is a lattice
Zd . They further managed to derive an explicit formula for the
variance of the corresponding Gaussian. Using the CLT [28],
the work of [29] introduced a Fourier space dual process
for the OQWs and from this, they were able to find formal
expressions for the probability distribution and, for a range of
OQWs, the mean and variance for the corresponding distribu-
tions. Continuous time OQWs were first formulated in [30],
and the CLT was proved in [31]. The authors of [32] managed
to generalize the CLT to some particular nonhomogenous
cases of the OQW on the lattice. Next, Ref. [25] studied the
asymptotic probability distributions for OQWs on Z where
the operators in the CPTP map are simultaneously diagonaliz-
able. The asymptotic distributions were found to consist of, at
most, two solitonlike solutions along with a certain number of
Gaussians. Furthermore, they uncovered connections between
the spectrum of the operators and properties of the asymptotic
distributions. As will be elucidated below, the OQW quantum
trajectories may be seen as classical Markov chains. Indeed
many notions present in classical Markov chain theory, such
as irreducibility, period, and communicating classes, have
been successfully introduced to OQWs through the quantum
trajectory route [33,34], and the notion of hitting time for the
OQW was defined in [35]. Applying the generic results of [33]
to homogeneous OQWs on Zd , Ref. [34] proved the CLT as
well as formulated the large deviation principle for quantum
trajectories for OQWs.

Lastly, in the scaling limit, OQWs gave rise to a new
class of Brownian motion, namely, open quantum Brownian

motion [36,37]. These models do not exhibit Gaussian behav-
ior and no CLT is yet known. The detailed account of current
status of the field of OQWs can be found in [38].

As with the unitary quantum walk case previously, a
significant feature omitted thus far in the OQW model de-
scribed above is the possibility of the walker to remain on
the same site after the CPTP map is applied. After the initial
model was proposed in [23–25] and the CLT derived in [28],
the OQW was derived from a microscopic model [39] in
which the system and the environment, concretely chosen
to be a bath of harmonic oscillators, together constituted a
closed system. After a quantum master equation was derived
for the system’s reduced density matrix, the discrete time
OQW was then obtained through a discretization procedure.
Crucially, the work of [39] explicitly demonstrates that all
microscopically derived OQWs must necessarily have a self-
jumping term. Thus any OQW model that is derived from
a microscopic approach must incorporate the possibility of
the walker remaining on the same site. We will call such a
model a lazy open quantum walk. While the results derived
in the above-mentioned references for the nonlazy OQWs, for
example, the central limit theorem, are significant the issue of
deriving analogous results for a lazy OQW model remained
an important and open physical problem. Thus, motivated by
the results and insights of [39], we extend the CPTP map to
include an additional operator to encode for the possibility of
a lazy open quantum walker. This then raises an interesting
question about the long-time behavior of the new lazy OQW
model. In this work, we extend the central limit theorem
of [28] to the lazy discrete OQW. This will fill an important
gap in the OQW literature since the work of [39].

This paper is structured as follows. In Sec. II, we describe
the discrete time homogenous lazy open quantum walk on
the d-dimensional lattice, Rd . We also introduce the Markov
chain, through the quantum trajectory description, that will
allow for the formulation of the new extended CLT. In Sec. III,
we discuss the CLT for our lazy OQW, revise some impor-
tant aspects of the microscopic derivation, and then connect
the homogeneous OQW on the lattice to the quantities in
the microscopic derivation. Lastly in this section, we study
some examples in which we conduct nontrivial checks of the
variance formula obtained from the CLT. Lastly, in Sec. IV we
conclude our findings and identify some outstanding problems
still present in the literature.

II. LAZY OPEN QUANTUM WALK FORMULATION

A. Basic formulation

We first introduce the OQW on a general graph. The graph
consists of a set of nodes V and we define the set of all
oriented edges on the graph {(i, j)|i, j ∈ V}. These oriented
edges denote the possible transitions between the nodes in V .
Let the total number of nodes be P, where P can either be finite
or countably infinite. The Hilbert space consisting of states
describing the position of the walker on the graph is K = CP

for finite P, and K = l2(C) for P being infinite. Here, l2(C)
is the space of square integrable functions. We will denote
the orthonormal basis for K by |i〉, where i ∈ V . The walker
on this graph possesses internal degrees of freedom described
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FIG. 1. Illustration of the lazy OQW. Three sample nodes, labeled i, j, and k, are shown for the underlying graph. The transition from
node j to node i, for example, represented by the directed arrow between those two nodes, is described by the Bi

j operator. Bi
j transforms the

walker’s internal degree of freedom as a transition from site j to site i is made. Since this is a lazy OQW, the walker also has the possibility
of remaining on the same node. The operator B j

j encodes for this possibility, transforming the internal degree of freedom when the walker
remains on site j.

by an n-dimensional Hilbert space H. These internal degrees
of freedom could represent spin, or polarization or energy
levels. The state of the walker’s internal degree of freedom
is given by the operator τ ∈ B(H), where B(H) is the space
of bounded operators acting on H. To specify the state of the
quantum walker, we need to specify its internal state and its
position on the graph. The total state of the system is thus
given by a density matrix ρ on the tensor product space of
H ⊗ K. Thus we have ρ ∈ B(H ⊗ K).

We want the walk on the graph to be driven by dissipation.
Between each two connected nodes on the graph, we envisage
an external environment, for example, a heat bath, interacting
with the system. We define generalized quantum coin oper-
ators Bi

j (in comparison to the unitary quantum walk coin),
which describe dissipative interaction between the nodes j
and i. These operators satisfy the normalization condition∑

i∈V
Bi

j
†Bi

j = I. (2)

This, in turn, defines a completely positive trace preserving
map in Kraus representation [40]

M j (τ ) =
∑
i∈V

Bi
jτBi

j
†. (3)

For each node j, M j serves to transform the internal degree
of freedom and Eq. (2) ensures probability conservation.
Figure 1 shows an illustration of an OQW on a graph. Three
nodes on the graph are labeled i, j, k and the operators Bi

j , for
example, describe the transformation of the walker’s internal
degree of freedom as a transition from site j to site i is made.

So far, we have only described the dynamics on the space
H. To formulate the jumping process, and thus describe the
dynamics on the full tensor product space, we extend the map

M on B(H) to a map on B(H ⊗ K). We define

Mi
j = Bi

j ⊗ |i〉〈 j| ,
∑
i∈V

∑
j∈V

Mi
j

†Mi
j = I, (4)

where the identity operator here is defined on H ⊗ K. We can
now define a CPTP map on the density matrix ρ ∈ B(H ⊗ K)

M(ρ) =
∑
i∈V

∑
j∈V

Mi
jρMi

j
†. (5)

The CPTP map constitutes a discrete time open quantum walk
on a graph. Starting from an arbitrary initial state at time t = 0
say, ρ (0) = ∑

i, j τ
(0)
i, j ⊗ |i〉〈 j|, one can show that the form of

the state becomes diagonal in the position space K after a
single application of M:

M(ρ (0) ) =
∑
i∈V

∑
j∈V

Mi
j

(∑
k∈V

∑
l∈V

τ
(0)
k,l ⊗ |k〉〈l|

)
Mi

j
† (6)

=
∑
i∈V

⎛⎝∑
j∈V

Bi
jτ

(0)
j, j Bi

j
†

⎞⎠ ⊗ |i〉〈i| . (7)

The density matrix at time t = 1 then has the form

ρ (1) =
∑
i∈V

τ
(1)
i ⊗ |i〉〈i| , τ

(1)
i =

∑
j∈V

Bi
jτ

(0)
j, j Bi

j
†. (8)

This indicates that there is no mixing taking place between
the positions on the graph in our OQW model. For this
reason we restrict our attention to density matrices of the form
ρ = ∑

i τi ⊗ |i〉〈i|. The density matrix at time t = n may be
obtained through iteration:

ρ (n) =
∑
i∈V

τ
(n)
i ⊗ |i〉〈i| , τ

(n)
i =

∑
j∈V

Bi
jτ

(n−1)
j Bi

j
†. (9)

012220-3



KEMP, SINAYSKIY, AND PETRUCCIONE PHYSICAL REVIEW A 102, 012220 (2020)

The probability that a position measurement, at time t = n,
will yield a result of Xn = i is p(Xn = i) = Tr(τ (n)

i ), with the
sum over all the positions i in p(Xn = i) equal to 1. For a more
comprehensive introduction to OQWs on graphs, see [23–25].

For the rest of this work, we will consider a homogeneous
(translation invariant) discrete time open quantum walk whose
underlying graph is a d-dimensional lattice. We employ the
use of the canonical basis {e1, e2, . . . , ed} on Zd , with ed+ j =
−e j for all j = 1, . . . , d . Thus, for each site on the lattice,
there are 2d adjacent sites for the walker to jump to—one for
each direction corresponding to the ei’s. We also will include
e0 = 0 in our formulation to encode the idea that the walker
can remain on the same site. Then in total there are 2d + 1
possible jumps. For a homogeneous walk, all of the B opera-
tors along the positive ith direction in Zd are identical and are
denoted by Ai, while all B’s along the negative ith direction
will be denoted by Ai+d . The precise relation between the B
operators and the A operators is, for the ith direction,

Bk+1
k = Ai, Bk−1

k = Ai+d , ∀ k ∈ Z. (10)

Here, k labels the nodes in the ei direction. The position
space of the walker is the Hilbert space K = CZd

, the basis
for which is denoted by (|i〉)i∈Zd . In previous formulations
of open quantum walks on the lattice, a family of bounded
operators {A1, . . . , A2d} ∈ B(H) performed transformations
on the state τ as the walker necessarily jumped to an adjacent
site. We extend the family of bounded operators to include an
extra operator A0 representing the effect of remaining on the
same site. An illustration of this model is shown in Fig. 2.

A0
A3

A1

A4

A2

A0

A4

A2

A0

A3

A1
A0

FIG. 2. Illustration of the homogeneous lazy OQW model on
a two-dimensional lattice. A representative sample of four lattice
points are shown here. In this case, d = 2. The canonical basis
elements are {e1, e2, e3, e4}, where e1 and e2 indicate the two pos-
itive directions. The elements e3 = −e1 and e4 = −e2 indicate the
corresponding negative directions, respectively. Transitions along the
positive directions are described by operators A1 and A2, respec-
tively. The operators encoding for transitions in the corresponding
negative directions are A3 and A4. At every node in the lattice there
is the presence of a self-jumping arrow represented by an extra
operator A0.

Thus we have {A0, A1, . . . , A2d} acting on H and satisfying

2d∑
j=0

A†
jA j = I. (11)

The completely positive map on B(H) in the Kraus represen-
tation is now

L(τ ) =
2d∑
j=0

AjτA†
j . (12)

We extend the map from B(H) to B(H ⊗ K) with

M j
i = Aj ⊗ |i + e j〉〈i| . (13)

The operator acting on K in (13) describes the transition from
lattice site i either to the adjacent site in the jth direction for
j = 1, 2, . . . , 2d or to the same site i again for j = 0. We
still have ∑

i∈Zd

2d∑
j=0

(
M j

i

)†(
M j

i

) = I, (14)

where I here is on H ⊗ K. The CPTP map, defining the
discrete time homogeneous open quantum walk, is

M(ρ) =
∑
i∈Zd

2d∑
j=0

M j
i ρ

(
M j

i

)†
. (15)

We will still be interested in density matrices of the form
ρ = ∑

i∈Zd τi ⊗ |i〉〈i|. For ρ to be normalized, we must have∑
i∈Zd Tr(τi) = 1. If, at time n, the state of the system is

ρ (n) =
∑
i∈Zd

τ
(n)
i ⊗ |i〉〈i| , (16)

then, after applying M, the state at time n + 1 is

ρ (n+1) = M(ρ (n) ) =
∑
i∈Zd

τ
(n+1)
i ⊗ |i〉〈i| , (17a)

τ
(n+1)
i =

2d∑
j=0

Ajτ
(n)
i−e j

A†
j . (17b)

A very important ingredient in our formulation of the central
limit theorem is the steady state ρ∞ ∈ B(H), defined to be
invariant under the CPTP map in (12) ρ∞ = L(ρ∞). In our
formulation of the lazy OQW ρ∞, due the inclusion of the
A0 term in L, will indeed be different from the previous
OQWs where staying on the same site was not possible. We
now present a particular example of a lazy OQW. Consider
a lazy walk on the line (d = 1) with a two-dimensional coin
space. There will be three matrices A1, A0, and A2 for moving
forward, staying on the same site, and moving backwards,
respectively. Figure 3 shows an illustration of this particular
OQW in one dimension. In this example, we take

A1 = 1√
6

(
1 1
1 eiπ/3

)
, A0 = 1√

6

(
1 e2iπ/3

1 −1

)
,

A2 = 1√
6

(
1 e−2iπ/3

1 e−iπ/3

)
. (18)
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0 1 2−1−2

A0 A0 A0 A0 A0

A1 A1 A1 A1 A1 A1

A2A2A2A2A2A2

FIG. 3. Discrete homogeneous lazy OQW on the line. The operators A1, A2 shift the walker forwards and backwards, respectively, while
A0 corresponds to remaining on the same site.

Indeed, these operators satisfy A†
1A1 + A†

0A0 + A†
2A2 = I .

From Fig. 4, with the initial state chosen to be I/2 ⊗
|0〉〈0|, one can see that the probability distribution of the
lazy OQW approaches a Gaussian distribution centered at
the origin.

B. Quantum trajectories

In this section we summarize a generic unraveling of
OQWs in the quantum trajectory frame introduced in [28].
Quantum trajectories are a convenient way to simulate the
OQW. Furthermore, the CLT formulations of OQWs thus
far have all been within the quantum trajectory framework.
Beginning from the general formulation of the OQW, the idea
for the quantum trajectory is the following. Consider some
state at time t = n, ρ (n) = τn ⊗ |in〉〈in|, where the position of
the walker is Xn = in. We apply the map M and then perform

a measurement on the position space K. The state then, at the
time n + 1, jumps to

ρ (n+1) = 1

P (in+1|in)
Bin+1

in
τn

(
Bin+1

in

)† ⊗ |in+1〉〈in+1| , (19a)

P (in+1|in) = P (Xn+1 = in+1|Xn = in) = Tr
[
Bin+1

in
τn

(
Bin+1

in

)†]
(19b)

is the conditional probability of the position X at time n + 1
being equal to in+1 given that X at time n was in. Repetition
of this process leads to a classical Markov chain valued in
the set of states of the form τ ⊗ |i〉〈i|. One may denote this
Markov chain as (τn, Xn)n�0. Thus working in the quantum
trajectory framework allows us to consider a classical Markov
chain and thus may be susceptible to standard theorems in
probability theory literature. In particular, the central limit
theorem is of particular relevance in this work. Averaging over

10 5 5 10 x

0.05

0.10

0.15

Px

30 20 10 10 20 30 x

0.02

0.04

0.06

0.08

Px

60 40 20 20 40 60 x
0.01

0.02

0.03

0.04

0.05

0.06
Px

100 50 50 100x

0.01

0.02

0.03

0.04

Px

FIG. 4. In these four figures, we ran the OQW for the operators defined in Eq. (18) for 10, 30, 60, and then 100 successive steps. The
horizontal axis label x labels position on the x axis, while Px on the vertical axis denotes the probability. Top left: for n = 10. Top right: for
n = 30. Bottom left: for n = 60. Bottom right: for n = 100. The nonlazy version of the OQW (where the walker had no option to remain on
the same site) also exhibited Gaussian behavior. One way to understand this was due to the decoherence of the state after a single application
of the OQW map. As can be seen from Eq. (8), any mixing between different positions on the graph vanishes.

012220-5



KEMP, SINAYSKIY, AND PETRUCCIONE PHYSICAL REVIEW A 102, 012220 (2020)

this quantum trajectory procedure simulates an OQW master
equation driven by M as can be seen from

E (ρ (n+1)) =
∑
in+1

P (in+1|in)ρ (n+1)

=
∑
in+1

Bin+1
in

τn
(
Bin+1

in

)† ⊗ |in+1〉〈in+1|

= M(ρ (n) ). (20)

Above we used Eq. (19a) for ρ (n+1). Extending the map to
include A0 also admits a quantum trajectory description with
a Markov chain (τn, Xn). For our homogeneous OQW on the
lattice, the quantum trajectory description is the following. Let
the state of the system at time t = n be (τn, Xn = i). Apply
the open quantum walk map M to the state performing a
measurement of the position directly after. The state then at
time t = n + 1 jumps to(

1

P ( j, n)
AjτnA†

j , Xn+1 = i + e j

)
, (21)

with the probability P ( j, n) = Tr(AjτnA†
j ). Note that, even

if the walker does remain on the same site, the probability
for which would be P (0, n) = Tr(A0τnA†

0), its state in H still
undergoes a transformation by 1

P (0,n) A0ρnA†
0. For quantum

trajectories in discrete time, the sequence 1
n

∑n
t=1 τt converges

almost surely to a random steady state ρ∞ [27]:

1

n

n∑
j=1

τ j
a.s−→ ρ∞. (22)

We further assume that the steady state ρ∞ is unique.
The central limit theorem formulated in the following

section will be formulated in terms of the random vari-
ables (τn,�Xn), where �Xn = Xn − Xn−1 ∈ {e0, e1, . . . , e2d}
and n 
= 0. This sequence (τn,�Xn)n�0 also forms a Markov
chain. The transition operator from state (τ, ei ) to (τ ′, e j ) is
given by

P[(τ, ei ), (τ ′, e j )] =
{

Tr(AjτA†
j ) if τ ′ = AjτA†

j

Tr(AjτA†
j )
,

0 otherwise.
(23)

The random variables that typically feature in central limit
theorems are independent and identically distributed (iid).
Once the OQW is in the steady state, the set of �Xn will
constitute the iid random variables.

III. CENTRAL LIMIT THEOREM FOR THE
LAZY WALKER

A. Central limit theorem

A central limit theorem was proved for the open quantum
walk in [28], which we generalize to the lazy open quantum
walk. Define the iid random variables Yk = {e0, e1, . . . , e2d}.
For these random variables to be iid, we require the system to
be in the steady state, ρ∞. We define the mean m ∈ Rd to be

m = E(Yk ) =
2d∑
i=0

P (i)ei, P (i) = Tr(Aiρ∞A†
i ). (24)

The position of the walker on the lattice at time n is

Xn = X0 +
n∑

i=1

Yi, (25)

where the initial position X0 can be chosen for convenience
to be zero. A central limit theorem can now be proven for
the quantity

1√
n

[Xn − E(Xn)] = 1√
n

(Xn − nm) = √
n

(
1

n

n∑
i=1

Yi − m

)
.

(26)

For any vector l ∈ Rd , we may perform a Doob decom-
position [41] of the quantity (Xn − nm) · l . Essentially we
are able to perform a decomposition of this quantity into a
martingale Mn and a predictable process An. The magnitude
|An|, for n taken over the positive integers, can be shown to
be bounded independently of n [28]. Thus the process An does
not contribute to the law of large numbers and the central limit
theorem at large times, i.e., for large n. The martingale is

Mn =
n∑

j=2

[ f (ρ j,�Xj ) − P f (ρ j−1,�Xj−1)], (27)

where the function f is f (ρ, x) = Tr(ρLl ) + x · l and the
operator Ll = L · l is a solution to the equation

[Ll − L†(Ll )] =
d∑

i=1

Ãi(eil ) − (m · l )I, (28a)

Ãi = A†
i Ai − A†

i+d Ai+d . (28b)

The quantity Mn satisfies the defining condition for a
martingale. Martingales feature prominently in probability
theory [42,43]. One of the fundamental notions of probability
theory is that of a σ space spanned by events to which proba-
bilities are assigned. In the current quantum trajectory setting,
the events are (τn, Xn). We define the filtration (Fn)n�2, where
Fn is the σ -space spanned by events (τ j, Xj ) for j � n.
The defining condition for martingale Mn with respect to
(Fn)n�2 is

E[�Mn|Fn−1] = 0. (29)

Note that the dual map L† in (28a), defined as L†(τ ) =∑2d
i=0 A†

i τAi, is different for the lazy open quantum walk
because of the inclusion of the A0 operator. In this current
work, we further extend analysis of Eq. (28a) beyond that
of [28] by noting that (28a) forms a degenerate system of
equations. One way of seeing this is by vectorizing (28a) with
the help of the reshaping operation. The reshaping operation
stacks the rows of a matrix on top of each other in a row vector.
So for an m × n matrix A, for example, we have

vec(A) = (a11, a12, . . . , a1n, a21, . . . ,

× a2n, . . . , am1, am2, . . . , amn)T . (30)

The left-hand side of (28a) then becomes

[Ll − L†(Ll )] →
(

I −
2d∑
i=0

A†
i ⊗ AT

i

)
vec(Ll ). (31)
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One can show, using (11), that
∑2d

i=0 A†
i ⊗ AT

i has an eigenvec-
tor of vec(I ) with eigenvalue of 1. This means the determinant
of the matrix in (31) vanishes, and the system of equations
is degenerate. However, Ref. [28] proves that there exists
a solution to (28a) for any l ∈ Rd , and that the difference
between any two solutions is proportional to the identity. Fur-
thermore, we note here that, after taking the adjoint of (28a),
Ll = L†

l is also a solution. Since Ll + αI also solves (28a),
we conclude that half of the D(D − 1) off-diagonal entries in
Ll are not independent, where D is the dimension of the coin
space, H. Writing the vector l in terms of the canonical basis
l = ∑d

i=1 liei, we have Ll = ∑d
i=1 Lili. It follows that there is

an Li for each direction on the d-dimensional lattice satisfying

Li − L†(Li ) = Ãi − miI. (32)

The martingale in (27) satisfies the two necessary con-
ditions for a central limit theorem for martingales to be
applicable [28,42]. The first condition is, for any ε > 0,

lim
n→+∞

1

n

n∑
k=1

E
[
(�Mk )2I|�Mk |>ε

√
n

] = 0, (33)

where I|�Mk |>ε
√

n is nonzero only when the condition
|�Mk| > ε

√
n is met. However, it is straightforward to show

that |�Mk| is bounded above by a quantity independent of
k [28]. Thus, as n continues to increase, there will come a
point where the inequality changes to |�Mk| < ε

√
n. Thus, in

the limit as n → ∞, the I|�Mk |>ε
√

n forces the entire expres-
sion to vanish. The second condition in the CLT is

lim
n→+∞

1

n

n∑
k=1

E[(�Mk )2|Fk−1] = σ 2. (34)

Using Eqs. (27), (29), and the ergodic theorem for the unique
ρ∞ (22) one can show that the only surviving contribution to
the left-hand side of (34) is indeed a finite quantity for each l ∈
Rd depending on the mi, Li, ρ∞, and the A operators. With the
two conditions for the central limit theorem satisfied, Mn/

√
n

converges in distribution to a Gaussian N (0, σ 2
l ), where σ 2

l =∑d
i, j=1 lil jCi j . It is remarkable that one may obtain an analytic

expression for the covariance matrix of this distribution [28],

Ci j = δi j (Tr(Aiρ∞A†
i ) + Tr(Ai+dρ∞A†

i+d )) − mimj

+ [Tr(Aiρ∞A†
i L j ) + Tr(Ajρ∞A†

jLi ).

− Tr(Ai+dρ∞A†
i+d L j ) − Tr(Aj+dρ∞A†

j+d Li )]

− [miTr(ρ∞Lj ) + mjTr(ρ∞Li )], (35)

for each of the possible directions on the lattice i, j =
{1, 2, . . . , d}. We have thus derived a central limit theorem
for the homogeneous lazy OQW on a d-dimensional lattice.
To calculate the covariance matrix using (35) we first need
to calculate values for mi, Li, and ρ∞. The steady state is
obtained by solving L(ρ∞) = ρ∞. The lazy OQW map L
is extended to include the A0. Thus solving this equation
will yield a genuinely different steady state compared to the

nonlazy OQW. The mi is calculated from the formula

mi = Tr(Ãiρ∞)ei, (36)

where Ãi is given by (28b). Finally, the Li matrices are
obtained by solving Eq. (28a). This equation features the dual
map L†, which is also extended by the A0 term, as well as
the new mi values. Thus the Li matrices will also be different
from the nonlazy OQW. In what follows, we subject the
variance formula (35) to a variety of checks for the lazy open
quantum walk.

B. Microscopic derivation

Any CPTP map, such as the open quantum walk map
described in Sec. II A, may be thought of as a quantum
channel. Given a quantum channel, the Stinespring dilation
theorem [44] guarantees the existence of a physical system
implementing the given map. Thus one may ask what is a
physical system giving rise to the OQW? The first few steps in
this direction were undertaken in [45] culminating in [39]. The
Hamiltonian for the total system may be written as the sum of
the system, bath, and system-bath interactions Hamiltonians:

H = HS + HB + HSB. (37)

The system Hamiltonian describes the local free evolution of
the walker’s internal degree of freedom as well as the position
on the underlying graph. Thus

HS =
∑

i

�i ⊗ |i〉〈i| . (38)

Concretely, the bath is thought of as a bath of harmonic
oscillators with HB expressed in terms of bosonic creation and
annihilation operators

HB =
∑
i 
= j

∑
n

ωi, j,na†
i, j,nai, j,n. (39)

The system-bath interaction describes the bath driven tran-
sitions from site to site on the graph and hence may be
written as

HSB =
∑
i 
= j

∑
n

Qi, j ⊗ Xi, j ⊗ Bi, j . (40)

The Qi, j ∈ B(H) operators are responsible for transform-
ing the internal degree of freedom when a transition in-
volving sites i and j occurs. The Xi, j ∈ B(K) is responsi-
ble for implementing the steps between the sites. A simple
Hermitian choice for Xi, j is Xi, j = |i〉〈 j| + | j〉〈i|. Lastly, the
Bi, j = ∑

n(gi, j,nai, j,n + g∗
i, j,na†

i, j,n) describes the coupling of
the walker with the local environment.

The microscopic derivation of the open quantum walk
model, performed in [39] for a graph with a general topology,
employed the theory outlined in [46]. Using the Born-Markov
approximation the reduced density matrix of the system ρs(t ),
in the interaction picture, satisfies the equation

d

dt
ρs(t ) = −

∫ ∞

0
dτ TrB[HSB(t ), [HSB(t − τ ), ρs(t ) ⊗ ρB]],

(41)

where TrB stands for tracing out the bath degrees of freedom
and ρB denotes the density matrix of the bath. Assuming
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that the environment is in a thermal equilibrium state, ρB =
exp(−βHB)/Tr[exp(−βHB)]. We assume that each of the �i’s
have a unique set of eigenvalues. Their spectral decomposition
may be written in terms of their eigenvalues λ(i) and orthogo-
nal projectors �i(λ(i) ). The Qi, j operators are then expressed
in the basis associated with �i and � j ,

Qi, j (ω) =
∑

λ(i)−λ( j)= ω<0

�i(λ
(i) )Qi, j� j (λ

( j) ), (42)

Q†
i, j (ω

′) = Qi, j (−ω′). (43)

After transforming HSB to the interacting picture, and using
the rotating wave approximation for the transition frequencies
ω and ω′, the following form for the master equation for

ρs(t ) emerges:

d

dt
ρs(t ) =

∑
i, j

∑
ω

{γi, j (−ω)D[Qi, j (ω) ⊗ | j〉〈i|]ρs(t )

+ γi, j (ω)D[Q†
i, j (ω) ⊗ |i〉〈 j|]ρs(t )}

+
∑
i, j

∑
ω

{γi, j (−ω′)D[Qi, j (ω
′) ⊗ |i〉〈 j|]ρs(t )

+ γi, j (ω
′)D[Q†

i, j (ω
′) ⊗ | j〉〈i|]ρs(t )}, (44)

where D(X )ρ denotes the standard dissipative superop-
erator in Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [46–48]

D(X )ρ = XρX † − 1
2 X †Xρ − 1

2ρX †X. (45)

In (45) the X ’s form a basis for the corresponding N-dimensional Liouville space [46]. The function γ (ω) is the real part
of the Fourier transformation of the bath correlation functions 〈B†

i, j (s)Bi, j (0)〉. See [39] for the full expression. After writing
ρs(t ) = ∑

i ρi(t ) ⊗ |i〉〈i|, one may derive a system of master equations

d

dt
ρi(t ) =

∑
j,ω

γ j,i(−ω)Qj,i(ω)ρ jQ
†
j,i(ω) − γi, j (−ω)

2
{Q†

i, j (ω)Qi, j (ω), ρi}

+
∑
j,ω

γi, j (ω)Q†
i, j (ω)ρ jQi, j (ω) − γ j,i(ω)

2
{Qj,i(ω)Q†

j,i(ω), ρi}

+,
∑
j,ω

γi, j (−ω′)Qi, j (ω
′)ρ jQ

†
i, j (ω

′) − γ j,i(−ω′)
2

{Q†
j,i(ω

′)Qj,i(ω
′), ρi}

+
∑
j,ω

γ j,i(ω
′)Q†

j,i(ω
′)ρ jQ j,i(ω

′) − γi, j (ω′)
2

{Qi, j (ω
′)Q†

i, j (ω), ρi}. (46)

This defines the continuous time OQW. To obtain the discrete time OQW of Sec. II A, a time step � is introduced and the time
derivative in the differential equation is discretized in terms of �. The connection between the discretized version of (46) and
the discrete time OQW is established by the following identifications:

Bi(1)
j (ω) = √

�γ j,i(−ω)Qj,i(ω), Bi(2)
j (ω) = √

�γi, j (ω)Q†
i, j (ω),

Bi(1)
j (ω′) = √

�γi, j (−ω′)Qi, j (ω
′), Bi(2)

j (ω′) = √
�γ j,i(ω′)Q†

j,i(ω
′),

Bi
i(ω) = IN − �

2

∑
j,ω

[γi, j (−ω)Q†
i, j (ω)Qi, j (ω) + γ j,i(ω)Qj,i(ω)Q†

j,i(ω)]

− �

2

∑
j,ω′

[γi, j (−ω′)Q†
j,i(ω

′)Qj,i(ω
′) + γi, j (ω

′)Qi, j (ω
′)Q†

i, j (ω
′)]. (47)

One may now show that the OQW with the transition
operators in Eq. (47) satisfies the normalization condition
of (3) up to O(�2), and the iteration formula for ρ

[n+1]
i ,

at time n + 1, is of the same form as (9). As one can see
from the presence of the Bi

i transition operator in (47), all
microscopically derived OQWs are lazy. The expressions
for the transition operators Bi

j in (47), and as described
in [39], establish connections between the dynamical prop-
erties of the OQW and the thermodynamic properties of the
environment.

In the remainder of this section, we specialize the micro-
scopic derivation to a homogeneous discrete time OQW on the
lattice Rd , which is necessary for our central limit theorem to
be applicable. We assume that the local unitary Hamiltonians
on each site are identical and are denoted by H0. Thus, for all
i, �i = H0. Next, recall for the homogeneous OQW map of
the lattice all the operators transforming the walker’s internal
degrees of freedom along a given axis, specifying a given
direction, are identical. Thus these operators were expressed
in terms of the Ai’s and the Ai+d ’s. In the microscopic
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derivation we now similarly have Qi and Qi+d . Define the
relation

Ai =
√

�Qi, Ai+d =
√

�Qi+d ,

A0 = I − �

2

2d∑
i=1

Q†
i Qi − iH0�, (48)

which corresponds to Eqs. (47) for example at zero tem-
perature. Using this definition we obtain the discrete time
homogeneous OQW on the lattice Zd from a microscopic
derivation. In (48), we have absorbed the γ functions into the
definition of the Q’s. Up to O(�2), we have

2d∑
i=0

A†
i Ai = I. (49)

The CPTP map on H, after n iterations, is

τ
(n+1)
i =

2d∑
j=0

Ajτ
(n)
i A†

j . (50)

By substitution of (48) into the steady-state condition ρ∞ =
L(ρ∞), it is straightforward to see

0 = −i[H0, ρ∞]

+
2d∑
j=1

(
Qjρ∞Q†

j − 1

2
Q†

j Q jρ∞ − 1

2
ρ∞Q†

j Q j

)
(51)

up to O(�2). Note that the right-hand side of Eq. (51) is
precisely of GKSL form. The Lindbladian superoperator de-
scribes the time evolution of an open quantum system, with
state ρ, and is defined by

ρ̇ = −i[H, ρ] +
N2−1∑

j=1

D(Xj )ρ. (52)

Since the steady state is time independent (and thus its time
derivative vanishes), we obtain the quantum master equation
for ρ∞ in GKSL form

ρ̇∞ = LLin(ρ∞). (53)

We note that Eq. (53) is independent of the time step �. The
mean, once written in terms of the Q operators, is

m = �

2d∑
j=0

Tr(Qjρ∞Q†
j )e j = �

d∑
j=1

Tr(Q̃ jρ∞)e j, (54)

where we have defined Q̃ j = Q†
j Q j − Q†

j+d Qj+d .
Next, we study Eq. (28a). The left-hand side becomes

Ll − L†(Ll ) = −�

⎡⎣i[H0, Ll ] +
2d∑
j=1

(
Q†

j LlQj − 1

2
Ll Q

†
j Q j

− 1

2
Q†

j Q jLl

)⎤⎦, (55)

where the terms in braces define the adjoint of the Lindbla-
dian, L†

Lin [46]. The right-hand side of (28a) becomes

2d∑
i=0

A†
i Ai(ei · l ) − (m · l )I = �

d∑
j=1

[K̃ j − Tr(K̃ jρ∞)I](e j · l ).

(56)

Thus Eq. (28a) describes the time evolution of the Ll operator
in the Heisenberg picture

L̇l = L†
Lin(Ll ) =

d∑
j=1

[K̃ j − Tr(K̃ jρ∞)I](e j · l ). (57)

This equation is also independent of the time step size �.

C. Example of lazy OQW in 1D

We turn now to some examples derived from the mi-
croscopic model. The first example, considered in [39],
is the open quantum walk on the circle. The appropriate
operators are

B =
√

�γ (〈n〉 + 1)σ−, C =
√

�γ 〈n〉σ+, (58)

A = I − �

2
[γ (〈n〉 + 1)σ+σ− + γ 〈n〉σ−σ+] − iλ�nλ σ , (59)

where nλnλ = n2
x + n2

y + n2
z = 1. Solving for the mean m

from m = Tr(Bρ∞B†) − Tr(Cρ∞C†) we obtain

m = �
4(1 − n2

z )γ λ2

γ 2(1 + 2〈n〉)2 + 8
(
1 + n2

z

)
λ2

. (60)

Using formula (35) for the variance we find the following
expression:

σ 2 = 4�t−γ λ2

s2(s2
2γ

2 + 8t+λ2)3

{
s6

2γ
4 + 8s2

2t+γ 2λ2

× (
5n2

z + 8s1〈n〉 − 1
) + 64λ4

[
s2

2 + 4n2
z (s2 + 2〈n〉)

+ n4
z (4s1〈n〉 − 1)

]}
, (61)

where t± = 1 ± n2
z and s j = 1 + j〈n〉. An important check of

formula (35) is that our expressions for the mean and variance
agree with those in [39]. Both m and σ 2 indeed do reduce to
the corresponding expressions in [39] when ny = 1. See Fig. 5
for the Gaussian plotted for this example. In this plot we chose
the parameters λ = 0.3, γ = 0.1, 〈n〉 = 1, and � = 0.05. For
these values, we find m = 0.00222 and C = 0.00645.

D. 2D examples of lazy OQWs

1. Generic notations

In this subsection two examples of lazy OQWs in 2D will
be presented. In both examples, the transition operators will
follow from the outlined microscopic model for lazy OQWs in
2D. To make notations more clear, the following conventions
will be used.

(i) Coordinates on the 2D lattice r = (i, j).
(ii) Possible movement from the r along the x axis is

denoted rx = (i + 1, j) and along the y axis ry = (i, j + 1),
respectively.
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FIG. 5. Normalized asymptotic Gaussian distribution plotted
from the theoretically predicted values for the mean and variance
after 2000 steps. For ny = 1, λ = 0.3, γ = 0.1, 〈n〉 = 1, and � =
0.05, we found m = 0.00222 and C = 0.00645.

(iii) Set of possible movements that form the position r is
denoted as r′ = {rx, ry}; for example,∑

r

f (r) ≡
∑
i, j

f (i, j) or

∑
r,r′

f (r|r′) ≡
∑

r

f (r|rx ) + f (r|ry)

≡
∑
i, j

f (i, j|i + 1, j) + f (i, j|i, j + 1). (62)

2. Example 2

Let us consider a 2D array of two level atoms (for example,
trapped ultracold atoms on an optical lattice) described by the
following Hamiltonian:

HS =
∑

r

ω0

2
σz ⊗ |r〉〈r| + λ(nλ σ ) ⊗ |r〉〈r|, (63)

where σz is Pauli z matrix and describes internal degree
of freedom of the walker and |r〉 ≡ |i, j〉 describes position
on the 2D lattice. To end up with OQW on 2D one needs
to assume an environment assisted transport between every

connected node of the walk. Taking this into consideration the
Hamiltonian of the bath reads

HB =
∑
r,r′

∑
n

ωr,r′,na†
r,r′,nar,r′,n, (64)

where operators a†
r,r′,n and ar,r′,n denote bosonic creation and

annihilation operators of nth mode of the thermal bath located
between nodes r and r′; the frequency of this mode is denoted
by ωr,r′,n.

In this example, it is assumed that the transition of the
walker along the x axis is assisted via a dissipative coupling,
while transition via y axis is driven by the decoherent cou-
pling. Under these assumptions the system-bath Hamiltonian
HSB reads

HSB =
∑
r,n

gr,rx,na†
r,rx,nσ− ⊗ |rx〉〈r| + H.c.

+
∑
r,n

gr,ry,na†
r,ry,nσz ⊗ |ry〉〈r| + H.c., (65)

where coefficients gr,ri,n denote the coupling strength between
nth mode of the bosonic bath located between nodes r and ri

with OQW walker. Following a generic microscopic deriva-
tion for OQWs [39] it is straightforward to end up with the
following transition operators:

Bx =
√

�γ (〈n〉 + 1)σ−, By =
√

�γ +
y σz, (66)

Cx =
√

�γ (〈n〉)σ+, Cy =
√

�γ −
y σz, (67)

A = I − �

2
[γ (〈n〉 + 1)σ+σ− + γ 〈n〉σ−σ+

+ γ +
y I + γ −

y I] − iλ�nλ σ . (68)

The mean in the x and y directions are

mx = 4γ�λ2t−T

8λ2t−T + γ s2
(
16λ2n2

z + T 2
) , (69)

my = �r−, (70)

where r± = γ +
y ± γ −

y , T = γ s2 + 4r+, and η±
z = n2

z ± 1. The
covariance matrix entries are

Cxx = −4γ�λ2T η−
z

[γ s2T 2 + 8λ2(γ s2η+
z − 4r+η−

z )]3

[
64λ4

( −8γ r+η−
z

[(
8〈n〉s1 − s2

2 + 1
)
n2

z + s2
2

] + γ 2s2
[
s2

2

(
5n4

z − 2n2
z + 1

)
− 2(8〈n〉s1 + 3)n2

z η
−
z

] + 16r2
+s2(η−

z )2
) + 8γ λ2(4r+ + γ s2)2

(
γ s2{[8〈n〉(2〈n〉 − s1 + 2) + 5]n2

z + 8〈n〉s1 − 1}
− 4r+(8〈n〉s1 + 1)η−

z

) + γ 2s3
2(4r+ + γ s2)4

]
, (71)

Cyy = �r+, (72)

Cxy = Cyx = −16γ 2�λ2η−
z r−s2

( − 16λ2n2
z + 16r2

+ + 8γ s2r+ + γ 2s2
2

)[
8λ2

( − 8n2
z r+ + n2

z T + T
) + γ s2T 2

]2 . (73)

Note that, as γ +
y tends toward γ −

y , the off diagonal entries
Cxy tend to zero. Figure 6 shows the Gaussian distribution
for this two-dimensional example. This Gaussian was plotted
using the expressions derived for m and Ci j for ny = 1,

λ = 0.3, γ = 0.1, γ +
y = 0.5, γ −

y = 0.5, 〈n〉 = 1, and � =
0.05. For these values of the parameters,

m = (0.0009, 0), C =
(

0.00261 0
0 0.05

)
. (74)
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FIG. 6. Normalized asymptotic Gaussian distribution plotted
from the theoretically predicted values for the two-dimensional
OQW in example 2 after 2000 steps. For ny = 1, λ = 0.3, γ =
0.1, γ +

y = 0.5, γ −
y = 0.5, 〈n〉 = 1, and � = 0.05, we calculated

m and C given in Eq. (74).

3. Example 3

In this example, it is assumed that the transition of the
walker along both axes is assisted via a dissipative coupling.
From the microscopic point of view, this means that the only
difference to the previous example would be in the form of

the interaction Hamiltonian. Under these assumptions, the
system-bath Hamiltonian HSB is as follows:

HSB =
∑
r,r′,n

gr,r′,na†
r,r′,nσ− ⊗ |r′〉〈r| + H.c. (75)

As in the previous example a generic microscopic derivation
for OQWs [39] would lead to the following form of the
transition operators:

Bx =
√

�γx(〈n〉 + 1)σ−, By = √
�γy(〈n〉 + 1)σ−, (76)

Cx =
√

�γx〈n〉σ+, Cy = √
�γy〈n〉σ+, (77)

A = I − �

2
[(γx + γy)(〈n〉 + 1)σ+σ− + (γx + γy)〈n〉σ−σ+]

− iλ�nλ σ , (78)

where ny = 1 and nx = nz = 0. With these definitions we
obtain the OQW for this particular model. The results are

mx = 4γx�λ2

8λ2 + (2〈n〉 + 1)2(γx + γy)2
, (79)

my = 4γy�λ2

8λ2 + (2〈n〉 + 1)2(γx + γy)2
. (80)

The covariance matrix entries are

Cxx = �(
8λ2 + r2s2

2

)
2

[
−2〈n〉rs2

2γ
2
x [4λ2 + (〈n〉 + 1)r2s2] + 8λ2rγ 2

x

{ − 4λ2[4〈n〉(〈n〉 + 2) + 3] − 〈n〉r2s3
2

}
8λ2 + r2s2

2

+ s1γx
(
8λ2 + r2s2

2

)
(4λ2 + 〈n〉r2s2) + 〈n〉γx(4λ2 + r2s1s2)

(
8λ2 + r2s2

2

)]
, (81)

Cxy = −2�γxγy
[
8λ4(8〈n〉2 + 8〈n〉 + 6)rs2 + 〈n〉r5s1s5

2 + 16λ2〈n〉r3s1s3
2

](
8λ2 + r2s2

2

)
3

. (82)

In (81), r = γx + γy. Cyy is the same expression but with
γx and γy interchanged. We found the off-diagonal elements
to be given by (82). We note that Cyx = Cxy and that the
off-diagonal elements are symmetric under interchanging γx

and γy. Figure 7 shows the Gaussian distribution for this
final two-dimensional example. For the parameters, choosing
λ = 0.3, γx = 0.55, γy = 0.45, 〈n〉 = 1, and � = 0.05,

m = (0.00102, 0.00083),C =
(

0.01829 −0.01531
−0.01531 0.01775

)
.

(83)

Tables I and II respectively show the data for the simu-
lated OQWs in examples 2 and 3. Each table shows that,
with increasing steps, the simulated data converges to the
theoretically predicted asymptotic data. In order to simulate
the OQW for examples 2 and 3 for a large number of steps
we noted that the corresponding linearly discretized OQW
operators Eqs. (66)–(68) and (76)–(78) are defined only up
to O(�2). Thus the linearized version can be used for a small
number steps. To obtain the convergence to the asymptotic
values one needs to directly integrate the continuous-time

OQWs (46). The simulation has been performed with the
same discretization step (� = 0.05) as in the linearized case
using the fourth-order Runge-Kutta method. Numerical simu-
lations demonstrate convergency to the asymptotic parameters
within 50 000 steps.

E. Numerical example

In this section, we study a numerical example. We consider
the matrices in Eq. (18),

A1 = 1√
6

(
1 1
1 eiπ/3

)
, A0 = 1√

6

(
1 e2iπ/3

1 −1

)
,

A2 = 1√
6

(
1 e−2iπ/3

1 e−iπ/3

)
, (84)

defining a lazy OQW on the line with a two-dimensional coin
space. The steady state is

ρ∞ =
(

0.5 0.375 − 0.217i
0.375 + 0.217i 0.5

)
, (85)
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FIG. 7. Normalized asymptotic Gaussian distribution plotted
from the theoretically predicted values for the two-dimensional
OQW in example 3 after 2000 steps. For λ = 0.3, γx = 0.55, γy =
0.45, 〈n〉 = 1, and � = 0.05, we found the m and C values given
by Eq. (83).

leading to an m value of zero. Equation (28a), in vectorized
form, is [see Eq. (31) for the left-hand side]⎛⎜⎝ 0.5 −0.5 −0.5 −0.5

0 1 0 0
0 0 1 0

−0.5 −0.25 − 0.433i −0.25 + 0.433i 0.5

⎞⎟⎠
⎛⎜⎝L11

L12

L21

L22

⎞⎟⎠

=

⎛⎜⎝ 0
0.25 + 0.433i
0.25 − 0.433i

0

⎞⎟⎠. (86)

Solving this equation for the L entries, we obtain

L =
(

0.25 0.25 + 0.433i
0.25 − 0.433i −0.25

)
. (87)

Applying formula (35) to calculate the variance, we obtain
C = 1.04167. To check this value, we simulated the above
OQW for 10, 100, 1000, 10 000, and 50 000 steps. For
each of these steps, we calculated the variance from the
probability distribution and then converted it to the variance

TABLE I. Mean and variance results from the OQW as defined in
Eqs. (66)–(68). The table shows that the mean and variance obtained
from the simulation converges to the theoretical values Eq. (74) as
the number of steps n increases.

n m Csim

10 (0.00232, 0)

(
0.00692 0

0 0.05

)
100 (0.00148, 0)

(
0.00429 0

0 0.05

)
1000 (0.00096, 0)

(
0.00279 0

0 0.05

)
10000 (0.00090, 0)

(
0.00263 0

0 0.05

)
50000 (0.00090, 0)

(
0.00261 0

0 0.05

)

TABLE II. Mean and variance results from the OQW as defined
in Eqs. (76)–(78). The table shows that the mean and variance
obtained from the simulation converges to the theoretical values
Eq. (83) as the number of steps n increases.

n m Csim

10 (0.00718, 0.00588)

(
0.02892 −0.00830

−0.00830 0.02517

)
100 (0.00168, 0.00137)

(
0.01942 −0.01457

−0.01457 0.01854

)
1000 (0.00108, 0.00089)

(
0.01841 −0.01524

−0.01524 0.01783

)
10000 (0.00103, 0.00084)

(
0.01831 −0.01530

−0.01530 0.01776

)
50000 (0.00102, 0.00083)

(
0.01830 −0.01531

−0.01531 0.01775

)

Csim associated with the central limit theorem. Our results are
summarized in Table III.

IV. CONCLUSION

Many interesting and important results have been derived
for open quantum walks in the nonlazy case. For exam-
ple, a central limit theorem for a homogeneous OQW on
a d-dimensional lattice assuming a unique steady state. A
microscopic derivation, however, revealed the necessity of
formulating or extending the existing model to include a
self-jump. In this work we have provided such an extension.
Establishing analogous results for the lazy OQW is nontrivial
and would fill an important gap in the literature. We found that
a central limit theorem exists for our lazy OQW. We obtained
an analytic formula (35) for the variance of the associated
Gaussian distribution. The quantities populating this expres-
sion, i.e., the steady state ρ∞, mean mi, and the Li matrices,
are found to be different from the formulation of the nonlazy
OQW central limit theorem. We checked formula (35) for
a number of examples. Three analytic examples were pre-
sented where the OQW was derived from specific microscopic
models. A numerical example was then considered in which
evidence was presented for the convergence of the variance,
calculated from the simulated trajectories, to the variance

TABLE III. Variance results from the OQW as defined in
Eq. (18). The n denotes the number of steps and the Csim denotes the
variance associated with the central limit theorem. The theoretical
value for the variance was C = 1.04167. The table shows that the
variance obtained from the simulation converges to the theoretical
value as the number of steps n increases.

n Csim

10 1.08333
100 1.04583
1000 1.04208
10000 1.04171
50000 1.04167
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calculated using (35). A key finding of this work shows that
a central limit theorem may be applied to microscopically
derived OQWs.

Further insight was obtained into equation for the Li oper-
ators in Eq. (28a). We found that the system is degenerate and
that, up to a multiple of the identity matrix, the L operators
are Hermitian. For L being a D × D matrix, this means that
1
2 D(D − 1) of the off-diagonal entries are not independent.
We derived the discrete time homogeneous lazy OQW on
the lattice Rd from the microscopic model. In terms of the
operators from the microscopic model, we managed to write
the time evolution for the steady state ρ∞ in GKSL form. Also
in terms of the microscopic model operators, we wrote the
time evolution for Ll in the adjoint GKSL form.

One of the main assumptions in our work is that the OQW
steady state is unique. The problem of formulating a central
limit theorem for the case of a nonunique steady state is
an interesting future avenue of research to pursue. One can
indeed construct examples of OQWs that converge to multiple

steady states. It is conceivable that a central limit theorem
could potentially exist for each steady state, and that the
corresponding analytic formulas would, in some way, depend
on the initial state of the walk.

In summary, we have defined a lazy open quantum walk in
which the walker has the possibility of staying put on the same
lattice site. We then derived a central limit theorem for our
model on a homogeneous lattice and then presented evidence
supporting our derivation. This work adds an important piece
to the overall OQW framework.
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