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We investigate two models of a quantum system under rapid measurement performed to detect whether
the system is in a given state |ψd〉. In the first, the detection process is modeled via an imaginary potential
2ih̄|ψd〉〈ψd|/τ . In the second approach, repeated strong projective measurements are performed on the otherwise
unitarily evolving system with a fixed high frequency 1/τ . We compare the statistics of the random time T of
first successful detection for the two models, considering both its probability density function F (t ) and the
moments 〈T m〉. We show, by a direct comparison of the two solutions, that both approaches yield the same
results for F (t ) (and so the moments) in the small-τ limit, also called the Zeno limit, as long as the initial state
|ψin〉 is not parallel to the detection state, so that |〈ψd|ψin〉| < 1. When this condition is violated, however, the
low probability density to detect the state on timescales much larger than τ is precisely a factor of 4 smaller in
the non-Hermitian model. We express the solution of the Zeno limit of both problems formally in terms of an
electrostatic analogy. Our results are corroborated by numerical simulations.
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I. INTRODUCTION

Isolated quantum systems evolve unitarily according to the
Schrödinger equation with a Hermitian Hamiltonian until a
measurement, obeying the collapse postulate, is performed
[1,2]. Recently, there has been increasing interest in repeat-
edly measured quantum systems [3–9], where the unitary evo-
lution is disrupted periodically. In the quantum first-detection
problem [10–29], a detector probes the system repeatedly as
to whether or not it resides in a given target state |ψd〉. The
quantity of interest is the (random) first-detection time T ,
the time of the first successful detection attempt.1 This is
a generalization of the time-of-arrival problem [30–39] and
the quantum analog to the important first-passage problem
of statistical mechanics [40–44]. In the context of quantum
information, it can also be seen as a protocol for quantum
search [10,45–50] or state transfer [51].

The detection protocol is the sequence of times
{t1, t2, t3, . . .} at which the observer attempts to detect the
system. In the stroboscopic detection protocol, the system
is probed every τ time units, tn = nτ , and T can only as-
sume an integer multiple of the detection period τ . The
detection protocol is a pragmatic way to resolve the problem
with continuously observed quantum systems, i.e., the Zeno
effect [52–57]. This latter describes the lockdown of quantum

*thiel@posteo.de
1We use the capital letter to denote the first-detection time as a

random variable, i.e., T , and we use a lowercase letter t to denote
its possible values as in the probability density function F (t ).

evolution that occurs when the system is rapidly measured.
In the Zeno limit, when τ → 0 and the detection frequency
diverges, the system dynamics appears frozen in comparison
to the detection process. Therefore, the system cannot reach
the detection space, making successful detection impossible.
The first-detection probability then vanishes, an effect that has
been called the quantum Zeno paradox.

The dynamics of this stroboscopic measurement protocol
can be analyzed in terms of the nonunitary operator (1 −
|ψd〉〈ψd|)e−iĤτ/h̄. The question then naturally arises of how
this stroboscopic dynamics is related to the non-Hermitian
Hamiltonian, or optical potential, which has been introduced
to model the loss of probability due to quantum transitions or
equivalently quantum traps [58,59]

ĤNH = Ĥ − ih̄�|ψd〉〈ψd|. (1)

The connection between these two problems was already
proposed by Allcock [31], who showed in the context of a
measurement of whether the particle is in the region x > 0 that
� = 2/τ and that reducing τ to increase temporal resolution
leads to difficulties, later subsumed under the Zeno paradox
rubric. This connection was later employed by Muga and co-
workers, motivated the use of an optical potential by models
where stimulated photon emission from the system signals its
arrival [33,35–37,60]. Schulman showed that � = 2/τ also in
the case of a two-level system [61] and discussed the con-
nection of the Zeno limit to continuous monitoring. Equation
(1), which was studied intensively in Ref. [59], is important
in its own right, because non-Hermitian terms appear when
modeling the finite lifetime of certain energy states, when
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dealing with dissipative optical media, in quantum jump ap-
proaches, or in certain quantum transport models [59,62–74].
Non-Hermitian systems are also readily implemented experi-
mentally [75–79]. It should be noted that the dissipation term
in Eq. (1) can be derived from a system-bath coupling [80],
but here our interest is in comparing and contrasting it to the
stroboscopic measurement dynamics, particularly in the Zeno
limit.

Our primary goal in this work is to use the recently ob-
tained renewal equation solution to the stroboscopic dynamics
problem to examine the connection to the solution of the time-
independent Schrödinger equation with the non-Hermitian
Hamiltonian (NHH) (1). One motivation for this is, given
that the previous approaches use a perturbative approach to
calculate the leading-order non-Hermitian Hamiltonian of the
stroboscopic approach, one might be concerned about the
presence of nontrivial effects at long times. Another is just
to see exactly how the two solutions are related. We will show
how to recover the identity of the two solutions in the Zeno
limit, provided that the initial state is orthogonal to the detec-
tion state, in which case the dynamics is slow, with a timescale
of order 1/τ . We then treat the case where the initial state is
not orthogonal to the detection state. There, in the Zeno limit,
there is an initial fast transient, over a timescale of order τ ,
in the NHH case. For the stroboscopic dynamics, the transient
consists of the first measurement only, which is also a time
period of exactly τ , after which the dynamics is slow. We then
relate the post-transient dynamics of the two models and see
that when the initial state is parallel to the detection state, the
slow dynamics differs by a factor of 4 in the decay statistics.
In Sec. V we exemplify these results through a number of
specific models, namely, the nearest-neighbor length-6 ring
and the infinite line, as well as a random Hamiltonian. We
then proceed to discuss this limiting Zeno solution in more
detail, relating it to the solution of a particular electrostatic
problem. This electrostatic problem defines all the quantities
necessary for constructing the limiting Zeno solution. Sec-
tion VIII briefly discusses the behavior close to the return
problem, i.e., for initial states that are almost parallel to |ψd〉.
We close in Sec. IX with a discussion and summary. Some
additional details are given in the Appendices. Appendix A
presents the adiabatic elimination of the fast mode in Eq. (1)
and Appendix B discusses the limit τ → ∞ of very slow
detectors for the non-Hermitian Schrödinger equation. Ap-
pendix C presents some details of the infinite line calculations.
Finally, Appendix D explains how we obtained our numerical
results.

II. FORMAL SOLUTIONS TO BOTH PROBLEMS

A. Non-Hermitian Schrödinger equation

We first review the solution of the continuous-time problem
starting with the non-Hermitian Schrödinger equation (1),
following closely the derivation in Ref. [59]. We denote the
solution to Eq. (1) with initial condition |ψ (t = 0)〉 = |ψin〉
by |ψ (t )〉. The squared norm of this state is the remaining
probability in the system, the survival probability. Its negative
derivative is the probability density function (PDF) of detec-

tion or dissipation times that equals

F� (t ) = − d

dt
〈ψ (t )|ψ (t )〉

= −
(

d

dt
〈ψ (t )|

)
|ψ (t )〉 − 〈ψ (t )| d

dt
|ψ (t )〉

= −〈ψ (t )|
[

i

h̄
Ĥ − i

h̄
Ĥ − 2�|ψd〉〈ψd|

]
ψ (t )

= 2�|〈ψd|ψ (t )〉|2 =: 2�|�(t )|2, (2)

where we introduced the overlap of the solution with the
detection state �(t ) := 〈ψd|ψ (t )〉, which is the only piece
of |ψ (t )〉 that we actually need. Hereafter �(t ) is called the
wave function. We append a sub- or superscript � to quan-
tities derived from the NHH framework. We apply a Laplace
transform to Eq. (2), for which we use the Laplace partners
�(s) := ∫ ∞

0 dt e−st�(t ) and �(t ) = ∫
B ds est�(s)/2π i:2

F� (s) :=
∫ ∞

0
dt e−st F� (t ) = 2�

∫
B

dσ

2π i
�∗(s − σ )�(σ ).

(3)

Here f ∗(z) := [ f (z∗)]∗ and z∗ is the complex conjugate. The
integration contour is the Bromwich path B := {0+ + iω |
ω ∈ R} that lies directly to the right of the imaginary axis. To
obtain Eq. (3) we used that [�(t )]∗ transforms to �∗(s) and
that products in the time domain become convolutions in the
Laplace domain. Furthermore, we have Re(s) > Re(σ ) � 0.
It is important to note that the complex contour integral in
Eq. (3) picks up only the residues of �(σ ), but not those of
�∗(s − σ ).

In addition to the PDF of T , we are also interested in
the total detection probability Pdet and in T ’s (conditional)
moments:

Pdet :=
∫ ∞

0
dt F (t ), 〈T m〉 := 1

Pdet

∫ ∞

0
dt tmF (t ). (4)

Here Pdet is the fraction of experimental runs in which the
detector finds something at all. It is also the normalization
of the first-detection time PDF. In addition, 〈T m〉 is the mth
moment of T provided that the system was detected at all.
Obviously, Eq. (4) holds for the stroboscopic framework as
well, whence the lack of superscripts.

Instead of computing these quantities in the time domain,
we can also obtain them from the Laplace quantity �(s), by
using a version of Parseval’s theorem

P�
det = 2�

∫
B

ds

2π i
�∗(−s)�(s), (5)

〈T m〉� = 2�

P�
det

∫
B

ds

2π i
�∗(−s)

(
− d

ds

)m

�(s). (6)

Here we have expressed the integral as a Laplace transform at
s = 0+ and proceeded by using t f (t ) �→ − d

ds f (s). Let us now
determine �(s).

2We use the same symbol for functions in the original and image
domains. In our convention, the functions are identified by their
arguments.
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To do so, we apply a Laplace transform to Eq. (1).
Here we explicitly use the initial condition |ψin〉, be-
cause (d/dt ) f (t ) �→ s f (s) − f (t = 0). We write |ψ (s)〉 :=∫ ∞

0 dt e−st |ψ (t )〉,
ih̄[s|ψ (s)〉 − |ψin〉] = Ĥ |ψ (s)〉 − i�h̄|ψd〉〈ψd|ψ (s)〉. (7)

The equation is rearranged

|ψ (s)〉 =
[

s + i

h̄
Ĥ

]−1

[|ψin〉 − �|ψd〉〈ψd|ψ (s)〉], (8)

multiplied by 〈ψd| from the left, and solved for 〈ψd|ψ (s)〉 =
�(s),

�(s) =
〈ψd| 1

s+ i
h̄ Ĥ

|ψin〉
1 + �〈ψd| 1

s+ i
h̄ Ĥ

|ψd〉
=:

v� (s)

1 + �u� (s)
, (9)

where we have abbreviated

u� (s) := 〈ψd| 1

s + i
h̄ Ĥ

|ψd〉, v� (s) := 〈ψd| 1

s + i
h̄ Ĥ

|ψin〉.
(10)

Thus u� (s) and v� (s) are, respectively, the diagonal and
off-diagonal matrix elements of the Hamiltonian’s resolvent.
In the return problem, when the initial and detection states
are identical, v� (s) = u� (s), but for the transition problem,
where these two states are different, the two quantities are
likewise different. Thus, specification of the Hamiltonian,
together with the initial and detection states, yields the two
functions u� (s) and v� (s). From these one finds, via Eq. (9),
�(s), which in turn gives the PDF F� (s) and all moments via
integration.

B. Stroboscopic detection protocol

We now review the solution of the stroboscopic detection
protocol. Here the detection time can only assume integer
multiples of τ . Consequently, the (quasi-continuous-time)
PDF of T must be a comb of δ functions, that is, Fϕ (t ) =∑∞

n=1 |ϕn|2δ(t − nτ ). The first-detection amplitude’s squared
modulus |ϕn|2 gives the probability that the nth detection
attempt is the first successful one. Here ϕn is given by [18,24]

ϕn = 〈ψd|Û (τ )[(1 − D̂)Û (τ )]n−1|ψin〉, (11)

where D̂ = |ψd〉〈ψd| is the detection projector and Û (τ ) :=
e−iτ Ĥ/h̄ is the evolution operator. According to [24], it can
alternatively be obtained from a renewal equation via

ϕn = 〈ψd|[Û (τ )]n|ψin〉 −
n−1∑
m=1

〈ψd|[Û (τ )]m|ψd〉ϕn−m. (12)

The generating function ϕ(z) := ∑∞
n=1 ϕnzn can be obtained

from this equation by multiplying it by zn and then summing
over all n from one to infinity. This recovers the definition of
ϕ(z) on the left-hand side. The convolution on the right-hand
side becomes a product in the z domain, the terms [Û (τ )]n are
gathered in a geometric series, and the equation is solved for
ϕ(z) [24]:

ϕ(z) =
〈ψd| zÛ (τ )

1−zÛ (τ )
|ψin〉

〈ψd| 1
1−zÛ (τ )

|ψd〉
=:

vϕ (z) − 〈ψd|ψin〉
uϕ (z)

. (13)

Analogously to Eq. (9), we have defined

uϕ (z) := 〈ψd| 1

1 − zÛ (τ )
|ψd〉,

vϕ (z) := 〈ψd| 1

1 − zÛ (τ )
|ψin〉. (14)

Here uϕ (z) is the (slightly differently defined) resolvent of the
evolution operator and vϕ (z) is equal to uϕ (z) in the return
problem. The sub- or superscript ϕ denotes quantities derived
from the stroboscopic detection protocol.

This generating function reappears in the Laplace trans-
form Fϕ (s), which is the generating function of the product
ϕ∗

nϕn evaluated at z = e−sτ . Again using that products in the
time domain become convolutions in the z domain, we find

Fϕ (s) =
∞∑

n=1

ϕ∗
nϕne−nsτ =

∮
C

dz

2π iz
ϕ∗

(
e−sτ

z

)
ϕ(z), (15)

a result analogous to Eq. (3). Here the integration follows the
Cauchy contour C = {eiω+0− | ω ∈ [−π, π ]} just inside the
unit circle. To compute the total detection probability and the
moments, we use n fn �→ z d

dz f (z) and find

Pϕ

det =
∮
C

dz

2π iz
ϕ∗

(
1

z

)
ϕ(z), (16)

〈T m〉ϕ = 1

Pϕ

det

∮
C

dz

2π iz
ϕ∗

(
1

z

)(
z

d

dz

)m

ϕ(z). (17)

Knowledge of the generating function ϕ(z) is sufficient to
obtain all quantities pertaining to the stroboscopic detection
protocol.

III. SMALL-τ LIMIT OF THE STROBOSCOPIC
DETECTION PROTOCOL

Starting from Eq. (15), we now demonstrate how (and
under what conditions) the solution of the non-Hermitian
Schrödinger equation F� (t ) emerges from ϕn in the limit of
small τ and large n such that t = nτ remains constant. The
limit n → ∞ is most conveniently taken in the z domain,
where it corresponds to |z| → 1−, i.e., approaching closer and
closer to the unit circle.

The two key steps are the variable change z = e−sτ and the
asymptotic equality

1

1 − e−xτ
= 1

xτ
+ 1

2
+ O(τ ), (18)

which is used to expand

〈ψ | 1

1 − e−τ (s+iĤ/h̄)
|ψ ′〉

= 1

τ
〈ψ | 1

s + i
h̄ Ĥ

|ψ ′〉 + 〈ψ |ψ ′〉
2

+ O(τ ) (19)

for two arbitrary states |ψ〉 and |ψ ′〉. In terms of the previously
defined functions, this means

uϕ (e−sτ ) ∼ 1

τ
u� (s) + 1

2
, (20)

vϕ (e−sτ ) ∼ 1

τ
v� (s) + 〈ψd|ψin〉

2
. (21)
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At this point, it is convenient to assume that the initial
state has no overlap with the detection state 〈ψd|ψin〉 = 0. We
will in the next section deal with the more general problem.
Plugging these results into the generating function ϕ(z =
e−sτ ) gives us the relation

ϕ(e−sτ ) ∼
2
τ
〈ψd| 1

s+ i
h̄ Ĥ

|ψin〉
1 + 2

τ
〈ψd| 1

s+ i
h̄ Ĥ

|ψd〉
= 2

τ
�(s). (22)

The result is, up to the factor 2/τ , just the wave function �(s)
of the NHH problem, with the identification � = 2/τ . The
Laplace-transformed wave function �(s) appears in Eq. (15)
after the change of variables z = e−στ with dz = −τ zdσ .
This changes the Cauchy contour to the proto-Bromwich path
Bτ := {0+ + iω | ω ∈ [−π/τ, π/τ ]}, which converges to the
inverse Laplace transform’s Bromwich path as τ → 0. One
then finds

Fϕ (s) ∼ 4

τ

∫
Bτ

dσ

2π i
�∗(s − σ )�(σ ), (23)

recovering Eq. (3) after the replacement (22). We have thus
shown that Fϕ (t ) ∼ F� (t ). Integration of this relation imme-
diately yields 〈T m〉ϕ ∼ 〈T m〉� as well, so as expected the stro-
boscopic protocol does reduce to the NHH formalism in the
Zeno limit τ � 1, conditioned however on the orthogonality
of the detection state to the initial state.

IV. SMALL-τ LIMIT FOR OVERLAPPING INITIAL
AND DETECTION STATES

Before we turn to analyze the more general situation
〈ψin|ψd〉 �= 0, let us note that when the initial and detection
states are orthogonal, the typical timescale on which F (t )
decays is slow, that is, O(�) = O(1/τ ). We will show this
explicitly in Sec. VII. This somewhat nonintuitive result is a
consequence of the quantum Zeno effect. The large magnitude
� = 2/τ of the optical potential on |ψd〉 results in effective
reflection of the wave function off the detection state. Thus
the overlap of the wave function on the detection state �(t ) =
〈ψd|ψ (t )〉 is always small of O(1/�2) = O(τ 2), resulting in a
slow O(1/�) = O(τ ) decay of probability.

This situation obviously cannot hold in the case when
〈ψd|ψin〉 �= 0, since the overlap initially is of order unity.
What happens in this case is that the overlap rapidly de-
cays to its typically small value over the short timescale
O(τ ) = O(1/�). Thus, in the small-τ limit, we can map the
〈ψd|ψin〉 �= 0 case to an equivalent 〈ψd|ψin〉 = 0 case after
this short transient.

Similarly, in the stroboscopic detection protocol, when
τ � 1 and 〈ψd|ψin〉 �= 0 there is an initial transient after
which the problem reduces to that of an equivalent 〈ψd|ψin〉 =
0 case. The only difference from the NHH case is that the
transient only lasts until the first-detection attempt, as opposed
to decaying exponentially.

So, to proceed, we first analyze the NHH case by consider-
ing the survival probability after a very short time. Clearly,
when � is very large and the initial state is equal to the
detection state, most of the probability amplitude dissipates
shortly after preparation. As we will demonstrate in detail be-
low, the non-Hermitian Hamiltonian of Eq. (1) has exactly one

fast mode |ψf〉 with eigenvalue −ih̄� + h̄ω0 + O(1/�), where
ω0 = 〈ψd|Ĥ |ψd〉/h̄. The fast mode is given to O(1/�) by

|ψf〉 =
[
1 + i

h̄�
(1 − D̂)Ĥ

]
|ψd〉. (24)

Over short times 1/� � t � 1, all of the wave function’s
overlap with the fast mode will be lost. In the case of partial
but not complete overlap between initial and detection states
0 < |〈ψd|ψin〉|2 < 1, the solution |ψ (t )〉 of Eq. (1) at small
times is given to leading order by

|ψ (t )〉 ∼ e−t (�+iω0 )|ψf〉〈ψf |ψin〉 + (1 − |ψf〉〈ψf |)|ψin〉
∼ (1 − D̂)|ψin〉. (25)

Thus, after the fast transient dies away, |ψeff
in 〉� = (1 −

D̂)|ψin〉 and the survival probability is S� = 1 − |〈ψd|ψin〉|2.
The situation is different for full overlap |〈ψd|ψin〉|2 = 1.

Here, almost all of the probability is depleted during the
transient and the post-transient “initial” wave function is∣∣ψeff

in

〉
�

= 1

ih̄�
(1 − D̂)Ĥ |ψd〉, (26)

whose magnitude gives the tiny survival probability S� ,

S� ≈ 1

h̄2�2
〈ψd|Ĥ (1 − D̂)Ĥ |ψd〉 =:

1

4

τ 2

τ 2
Z

, (27)

where we replaced � = 2/τ and τ 2
Z := h̄2/〈ψd|Ĥ (1 −

D̂)Ĥ |ψd〉 is the Zeno time [81].
We now turn to the stroboscopic detection protocol. For

partial overlap, to leading order, the detection probability
in the first-detection attempt is |ϕ1|2 = |〈ψd|ψin〉|2 and the
survival probability is Sϕ = 1 − |ϕ1|2 = 1 − |〈ψd|ψin〉|2. This
is just the post-transient survival probability of the NHH prob-
lem and so both problems map onto calculating the subsequent
survival of the post-transient state (1 − D̂)|ψin〉. As we have
seen above, this survival probability is identical to leading
order in the two problems; the two problems are thus seen
to yield identical results also for partial overlap.

For complete overlap, however, things are very different.
For the stroboscopic protocol, we have that the first-detection
attempt is almost surely successful and the probability of
survival is due to the small probability that was transferred
to other states in the small time τ . The wave function imme-
diately after the first measurement is∣∣ψeff

in

〉
ϕ

= (1 − D̂)e−i(τ Ĥ/h̄)|ψd〉 ∼ −i
τ

h̄
(1 − D̂)Ĥ |ψd〉 (28)

and the survival probability is then

Sϕ ≈ τ 2

h̄2 ‖(1 − D̂)Ĥ |ψd〉‖2 = τ 2

τ 2
Z

. (29)

Thus, while the form of the post-transient wave function
(28) is the same as that for the NHH, Eq. (26), there is a
factor of 2 difference, under the identification � = 2/τ , along
with a factor of 4 discrepancy between Eqs. (27) and (29).
This difference stems from the quantitative difference in the
transient dynamics of the return problem in the two models.
It arises from the fact that the evolution under stroboscopic
detection is unitary until time τ , when the first projective
measurement is applied, while the evolution under Eq. (1) is
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dissipative from the very beginning such that less amplitude
survives.

To relate the total detection probability of both formalisms
for complete overlap, we write Pϕ

det = ∑∞
n=2 |ϕn|2 + 1 − Sϕ ∼

4[P�
det − (1 − S� )] + 1 − Sϕ . Since the survival probabilities

are O(τ 2), we can neglect them for Pdet. For the moments,
these initial discrepancies are not relevant. We find

Pϕ

det ∼ 4P�
det − 3, 〈T m〉ϕ ∼ 4P�

det

4P�
det − 3

〈T m〉� (30)

for |〈ψd|ψin〉| = 1. Any other initial condition gives Pϕ

det ∼
P�

det and 〈T m〉ϕ ∼ 〈T m〉� . We find from Eq. (30) that Pϕ

det =
1 ⇔ P�

det = 1. Furthermore, the equivalence of the total detec-
tion probability must obviously break down when P�

det < 3/4,
which defines a critical upper limit for τ .

Note that the above expressions for the survival probabil-
ities could be made coincident if h̄/τ is used as the optical
potential strength in Eq. (1). Then, however, all remaining
aspects of F� (t ) are then not simply related to Fϕ (t ) as the
following numerical investigations will show.

V. EXAMPLES

We demonstrate our results in three models. The first is the
tight-binding model on the benzene ring, i.e., a ring with six
sites

ĤB := −γ

5∑
x=0

[|x〉〈x|x − 1 + |x〉〈x|x + 1], (31)

with periodic boundary conditions such that |x + 6〉 = |x〉.
Here γ is the hopping energy that determines the width of the
spectrum. The Hamiltonian ĤB has four energy levels −2γ ,
−γ , γ , and 2γ . The second system is a random (32 × 32)-
dimensional Hamiltonian ĤR taken from the Gaussian unitary
ensemble. This Hamiltonian’s lack of symmetries, its random
energy levels, and eigenstates demonstrate that our results are
not specific to any particular model. Nevertheless, we rescaled
the spectrum of ĤR such that it lies between −2γ and 2γ .
This way, the timescales of both systems are comparable. For
each of Figs. 1 and 3 one single sample matrix was used.3

Finally, we also present a system with a continuous spectrum,
the tight-binding model on the infinite line

ĤL := −γ

∞∑
x=−∞

[|x〉〈x|x − 1 + |x〉〈x|x + 1], (32)

whose spectrum again lies between −2γ and 2γ , but is not
discrete as before. The spectra of all three models lie in
this range. The shortest timescale for all three Hamiltonians
is thus given by the width of the energy spectrum: h̄/4γ .
All τ values have to be compared to this shortest system
timescale 0.25h̄/γ . Since all models’ energy and timescales
are comparable, we measure τ and any other time in units of
h̄/γ , which is henceforth set to one, h̄/γ = 1.

3For Fig. 3 convergence of the stroboscopic data can be problem-
atic. Therefore, we chose our matrices from a subensemble of the
Gaussian unitary ensemble for which this issue is not so severe (see
Appendix D).

(a i) (a ii)

(b i) (b ii)

(c i) (c ii)

FIG. 1. Comparison of F ϕ (t ) (gray squares), F� (t ) (blue pluses),
the Zeno approximation [green circles, Eq. (68), not for (c)], and
the corrected non-Hermitian approach with an additional factor of
4 [orange triangles, only (ii)] (a) for the benzene ring, (b) for
the random Hamiltonian, and (c) on the infinite line. Detection is
performed at the origin |ψd〉 = |0〉. The detection period is given by
(a) and (c) τ = 0.5 and (b) τ = 0.25. The initial states are (i) |ψB,R

in,1 〉
and |ψL

in〉 = |20〉 and (ii) |ψd〉. For the benzene ring the data were
interpolated between the times nτ to better compare the area t ≈ τ .
In the transition problem F� (t ), F ϕ (t ), and the Zeno approximation
agree almost perfectly for t � τ , but differ for small times [see (a)].
In the return problem a factor of 4 must be introduced to F� (t ) to
match the stroboscopic data (orange triangles). This also holds for
the complicated dynamics of the random Hamiltonian.

For the benzene ring and the infinite line, the detection
state was chosen to be a position eigenstate. For the random
Hamiltonian, we did the same in the sampled basis of the
matrix such that ∣∣ψB,R,L

d

〉 = |0〉. (33)

We investigated a total of four initial states for the benzene
ring: ∣∣ψB,1

in

〉 = |1〉, ∣∣ψB,2
in

〉 = |3〉,
∣∣ψB,3

in

〉 =
5∑

x=0

|x〉√
6
,

∣∣ψB,4
in

〉 = |0〉. (34)

The last one is the detection state; the first one does not yield
a unit total detection probability. The third is an eigenstate of
the Hamiltonian. For the random Hamiltonian, we explored
two initial states∣∣ψR,1

in

〉 = |1〉, ∣∣ψR,2
in

〉 = |0〉 = |ψd〉, (35)

so the second initial state yields the return problem. Different
position eigenstates have been chosen as initial states for the
infinite line.
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(a i) (a ii)

(b i) (b ii)

FIG. 2. (a) Total detection probability and (b) mean first-
detection time for the infinite line model ĤL . The detection state is
|ψd〉 = |0〉 and the initial state is (i) |1〉 and (ii) |0〉. The stroboscopic
data (gray squares), non-Hermitian data (blue pluses), and corrected
non-Hermitian data (orange triangles, only for return problem) are
shown. Singularities in the stroboscopic data are due to resonant
detection periods. In the transition problem both approaches coincide
for small τ . For the return problem, the stroboscopic and corrected
data coincide almost perfectly until τ = π/2, where the corrected
total detection probability also becomes negative.

Appendix D explains in detail how the numerical data were
obtained. Throughout this article’s figures, we stick to the
following color code: Data for stroboscopic detection is given
by gray squares, data from the non-Hermitian Schrödinger
equation are depicted as blue pluses, corrected non-Hermitian
data are given by orange triangles, and data from the Zeno ap-
proximation (discussed below) are depicted by green circles.

A. Probability density functions

In Fig. 1 we start with plotting the PDFs F (t ) of all three
models. For the random Hamiltonian we take τ = 0.25 and
for the others the relatively large value τ = 0.5. We compare
the data from the stroboscopic detection protocol with the
solution of the non-Hermitian Schrödinger equation. (For the
benzene Hamiltonian, the stroboscopic data are interpolated
as explained in Appendix D.) Column (i) shows the transition
problem where the initial and detection states are different.
We see that both approaches lead to almost the same PDF,
except in a boundary layer of size O(τ ) near t = 0. For these
small times, the equivalence between both approaches loses
its validity. Column (ii) shows the data for the return problem.
Here the non-Hermitian data are off by a factor of 4, just
as described in the preceding section. When this correction
factor of 4 is introduced (orange triangles), we again find a
nice data collapse, except in a small boundary layer around
the origin. The boundary layer vanishes as τ goes to zero.
These observations even hold for the comparably complicated
dynamics of the random system and for the infinite line, where
the spectrum is continuous.

B. Normalization and moments

Let us now compare the moments of the distributions
F� (t ) and Fϕ (t ). In Fig. 2 we plotted the total detection prob-

(a i) (a ii)

(b i) (b ii)

(c i) (c ii)

FIG. 3. First-detection statistics for the random Hamiltonian ĤR.
The detection state is given by Eq. (33). The (a) total detection prob-
ability, (b) mean first detection time, and (c) its variance are shown
for the initial states given by Eq. (35). The stroboscopic data (gray
squares), non-Hermitian data (blue pluses), corrected non-Hermitian
data (orange triangles), and Zeno limit (green circles) are shown.
Fluctuations in the stroboscopic data for τ > π/2 correspond to reso-
nant detection times, which cannot be mapped to the non-Hermitian
picture. The dip in the stroboscopic data for τ → 0 is a numerical
artifact due to slow convergence (see Appendix D). For small τ all
approaches give the same result. All approaches give the correct total
detection probability (a), except for the resonant detection periods.
In the transition problem (i), the non-Hermitian approach gives good
results roughly until the first resonance. In the return problem (ii),
the corrected non-Hermitian data or the Zeno approximation is more
appropriate. The latter two describe the mean perfectly for almost all
τ (b ii). The non-Hermitian approach describes the variance better
for intermediate τ than the Zeno approximation (c ii).

ability [row (a)] and the mean first-detection time [row (b)]
for the infinite line. (Higher moments do not exist, due to
the power-law decay of the PDF [25].) Column (i) shows
data for the initial state |ψin〉 = |1〉, where the non-Hermitian
and the stroboscopic data clearly only coincide for small τ .
Column (ii), on the other hand, depicts the return problem,
when |ψin〉 = |ψd〉 = |0〉. Here the pure non-Hermitian data
and the stroboscopic data only share its value at τ = 0. The
corrected result of Eq. (30), however, fits almost perfectly
until τ3/4 ≈ π/2. This is a pleasant surprise. In fact, as we
show in the Appendices, the difference between P�

det(ψd ) and
Pϕ

det(ψd ) is O(τ 6) and so is tiny for small τ . It is clear that the
two results must diverge from each other beyond τ3/4, where
P�

det(τ3/4) = 3/4, and thus 4P�
det(τ3/4) − 3 = 0, i.e., when the

corrected expression (30) becomes negative and thus non-
physical.

The value τc = π/2 is also a special resonant value for
the infinite line model [24,25]. Starting from this value, the
Hamiltonian’s spectrum stretched by a factor τ does not “fit
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(a i) (a ii) (a iii) (a iv)

(b i) (b ii) (b iii) (b iv)

(c i) (c ii) (c iii) (c iv)

FIG. 4. First-detection statistics for the benzene ring ĤB [Eq. (31)]. The detection state is given by Eq. (33) and initial states are given
by Eq. (34). The notation is as in Fig. 3 and the same conclusions hold here. Just like in that figure, the correction becomes necessary in the
return problem (iv) and describes the stroboscopic data in a larger τ range than the Zeno approximation (c iv). The divergences and dips in the
stroboscopic data are due to resonant detection periods.

around the unit circle” anymore. Then the spectrum of Ĥ
and Û (τ ) = e−iτ Ĥ/h̄ start to become fundamentally different,
because eigenstates of the Hamiltonian around the band edges
become dynamically equivalent. This aliasing effect has no
counterpart in the non-Hermitian system. Still, we find an
almost perfect data collapse between the stroboscopic data
and the corrected non-Hermitian data of Eq. (30) for τ < τc in
Fig. 2.

Systems with discrete energy spectra also feature criti-
cal detection periods, which are defined by the resonance
condition (El − El ′ )τ = 0 mod 2π h̄, when two energy levels
become equivalent in Û (τ ). In these systems, there is no τ

dependence in Pdet [28], except at these exceptional values.
The correction (30) to P�

det becomes meaningless, because
the return problem yields 1 = Pϕ

det = P�
det, which results in

4P�
det − 3 = 1 as well. However, the correction factor is still

important for the moments, as Figs. 3 and 4 show for the
random Hamiltonian and the benzene ring, respectively. Both
figures demonstrate how the non-Hermitian approach cor-
rectly predicts the total detection probability except at reso-
nant detection periods, a hardly surprising exception. Higher
moments of the stroboscopic detection protocol are well
described by the non-Hermitian approach roughly until the
first resonance, when both curves depart from each other. By
virtue of our normalization of each system’s energy spectrum,
this first resonance lies at τc = π/2. We also see that the
non-Hermitian data are not appropriate in the return problem,
where the correction (30) must be used. This is particularly
apparent in the return problem’s mean first-detection time M,
which was shown to be quantized in Ref. [15]. There we have
〈T 〉ϕ = wτ (discussed below), but 〈T 〉� = wτ/4. Introducing
the correction factor of 4 makes the curves for the mean
collapse for almost all τ .

As we have demonstrated numerically, the non-Hermitian
and the stroboscopic approach give equivalent results for
small detection periods. In the return problem, however, the
results coincide only after adjustment.

In general, they only coincide (after adjustment, in the
case of the return problem) up to a relative error of O(τ 2).
From this point of view, the good numerical correspondence
is rather surprising.

VI. DISCRETE ENERGY SPECTRA AND THE
ELECTROSTATIC FORMALISM

From the perspective of the equivalence between Fϕ (t ) and
F� (t ), one is still left with finding the distribution F� (t ),
which poses a considerable problem for a general system.
More tractable is the question of the actual small-τ limit of
both systems. This question will be answered in Sec. VII for
finite-dimensional systems with a discrete energy spectrum.
As a first step, we will derive some general features that all
finite-dimensional systems have in common. This will reveal
the special nature of the return problem and help us to take the
Zeno limit in the next section.

In this section we focus on systems with discrete energy
spectra. These systems admit the usual diagonal form of the
Hamiltonian

Ĥ =
∑

l

El P̂l =
∑

l

El

gl∑
m=1

|El,m〉〈El,m|, (36)

where El are the energy levels, each of them gl -fold degener-
ate with eigenstates |El,m〉 and eigenspace projector P̂l . Since
we explicitly account for the degeneracies from the start, all
energy levels are distinct El �= El ′ .
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We first consider the stroboscopic detection protocol and
briefly review the results originally reported in Ref. [15]. Later
we apply the same results to the non-Hermitian setup.

A. Stroboscopic detection protocol

1. Formal solution for the PDF

Using the diagonal form (36) in the definitions of Eq. (14)
yields

uϕ (z) =
w∑

l=1

pl

1 − ze−iτEl /h̄
, vϕ (z) =

w∑
l=1

plql

1 − ze−iτEl /h̄
,

(37)
where pl := 〈ψd|P̂l |ψd〉 and plql := 〈ψd|P̂l |ψin〉. It should be
noted that not all energy levels El actually contribute to the
problem. Any energy level which has no overlap with the
detection state, i.e., for which P̂l |ψd〉 = 0, will not appear in
either uϕ (z) or vϕ (z). They can safely be ignored. Further,
Ĥ could even possess a continuous part of the spectrum, as
long as it has no overlap with the detection state. This is
what we mean when we talk about systems with a discrete
spectrum.4 We assume that w different energy levels appear
in uϕ (z) and that for each of those pl > 0. Naturally, we
have

∑w
l=1 pl = 〈ψd|ψd〉 = 1, so none of them can be larger

than unity. A similar normalization holds for the ql , namely,∑w
l=1 pl ql = 〈ψd|ψin〉. Apart from that, the ql can be arbitrary

complex numbers. Another implicit assumption in Eq. (37) is
that resonant τ are avoided such that all phase factors e−iτEl /h̄

are unique and no pair of terms yields the same denominator.
Otherwise, w would need to be redefined.

The points z = eiτEl /h̄ are simple poles of the functions
uϕ (z) and vϕ (z). Nevertheless, these poles cancel in ϕ(z),
which is analytic in the unit disk. Still ϕ(z) has w − 1 poles zl

outside the unit disk defined by

0 = uϕ (zl ). (38)

These simple poles are crucial to writing down a formal
solution to ϕn. This is achieved by a partial fraction de-
composition of ϕ(z). Note that when some rational function
h(z) = f (z)/g(z) has the simple poles zl [which are simple
zeros of g(z)] it admits the decomposition h(z) = ∑

l
Cl

z−zl
and

the coefficients can be obtained via Heaviside’s formula

Cl = lim
z→zl

(z − zl )h(z) = f (zl )

g′(zl )
. (39)

Applying this formula to ϕ(z)/z with Eq. (13) (so that g(z) =
uϕ (z) and f (z) = [vϕ (z) − 〈ψd|ψin〉]/z) gives

ϕ(z) = −
w−1∑
l=1

vϕ (zl ) − 〈ψd|ψin〉
zl u′

ϕ (zl )

z
zl

1 − z
zl

. (40)

Expanding each geometric series gives ϕn:

ϕn = −
w−1∑
l=1

vϕ (zl ) − 〈ψd|ψin〉
u′

ϕ (zl )
z−n−1

l . (41)

4Mathematically speaking, our truncation or construction of Ĥ
ensures that |ψd〉 is a cyclic vector of Ĥ and that the space of vectors
{|ψd〉, Ĥ |ψd〉, Ĥ 2|ψd〉, . . .} has dimension w.

Hence, knowledge about the poles zl of ϕ(z) results in a
decomposition of the detection amplitudes in terms of ex-
ponentially decaying modes. (They decay rather than grow
because |zl | > 1.)

2. Electrostatic analogy

The poles themselves can be found from a nice electrostatic
analogy. The starting point is Eq. (38), which has a trivial
solution z = ∞. When this is removed by multiplication by
z, one arrives at

0 = zuϕ (z) =
w∑

l=1

pl
1
z

− e−iτEl /h̄
. (42)

We now construct the two-dimensional (2D) electrostatic
potential

Vϕ (x, y) :=
w∑

l=1

pl ln
√[

x − cos
(

τEl
h̄

)]2 + [
y + sin

(
τEl

h̄

)]2

(43)

by placing 2D point charges of magnitude pl on each eigen-
value eigenvalue e−iτEl /h̄ of Û (τ ) on the unit circle. [Here
we use the canonical mapping between the real and the
complex plane: R2 � (x, y) ↔ x + iy ∈ C.] Then the points
zV = 1/z = x + iy are seen to be Vϕ (x, y)’s stationary points,
i.e., the points of vanishing gradient ∇(x,y)Vϕ (x, y) = 0. These
gradient equations are exactly the real and imaginary parts of
Eq. (42).

In the return problem, we have vϕ (z) = uϕ (z) and there is
a relation between the poles z and the zeros n of ϕ(z), because
there is a symmetry between the uϕ (z) and its conjugate u∗

ϕ (z):

uϕ (z) = −
[

u∗
ϕ

(
1

z

)
− 1

]
. (44)

(Recall that u∗
ϕ (z) = [uϕ (z∗)]∗.) Equation (44) is easily seen

from the definition of uϕ (z) and the unitarity of Û (τ ). So
if z is a root of uϕ (z) = 0 [and thus a pole of ϕ(z)], then
n = 1/z∗ is a root of uϕ (n) − 1 = 0 [and thus a zero of ϕ(z)
for the return problem; see Eq. (13)]. These zeros n = z∗V
are the conjugated stationary points of the two-dimensional
electrostatic potential Vϕ (x, y). The operation n = 1/z∗ that
connects the zeros and poles is a reflection about the unit
circle. Note that ϕ(z) has an additional trivial zero at z = 0,
because uϕ (0) = 1, which is not mapped by the electrostatic
analogy. Furthermore, note that ϕ(z) for the transition prob-
lem has different zeros than these stationary points. These,
however, are not as important to the first-detection statistics,
because only the poles z determine the decay modes.

3. Return problem

In the return problem, when |ψin〉 = |ψd〉 and vϕ (z) =
uϕ (z), the knowledge of the poles is sufficient to describe all
first-detection statistics. The electrostatic potential can then
be used to describe these statistics [82,83]. The symmetry
relation (44) is a peculiarity of the return problem and implies
that ϕ∗(1/z) = 1/ϕ(z) when |ψin〉 = |ψd〉. It follows from
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Eq. (16) that the return state is almost surely detectable:

Pdet(ψd ) =
∮
C

dz

2π iz

ϕ(z)

ϕ(z)
= 1. (45)

With the same identity, we find that the mean first-detection
time is a contour integral over a logarithmic derivative:

〈T 〉ϕ =τ

∮
C

dz

2π i

d

dz
ln ϕ(z) = wτ. (46)

By virtue of the argument principle of complex analysis, the
contour integral over a logarithmic derivative is equal to the
number of the function’s zeros minus the number of poles.
This number is w. In addition, ϕ(z) has no poles inside the unit
disk. There are w − 1 zeros found from the stationary points
of Eq. (43) and one trivial zero at z = 0, where uϕ (z = 0) = 1.
Therefore, the mean first-detection time of the return problem
in the stroboscopic detection protocol is quantized and equal
to the number of energy levels that appear in |ψd〉 [15,21,23].
Equations (45) and (46) are nicely demonstrated in Figs. 3(ii)
and 4(iv), where the total detection probability and the mean
show constant and linear behavior, respectively.

Analytically finding the zeros of uϕ (z) or the stationary
points of Vϕ (x, y) is in general equally hard and not possible
outside of some perturbative limit. Nevertheless, the above
arguments, which are known for the stroboscopic detection
protocol [15], can be applied directly to the non-Hermitian
Schrödinger equation. There we can gain additional insights.

B. Non-Hermitian Schrödinger equation

1. Formal solution for the PDF

Again, we express the resolvents in terms of the overlaps
pl and ql as well as with the energy levels El :

u� (s) =
w∑

l=1

pl

s + i El
h̄

, v� (s) =
w∑

l=1

plql

s + i El
h̄

. (47)

As before, v� (s) and u� (s) have poles at −iEl/h̄, which
cancel in �(s). Here �(s) has w simple poles sl in the left
half plane defined by the equation

0 = 1 + 2

τ
u� (sl ). (48)

Using these poles, we can write down a partial fraction
decomposition of �(s):

�(s) = τ

2

w∑
l=1

v� (sl )

u′
� (sl )

1

s − sl
. (49)

Using the residue theorem, the inverse Laplace transform is
easily performed:

�(t ) = τ

2

w∑
l=1

v� (sl )

u′
� (sl )

etsl . (50)

Since all poles lie in the left half plane such that Re[sl ] < 0,
all exponentials are decaying. Note that Eq. (48) has w roots
as opposed to Eq. (38).

(a) (b)

FIG. 5. Poles in the electrostatic analogy. (a) The eigenvalues
e−iEl τ/h̄ of Û (τ ) lie on the unit circle (blue closed circles). The
poles zl of ϕ(z) (red closed circles) lie outside the unit circle. Their
mirror images nl (magenta open circles) lie inside the unit disk. After
equipping every one of Û (τ )’s eigenvalues with an electric charge
equal to the overlap pl = 〈ψd|P̂l |ψd〉, Ref. [15] finds the mirrored
poles as the stationary points of the electrostatic potential (43). As
τ decreases all points move to z = 1 (arrows). (b) Our mapping z =
e−sτ zooms in around z = 1. The unit circle’s curvature is replaced
by a constant force [see Eq. (51)]. The charges are placed at iEl/h̄ on
the imaginary axes. The poles sl are the complex conjugates of the
new electrostatic potential’s stationary points.

2. Electrostatic analogy

Again, we can find an electrostatic analogy by inspecting
Eq. (48). This time, the conjugated poles s∗ = x + iy are
given by the stationary points of the following electrostatic
potential:

V� (x, y) := τ

2
x +

w∑
l=1

pl ln

√
x2 +

(
y − El

h̄

)2

. (51)

Here a positive point charge of magnitude pl is placed on
each eigenvalue of the Hamiltonian on the imaginary axis.
In contrast to the previous potential, there is an additional
constant force proportional to τ .

Recall from Sec. III that we related z and s via z = e−sτ

and a subsequent small-τ expansion. The exponential maps
the outside of the unit circle to the left half of a strip {s ∈
C | Re[s] < 0, |Im[s]| < π/τ }. Taking τ → 0 enlarges this
domain to the complete left half plane. During this procedure,
the charges, which were originally on the unit circle, move
to the imaginary axis. The curvature of the unit circle, which
forced the zeros inside the unit disk, gets mapped to the
constant-force term, which forces the poles into the left half
plane. This ensures the boundedness of �(t ) (see also Fig. 5).
Another way to relate Eqs. (38) and (48) is via Eq. (20), which
reveals the latter as a straightforward small-τ version of the
former. The advantage of V� (x, y) over its counterpart Vϕ (x, y)
is the much easier geometry. All the charges lie on a line. This
makes it possible to find all the poles in the Zeno limit, as will
be presented in the next section.
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Similar to the stroboscopic case, there is a relation between
u� (s) and its conjugate:

−u∗
� (−s) = u� (s). (52)

Using this equation, one can relate the poles of �(s) with
those of �∗(−s) in Eqs. (5) and (6).

Just as in the stroboscopic case, one finds a quantized mean
first-detection time

〈T 〉� = w

4
τ (53)

from complex function arguments. This is a result that will
be explored in more depth elsewhere [29]. We did not find
an equally nice analytical demonstration that P�

det(ψd ) = 1 for
the non-Hermitian setup. This is however evident from our
numerics in Figs. 3(a ii) and 4(a iv) and will be shown in the
limit τ → 0 in the next section. We also demonstrate it in the
limit τ → ∞ in Appendix B.

VII. ZENO LIMIT IN THE ELECTROSTATIC FORMALISM

A. Non-Hermitian Schrödinger equation

Starting with the electrostatic analogy, we can find all the
poles when τ is sufficiently small. Consider V� (x, y) from
Eq. (51) first for vanishing τ . Since all charges have the same
sign and there is no constant force, the stationary points must
lie on the imaginary axis, i.e., x = 0, one between each pair
of adjacent energies. Assume that the w energy levels are
ordered, i.e., El < El+1. We will then find one stationary point
of V� (x, y) at 0 + iωl with El < h̄ωl < El+1. We call the ωl

the absorption frequencies. They are found by solving the
equation

0 = − i

h̄
u� (−iωl ) = 〈ψd| 1

h̄ωl − Ĥ
|ψd〉, (54)

i.e., they are the zeros of the resolvent. We plotted the re-
solvent for the benzene ring in Fig. 6, where it is apparent
that the resolvent is a monotonic function between two energy
values. Therefore, although the absorption frequencies are
only defined implicitly, they are easy to find in practice. They
interlace with the energy levels are thus bracketed and the
defining function is monotonic. Any numerical root finding
algorithm will find them with ease. There are w − 1 solutions
ωl , l = 1, . . . ,w − 1, to Eq. (54). A similar interlacing for
absorption and relaxation rates has been found for the first-
passage problem of classical random walks [44].

Now we consider τ > 0 but small. The additional small
constant force will shift the stationary points from iωl slightly
into the left half plane. Thus we make the following ansatz for
the pole

sl ∼ −λlτ − iωl (55)

and plug it into Eq. (48) together with Eq. (47), which yields

0 = τ

2
+

w∑
l ′=1

pl ′

−λlτ + i
h̄ (El ′ − h̄ωl )

= τ

2
−

w∑
l ′=1

pl ′ [λlτ + i
h̄ (El ′ − h̄ωl )]

λ2
l τ

2 + 1
h̄2 (El ′ − h̄ωl )2

FIG. 6. Resolvent u� (s) for the benzene ring ĤB. We show ω �→
−iu� (iω). The dash-dotted lines, where u� (s) diverges, show the
negative energy levels. The zeros of this function are the negative
absorption frequencies −ωl . The derivative of u� (s) at these points
is related to the absorption rates λlτ . Clearly, one zero is located
between two adjacent energy levels, and the function is monotonic in
this interval as well. Therefore, the absorption frequencies are easily
found numerically.

∼ τ

2
−

w∑
l ′=1

pl ′ [λlτ + i
h̄ (El ′ − h̄ωl )]

1
h̄2 (El ′ − h̄ωl )2

= τ

{
1

2
− h̄2λl

w∑
l ′=1

pl ′

(El ′ − h̄ωl )2

}
− ih̄

w∑
l ′=1

pl ′

El ′ − h̄ωl
.

(56)

Higher-order terms in τ were neglected to obtain the third
line. Equating the imaginary part of the last line with zero
results in Eq. (54), which shows that the imaginary part was
correctly chosen. The absorption rate λl is determined from
the last line’s real part:

λl =
[

2h̄2
w∑

l ′=1

pl ′

(El ′ − h̄ωl )2

]−1

= 1

2u′
� (−iωl )

. (57)

This gives the missing part to Eq. (55) that determines the
poles sl for l = 1, . . . ,w − 1. In addition to the poles, we
need u′

� (s) and v� (s) for Eq. (50). The first is determined
by λl to leading order:

u′
� (sl ) ∼ u′

� (−iωl ) = 1

2λl
, l = 1, . . . ,w − 1. (58)

Furthermore, we find v� (sl ) in leading order. For the return
problem, this is equal to v� (sl ) = u� (sl ) = −τ/2. In the
transition problem, we obtain

v� (sl ) ∼ 〈ψd| 1
i
h̄ Ĥ − iωl

|ψin〉 =: −iθl , (59)

which defines the transition times θl .
We have thus found w − 1 poles close to the imaginary

axis. These determine the slow dynamics in �(t ). However,
Eq. (48) admits another pole far in the left half plane, which
describes the fast dynamics of �(t ). This pole is given in
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leading order by

s0 ∼ −2/τ − iω0, (60)

where h̄ω0 = 〈ψd|Ĥ |ψd〉 is the mean energy of the detection
state. For the derivative u′

� (s0) and for v� (s0) we find

u′
� (s0) ∼ −τ 2

4
, v� (s0) ∼ −τ

2
〈ψd|ψin〉. (61)

Now we have gathered all the necessary ingredients to
write down �(t ). Using all the just derived results in Eq. (50),
we arrive at

�(t ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈ψd|ψin〉e−t (2/τ+iω0 ) − iτ
w−1∑
l=1

λlθl e
−t (λl τ+iωl )

e−t (2/τ+iω0 ) − τ 2

2

w−1∑
l=1

λl e
−t (λl τ+iωl )

. (62)

Here the first line corresponds to the transition problem and
the second line corresponds to the return problem. Note that
the fast dynamics is the same in both situations. The slow
dynamics, however, is of different order in τ .

Squaring the wave function and multiplying it by 4/τ gives
the PDF F� (t ). We have, to leading order in τ ,

F� (t ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4

τ
|〈ψd|ψin〉|2e−4t/τ + 4τ

∣∣∣∣
w−1∑
l=1

λlθl e
−t (λl τ+iωl )

∣∣∣∣
2

4

τ
e−4t/τ + τ 3

∣∣∣∣
w−1∑
l=1

λl e
−t (λl τ+iωl )

∣∣∣∣
2 ,

(63)

where the first line holds for the transition problem and the
second line for the return problem.

Integration of the PDF gives the following values for P�
det

and the moments 〈T 〉� in the Zeno limit:

P�
det ∼

{|〈ψd|ψin〉|2 + ∑w−1
l=1 2λl |θl |2, |ψin〉 �= |ψd〉

1, |ψin〉 = |ψd〉, (64)

〈T m〉� ∼
{

m!
P�

det

∑w−1
l=1

2λl |θl |2
(2λl τ )m , |ψin〉 �= |ψd〉

δm,1
τ
4 + m!

4τm−2

∑w−1
l=1

2λl
(2λl )m , |ψin〉 = |ψd〉.

(65)

The first measurement term is significant only for the first
moment; otherwise it is negligible. Our Zeno limit reproduces
the general results for the return problem, namely, P�

det(ψd ) =
1 and 〈T 〉� = wτ/4.

B. Stroboscopic detection protocol

Given the connections found above between the NHH
and stochastic protocol, we can read off the solution of the
Zeno limit of the stochastic protocol. Of course, one can also
approach the problem directly. To do this, it is necessary, as
we did above in Sec. IV, to treat the first-detection attempt
separately from the others. The other crucial step is to identify
the poles zl with the poles sl of the non-Hermitian approach.
The poles are determined by Eq. (38), but we will follow
Sec. III and write z = e−sτ . Expanding for small τ allows us
to use Eq. (20) so that 0 = 2uϕ (e−sτ ) ∼ 1 + 2u� (s)/τ . This

means that we can use the poles sl from Eq. (48), which we
determined explicitly before, via

zl ∼ e−sl τ ∼ eλl τ
2+iωl τ (66)

for l = 1, . . . ,w − 1. As mentioned before, the poles sl and
zl are related by our approximation procedure. A sketch can
be found in Fig. 5.

The final pitfall we have to avoid is that 0 = uϕ (z) has w −
1 solutions, but 0 = 1 + 2u� (s)/τ has w solutions. The non-
Hermitian approach has one additional pole, namely, the fast
mode s0, that does not appear in the stroboscopic setup. The
first measurement and ϕ1 play the role of the fast mode here.
By simply excluding this spurious pole and using Eqs. (20),
(21), (48), (55), (58), (59), and (66) in Eq. (41), one can arrive
at the desired result:

ϕn ∼ −
w−1∑
l=1

1
τ
v� (sl ) − 〈ψd|ψin〉

2
d
dz uϕ (z)|z=e−sl τ

e(n+1)τsl

∼
w−1∑
l=1

e−(n+1)τ [τλl +iωl ] ×
{−2iλlθlτ, |ψin〉 �= |ψd〉
−2λlτ

2, |ψin〉 = |ψd〉.
(67)

These expressions for ϕn are plugged into the δ-comb def-
inition of Fϕ (t ) = ∑∞

n=1 |ϕn|2δ(t − nτ ). The first-detection
attempt remains untouched, but in the large-n part, we replace
the comb of δ functions with a smooth function by writ-
ing

∑∞
n=2 |ϕn|2δ(t − nτ ) ∼ |ϕ(t−τ )/τ |2/τ . This is equivalent to

performing a local average of Fϕ (t ). The additional shift is
admissible when τ is small. The result is

Fϕ (t ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|〈ψd|ψin〉|2δ(t − τ ) + 4τ

∣∣∣∣
w−1∑
l=1

λlθl e
−t (λl τ+iωl )

∣∣∣∣
2

δ(t − τ ) + 4τ 3

∣∣∣∣
w−1∑
l=1

λl e
−t (λl τ+iωl )

∣∣∣∣
2 ,

(68)

where the first line is the result for the transition problem
and the second line stands for the return problem. Integration
of the density shows again the equivalence between both
approaches. For the transition problem, we find the same
result as in Eqs. (64) and (65). For the return problem, we
find Pϕ

det = P�
det = 1 and the correction factor of 4, 〈T m〉ϕ =

4〈T 〉� , to Eq. (65).
We thus have found the Zeno limit of the first-detection

time PDF for the stroboscopic detection protocol. Just like the
Zeno limit of F� (t ), it consists of a “fast” part and a “slow”
part. While the fast part in the stroboscopic detection protocol
consists of the very first measurement, it takes the form of a
quickly decaying exponential in the non-Hermitian setup. The
fast dynamics cannot be compared, but the slow dynamics can
easily be. In fact, they yield the exact same density, except
for the return problem, where they differ by the factor of 4.
Our Zeno limit reproduces nicely Eq. (30). We also recover
the quantization of the mean in the return problem for both
stroboscopic and non-Hermitian setups.

The just-derived PDF is plotted for the benzene ring and
for the random Hamiltonian in Figs. 1(a) and 1(b). The figure
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(a)

(b)

FIG. 7. Scaling form of the distribution F ϕ (t ) for the benzene
ring ĤB [Eq. (31)]. Detection and initial states are like in Fig. 1.
The distributions’ envelopes for different τ collapse onto each other.
(Symbols are overlapping; time series are of different lengths.) The
black solid line is a fit of the envelope. There is a different scaling of
the prefactor in the return problem (b).

features a rather large value of τ = 0.5, which has to be com-
pared to the system’s internal timescale h̄/(Emax − Emin) =
0.25. Although τ is rather large, the curves match quite well.
The total detection probability and the moments for these
models are plotted in Figs. 3 and 4. In all figures, the Zeno
limit data are depicted by green circles and describes the
stroboscopic data very well for small τ .

Furthermore, we find that the slow part of Fϕ (t ) has a
very particular scaling in tτ . This is best seen in its envelope,
when the oscillating terms ei(ωl −ωl′ )t are neglected. This en-
velope is a scaling function C(τ ) f (tτ ), where the prefactor
is either τ or τ 3, depending on whether |ψin〉 �= |ψd〉 or not.
As a consequence, we can find a data collapse of the PDFs’
envelopes of different values for τ . This is demonstrated in
Fig. 7. This particular scaling with tτ was also reported in
Refs. [18,25,36]. The tτ scaling in the PDF impacts how
the moments vary with τ . Namely, we find that 〈T m〉 ∝ τ−m

for the transition problem and 〈T m〉 ∝ τ 2−m for the return
problem. Higher moments diverge as τ goes to zero, because
the dissipation becomes much faster than the internal system
dynamics. This is a manifestation of the Zeno effect. For
very small τ , the part of the wave function that was prepared
in |ψd〉, namely, |〈ψd|ψin〉|2, is immediately detected; this
is the meaning of the δ functions in the distributions. The
remaining amplitude in the system must be transferred to
the detection state, but is reflected off it most of the time.
Detection events that do not take place immediately after
preparation are actually very rare and drive the blowup of the
higher moments for small τ .

VIII. IN THE VICINITY OF THE RETURN PROBLEM

In the previous sections we highlighted the special place
that the return problem takes among all other initial condi-
tions. This manifests particularly in the quantized mean first-
detection time. Its behavior switches from linear, 〈T 〉ϕ ∝ τ , to
diverging, 〈T 〉ϕ ∝ τ−1, depending on the initial state. Clearly,
the return problem is on a somewhat delicate balance, which
is easily perturbed by small alterations of the initial state or
by imperfections in the detection protocol. In this section we
explore the sensitivity or robustness of the return problem
and in what sense the non-Hermitian and Zeno limit are
applicable.

A. Robustness of the return problem

How resilient are the return statistics to small changes in
the initial state? When the initial state is equal to or very
close to the detection state, most detection events will occur
at n = 1, shortly after preparation. To explore this regime, we
consider the mean first-detection time 〈T 〉ϕε for an initial state
of the form ∣∣ψε

in

〉
:=

√
1 − ε2|ψd〉 + ε|ψin〉, (69)

with, obviously, 0 = 〈ψin|ψd〉. When ε vanishes, this initial
state describes the return problem. As ε increases, we move
towards the transition problem.

For small τ , the mean first-detection time is a good ob-
servable to describe the contrast between transition and return
problems, because of its high sensitivity. Figure 8(a) shows
the ε dependence of the mean for different values of τ in the
benzene ring. It also shows the non-Hermitian result 〈T 〉� ,
which nicely describes the stroboscopic data for large ε, but
which settles at a fourth of the stroboscopic value when ε goes
to zero, nicely demonstrating the necessity of the correction
factor in the return problem. Furthermore, we plotted the Zeno
approximation of Eq. (65) that also matches the stroboscopic
data for large ε, but completely fails to describe 〈T 〉ϕε for small
ε, close to the return problem. The reason is that the transition
times θl = θl (ψε

in ) in Eq. (65) that determine the Zeno limit
of 〈T 〉ϕε vanish as ε goes to zero and τ stays small but fixed.
Figure 8(b) depicts the ε dependence of the ratio 〈T 〉ϕε /〈T 〉�ε
and shows explicitly how the correction factor of 4 emerges
smoothly as soon as ε becomes of the O(τ ) or smaller.

This is nicely demonstrated in a two-level system where
Ĥ = −2γ σ̂x is proportional to the Pauli-x matrix. When |ψd〉
and |ψε=1

in 〉 are given by the two states in the system, one finds

〈T 〉ϕε
〈T 〉�ε

∼
2 + h̄2

4γ 2

(
ε
τ

)2

1−ε2

2 + h̄2

4γ 2

(
ε
τ

)2 , τ → 0. (70)

Clearly, this ratio approaches 4 and 1 in the limits ε → 0
and ε/τ → ∞, respectively. The exact form of this ratio
and in particular the width of the boundary layer around
ε ≈ 0 depend on the system details, but the scaling limits are
universal.

When ε and τ are simultaneously small they compete with
each other and the limits ε → 0 and τ → 0 do not commute.
This is why the non-Hermitian and Zeno limits cannot agree
for small ε. Still, using asymptotic matching, one can compute
a uniform Zeno limit that reproduces the stroboscopic data
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(a)

(b)

FIG. 8. Perturbation of the initial state in the benzene ring with
|ψd〉 = |0〉 [see Eq. (69)]. (a) and (b): Gray symbols give the stro-
boscopic data for τ = 1/4 (+), 1/8 (◦), and 1/16 (�), from top
to bottom on the left-hand side. (a) Dashed and dash-dotted lines
give the Zeno approximation (65) and the non-Hermitian data result
(30), respectively, for τ = 1/16. Both depart from the stroboscopic
result close to the return problem (small ε). The uniform Zeno result
[black solid line, Eq. (73)] matches the stroboscopic data perfectly
for small τ . (b) Ratio of the stroboscopic and non-Hermitian results.
The correction factor of 4 emerges smoothly as ε becomes smaller;
however, significant deviations only start to occur for ε = O(τ ).

also for small ε [see Fig. 8(a)]. Note that most of the previous
sections’ machinery still applies, because we only changed
the initial state. When repeating the calculations from before
with the initial state of Eq. (69), we need to take care with the
quantity

v� (sl ) − τ

2

〈
ψd

∣∣ψε
in

〉 ∼
{−iεθl , τ � ε

−τ
[
1 + i ε

τ
θl
]
, τ ≈ ε,

(71)

where now θl = θl (ψε=1
in ) coincides with the definition (59).

Both equations are derived for small τ , but the second alter-
native holds when ε is also small and comparable to τ . With
this result we find

〈T m〉ϕε ∼

⎧⎪⎨
⎪⎩

ε2 m!
τm

∑w−1
l=1

2λl |θl |2
(2λl )m

|〈ψd |ψε
in〉|2+ε2

∑w−1
l=1 2λl |θl |2 , τ � ε

τm + m!
τm−2

∑w−1
l=1

2λl |1+i ε
τ
θl |2

(2λl )m , τ ≈ ε.

(72)

Thus, when τ is much smaller than the distance ε between the
initial and detection states, the moments resemble those of the
transition problem. When τ and ε are both small, we obtain
an interpolation between the return and transition problems.

A uniform Zeno limit is achieved by the tech-
nique of asymptotic matching that combines both lines
via 〈T 〉ε,uni ∼ 〈T 〉large ε + 〈T 〉small ε − limε→0〈T 〉large ε , where

FIG. 9. Variation of the stroboscopic detection protocol by mod-
ifying the time of the first-detection attempt to be (1 − ε)τ in the
benzene ring with |ψd〉 = |0〉. Gray symbols give the stroboscopic
data for τ = 1/4 (+), 1/8 (◦), and 1/16 (�), from top to bottom
on the left-hand side. The solid line gives the modified Zeno limit
described in the text.

limε→0〈T 〉large ε is the small-ε expansion of the first line

〈T m〉ϕ
ε,uni ∼ τm + m!

τm−2

w−1∑
l=1

2λl

(2λl )m

{∣∣∣∣1 + i
ε

τ
θl

∣∣∣∣
2

+ ε2|θl |2
∣
∣
〈
ψd

∣∣ψε
in

〉∣
∣

2 + ε2
∑w−1

l=1 2λl |θl |2
− ε2|θl |2

}
.

(73)

This equation is used in Fig. 8(a) for m = 1, which matches
the numerical data almost perfectly for small τ . The main
conclusion we can draw from this example is that the Zeno
limit close to the return problem must be carefully performed,
because the limits |ψin〉 → |ψd〉 and τ → 0 do not commute.

B. Robustness of the detection protocol

In the same spirit as before, we can ask the question
of how stable the return problem is to small disturbances
in the detection protocol. We now consider a shift of the
first-detection epoch by ετ , with 0 < ε < 1, such that detec-
tion is attempted at (1 − ε)τ, (2 − ε)τ, . . .. This scheme is
an interpolation between our stroboscopic detection protocol
(ε = 0) and the scheme considered in Ref. [11], where the
first-detection attempt occurs directly after preparation.

Again we investigate the mean 〈T 〉ϕε in the return problem.
In the return problem, we find 〈T 〉ϕε=0 = wτ , but 〈T 〉ϕε=1 = 0,
because the system is detected directly after preparation. As ε

varies, one interpolates between both results continuously, as
depicted in Fig. 9 for different values of τ .

A formula for 〈T m〉ϕε in the Zeno limit is easily found. Re-
working the argument in Sec. IV, we have that the probability
of surviving the first measurement is now reduced by a factor
of (1 − ε)2, since less probability has been transferred off
the detection site before measurement. Similarly, the modified
amplitude of the first successful detection at the nth attempt
(n > 1) is reduced by the same factor, as are all the moments
of the first-detection time. The mean is plotted in Fig. 9,
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where it agrees well with the numerical data. The result is
an interpolation between the usual return result, namely, four
times Eq. (65), and zero. For the first moment this gives
〈T 〉ϕε ∼ (1 − ε)[ε + w(1 − ε)]τ , as τ → 0. For the perturbed
detection protocol, there is no competition between ε and τ ,
as the latter only appears in the product (1 − ε)τ .

IX. SUMMARY AND DISCUSSION

The quantum first-detection problem assesses the statistics
of the first successful of many repeated detection attempts in
the state |ψd〉 performed stroboscopically with frequency 1/τ .
The non-Hermitian Schrödinger equation (1) is an alternative
model, where the projective measurements are replaced by
an imaginary potential on |ψd〉. We presented the formal
solutions to both problems and compared them with each
other in the limit of small τ . It was demonstrated that they then
both yield the same statistics, except in the return problem,
|ψin〉 = |ψd〉, which necessitates an adjustment to restore the
equivalence. This was also shown in extensive numerical
simulations. For systems with a discrete energy spectrum, we
presented another formal solution in terms of the poles zl of
the generating function ϕ(z) or the poles sl of the Laplace
transformed wave function �(s). The poles can be obtained
from the stationary points of an electrostatic potential in both
situations. It was demonstrated that the mean first-detection
time 〈T 〉 is quantized for the return problem, rederiving the
result of [15]. The relevant integer is w, the number of energy
levels that appear in the spectral decomposition of |ψd〉. Using
the electrostatic analogy, we found the Zeno limit τ → 0 of
the non-Hermitian description. Finally, using the Zeno limit,
we analyzed the stroboscopic detection protocol in the vicinity
of the return problem.

Throughout this article, we considered the simultaneous
limit τ → 0 and n → ∞. Our technique here was anticipated
in Ref. [25]. This way, we avoided the trivial result ϕn ∼
δn,1|〈ψd|ψin〉|2 from Eq. (11), where all dynamical informa-
tion is lost. Still, as is evident from the nature of the limit,
we cannot map the region t ≈ 0, where n = t/τ is actually
not large. The discrepancy between the fast parts in Eqs. (63)
and (68) is a symptom of this inability. This discrepancy in
the fast dynamics can also be expected from how the two
models behave for small times as addressed in Sec. IV. Still,
when comparing the actual probabilities of early detection
from Eqs. (63) and (68), we find pretty good agreement:
The relative error between

∫ τ

0 dt F� (t ) and
∫ τ

0 dt Fϕ (t ) is
approximately 2%.

Our approximation scheme z = e−sτ with a subsequent
small-τ expansion is similar to the Tustin or bilinear trans-
formation in signal theory [84]. This becomes clearer when
z = e−sτ ∼ (1 − sτ

2 )/(1 + sτ
2 ) is replaced by its Padé approxi-

mation. The Tustin transform is used to transform continuous-
time filters into discrete-time ones and vice versa. It captures
the low-frequency behavior correctly, but distorts the high
frequencies, a phenomenon known as frequency warping,
which makes resonant detection periods impossible in the
non-Hermitian limit. The first resonant detection period, de-
fined by τc = 2π h̄/(Emax − Emin), therefore poses a hard limit
for the validity of the non-Hermitian description. This is well
supported by our numerical data.

The relevance of certain poles in our formalism, as well
as the interpretation of their (or their logarithm’s) real and
imaginary parts as lifetimes and frequencies, is reminiscent
of the quantum resonance framework [85,86]. In fact, similar
to the theory of Feshbach resonances [87], we solved the
Laplace-transformed (i.e., stationary) Schrödinger equation
by substituting the [1 − D̂] projection into the D̂ component
in Sec. II. In Secs. VI and VII we used the fact that discrete
states give rise to poles in the solution which control the
dynamics. A similar procedure was applied to the renewal
equation (12) that yields the generating function ϕ(z). How-
ever, despite these formal similarities, our aim was somewhat
different from classical scattering theory: We were interested
in the distribution and statistics of the first-detection time.

When we derived Pϕ

det in the Zeno limit in Eq. (64), we
encountered |〈ψd|ψin〉|2. This is the probability of detection
directly after preparation. Further, Pϕ

det(ψin ) − |〈ψd|ψin〉|2 =∑w−1
l=1 2λl |θl |2 is the difference in the total detection probabil-

ity between the stroboscopic detection protocol and a “one-
shot” detection protocol. In Refs. [27,28] we demonstrated
that this quantity can be bounded by an uncertainty relation
so that

Pϕ

det(ψin ) − |〈ψd|ψin〉|2 =
w−1∑
l=1

2λl |θl |2 � |〈ψd|[ĤD̂]|ψin〉|2

Var[Ĥ ]ψd

,

(74)

where D̂ := |ψd〉〈ψd| and Var[Ĥ ]ψd := 〈ψd|Ĥ2|ψd〉 −
[〈ψd|Ĥ |ψd〉]2 are the energy fluctuations in the detection
state.

The special character of the return problem, in particu-
lar the quantization of the mean first return time, was al-
ready discussed and recognized for the stroboscopic detection
protocol [15,22,23]. The quantization for the non-Hermitian
Schrödinger equation will be showcased in a separate work
[29].

In many realistic situations there is more than one target
state |ψd〉, but rather a target (sub)space D̂H of the total
Hilbert space H, where rank D̂ � 1. For the sake of simplic-
ity, this situation was avoided in this paper, because the formal
solutions become somewhat more involved. In particular, one
has to replace the weights or charges with plql �→ D̂P̂l |ψin〉
and pl �→ D̂P̂l D̂ such that the functions v� (s) and vϕ (z)
become vector valued and u� (s) and uϕ (z) become matrix val-
ued. Apart from the mathematical issue, there is the following
qualitative physical question (see also Ref. [88]): Where in the
detection subspace does the system arrive? We believe that
this will lead to richer dynamics, but not too many conceptual
differences, provided rank D̂ < ∞. Reference [16] investi-
gated the return problem in the stroboscopic approach and
showed that the mean return time is quantized provided that
the system is prepared in the mixed state ρ̂in = D̂/rank[D̂].
Therefore, in this sense the return problem retains its special
status and we can expect a correction factor to appear also in
the higher-dimensional case.

Experimental verification of our claims is well within
reach. In fact, Ref. [89] reports an experiment of a photonic
quantum walk on the line in which Pdet has been measured
with the stroboscopic approach. Apart from discrete-time
quantum walks, cold-atom experiments provide the optimal
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test bed for our theory. Reference [78] implements a
continuous-time quantum walk of cold atoms in momentum
space, whereas Ref. [79] uses hyperfine levels of lithium.
In both cases, detection or loss is implemented by resonant
coupling of the principal system to some “sink” at some
(target) state, from which return is unlikely. Population mea-
surements of the reservoir or, alternatively, the sink at time t
give the probability of survival S(t ) = ∫ ∞

t dt ′F (t ′). A pulsed
system-sink coupling then realizes the stroboscopic approach,
whereas continuous coupling realizes the non-Hermitian
scenario.

We have demonstrated that the analogy between the non-
Hermitian Schrödinger equation and the stroboscopic detec-
tion protocol is very delicate. The equivalence of both depends
crucially on the value of τ , the exact definition of the detection
protocol, and the initial state in question. In the vicinity of
the return problem, both the Zeno and non-Hermitian approx-
imations are particularly untrustworthy. This shows that the
first-detection statistics may be quite sensitive to their exact
operational definition. The popular non-Hermitian description
must be motivated with great care to detail in any repeated
measurement setup.
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APPENDIX A: ADIABATIC ELIMINATION
OF THE FAST MODE

Following Dhar et al. [19], we show in this Appendix
how to obtain another non-Hermitian equation with a small
optical potential from Eq. (1). This is achieved via adiabatic
elimination of the fast mode. Starting from Eq. (1), we decom-
pose the wave function into two orthogonal parts |ψ (t )〉 =
|ψd〉�(t ) + |ψ̄ (t )〉 such that D̂|ψ̄ (t )〉 = 0. We assume that
the initial state has no overlap with |ψd〉, 〈ψd|ψin〉 = 0. After
Laplace transformation, the Schrödinger equation reads, in
block form,

is�(s) =
[
〈Ĥ〉 − 2i

τ

]
�(s) + 〈ψd|Ĥ (1 − D̂)|ψ̄ (s)〉, (A1a)

i[s|ψ̄ (s)〉 − |ψin〉] = (1 − D̂)Ĥ |ψd〉�(s) + ĤZ|ψ̄ (s)〉,
(A1b)

where 〈Ĥ〉 = 〈ψd|Ĥ |ψd〉 and ĤZ := (1 − D̂)Ĥ (1 − D̂) is the
Zeno Hamiltonian (see [81]). Solving Eq. (A1a) for �(s) and
plugging the result into Eq. (A1b) yields

i[s|ψ̄ (s)〉 − |ψin〉] =
[

ĤZ + Ĥ1

is − 〈Ĥ〉 + 2i
τ

]
|ψ̄ (s)〉, (A2)

where Ĥ1 = (1 − D̂)ĤD̂Ĥ (1 − D̂). When τ is very small, the
terms is − 〈Ĥ〉 can be neglected in the denominator and we
obtain an effective non-Hermitian Hamiltonian that only acts
on the subspace (1 − D̂). An inverse Laplace transform gives

the effective Schrödinger equation

ih̄
d

dt
|ψ̄ (t )〉 =

[
ĤZ − i

τ

2h̄
Ĥ1

]
|ψ̄ (t )〉. (A3)

This is exactly the equation used in Refs. [18–20,54].

APPENDIX B: LAZY DETECTOR LIMIT

In Sec. VII we derived the Zeno limit for the non-Hermitian
Schrödinger equation. This was achieved by a perturbation of
the equation 0 = 1 + 2u� (s)/τ as τ → 0. A similar proce-
dure is possible in the opposite limit τ → ∞, when the de-
tector becomes slower and slower. Obviously, this has no cor-
respondence to the stroboscopic detection protocol, whence
we omitted its discussion in the main text. Nevertheless, it is
clearly justified as a proper non-Hermitian system with a very
weak dissipation term, which is why we present it here. The
general considerations of Sec. VI still hold. Thus, it is only
necessary to find the poles s̄l in this limit.

When τ becomes large in 0 = 1 + 2u� (s)/τ , u� (s) must
become large as well to satisfy the equation. For this reason,
we expand u� (s) around its singularities s = −iEl/h̄, by
making the ansatz s̄l ∼ −i(El/h̄) − (al/τ ) for l = 1, . . . ,w.
Plugging this ansatz into Eq. (48) together with Eq. (47)
reveals al = pl . That means we find

s̄l ∼ −2pl

τ
− i

El

h̄
, l = 1, . . . ,w. (B1)

The same result is obtained when one applies regular pertur-
bation theory to find the eigenvalues Ẽl (τ ) = −ih̄sl of Eq. (1).

Plugging these poles into the functions v� (s) and u� (s),
we obtain in leading order

v� (s̄l ) ∼ ql , u′
� (s̄l ) ∼ − τ 2

4pl
. (B2)

With these we obtain �(s) from Eq. (50),

�(t ) ∼
w∑

l=1

pl qle
−t[2pl /τ+iEl /h̄]. (B3)

Integration of F� (t ) = 4|�(t )|2/τ yields the total detection
probability and the moments. In leading order in τ → ∞,
these are independent of the energy levels El and just depend
on the charges pl and ql ,

Pdet ∼
w∑

l=1

pl |ql |2, (B4)

〈T m〉 ∼ m!
τm

4m

∑w
l=1 pl |ql |2 p−m

l∑w
l=1 pl |ql |2 . (B5)

It is not obvious that the here-derived normalization for τ →
∞ coincides with the τ → 0 limit of Eq. (64). However, judg-
ing from our numerical simulations depicted in Figs. 3 and
4, which show perfect constancy in P�

det(τ ), we can conclude
that they are the same. Furthermore, it correctly reproduces
the exact result for the stroboscopic detection protocol of
Ref. [28]. We also reproduce the quantization of the return
problem for large τ : 〈T 〉 = wτ/4.

Another remark on Eq. (B3) is called for. In contrast to
the small-τ expansion of the main text, we find the unified
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scaling F� (t ) = τ−1 f (t/τ ) for the envelope here. There is no
separation between a fast and some slow modes. All modes’
timescales are of the same order of magnitude τ .

APPENDIX C: CALCULATIONS FOR THE INFINITE LINE

In this Appendix we explain how all quantities pertaining
to the infinite line Hamiltonian (32) have been obtained. To
simplify our equations, we work in units of time where h̄/γ =
1. Furthermore, we will use the abbreviation � = 2/τ when
convenient. We will make heavy use of the techniques of
Krapivsky et al. described in Ref. [59], repeating some of their
calculation, but also expanding upon them.

Reference [24] reported the transition amplitudes for this
model:

〈x|Û (t )|y〉 = i|x−y|J|x−y|(2t ). (C1)

Here Jn(x) is the Bessel function of the first kind and Û (t ) =
e−it Ĥ/h̄. Henceforth, we write ξ = |x − y|. This expression is
plugged into [s + iĤ/h̄]−1 = ∫ ∞

0 dt e−st−it Ĥ/h̄ to obtain the
resolvent of the Hamiltonian

〈x| 1

s + i
h̄ Ĥ

|y〉 = [ i
2 (

√
4 + s2 − s)]ξ√

4 + s2
, (C2)

where Eq. (6.611.1) of [90] was used. We consider the
detection state |ψd〉 = |0〉 and the initial state |ψin〉 = |ξ 〉.
Therefore, above expression gives v� (s) and also u� (s) upon
setting ξ = 0. This results in

�ξ (s) =
[

i
2 (

√
4 + s2 − s)

]ξ
� + √

4 + s2
. (C3)

The initial state is carried in a subscript from here on.
We will first find an expression for �(t ) in time domain

and then proceed to compute the first moment of 〈T 〉� .

1. Wave function in time domain

In the return problem ξ = 0, �0(s) is a function of√
1 + s2/4 only. By virtue of Eq. (1.1.1.37) of [91], we thus

find

�0(t ) = e−�t − 2t
∫ 1

0
dy J1(2ty)e−�

√
1−y2

. (C4)

The remaining integral can be obtained numerically.
For the transition case ξ �= 0, we use Eq. (2.9.1.15) of [91]

to identify the numerator of Eq. (C3) with iξ ξJξ (2t )/2t . The
denominator is the same expression as before; their product
becomes a convolution in the time domain

�ξ (t ) = ξ

2
iξ
∫ t

0
dt ′ Jξ (2(t − t ′))

t − t ′ �0(t ′). (C5)

The �ξ (t ) can be obtained by numerical quadrature of the
last two integrals. Note that we can take the limit τ → 0 in
Eq. (C4) to obtain the much simpler result

�ξ (s) ∼ iξ
τ

2

[√
1 + s2

4
− s

2

]ξ

, (C6)

which transforms to

�ξ (t ) ∼ iξ
ξτ

2t
Jξ (2t ) (C7)

and recovers our result from Ref. [25].

2. Total detection probability

From Eq. (5), the total detection probability and the mo-
ments are given by a contour integral. However, careful at-
tention must be paid to the branch cuts of the square-root
function. Equation (5) is derived from the following iden-
tity: P�

det = limε↘0
∫ ∞

0 dt e−εt 2�[�(t )]∗�(t ). Writing �(t ) =∫
B ds est�(s)/2π i and switching the order of integration, one

finds

P�
det〈T m〉� = lim

ε↘0
2�

∫
B

ds

2π i
�∗(ε − s)�(s), (C8)

where 0 < Re[s] < ε so that all intermediary integrals con-
verge. We thus parametrize the Bromwich path as s = λ + iω,
with 0 < λ < ε, use the definition �∗(s) = [�(s∗)]∗, and take
the limit ε → 0. This shows that both factors in the integrand
must be evaluated at 0+ + iω and fixes the correct branch of
the square-root function

P�
det = 2�

2π

∫ ∞

−∞
dω|�(0+ + iω)|2. (C9)

The square-root functions in �(s) = �ξ (s) are replaced by

√
4 + (0+ + iω)2 = i sgn(ω)

√
ω2 − 4 (C10)

for |ω| > 2 and the obvious limit
√

4 − ω2 for |ω| < 2. We
abbreviate δ := sgn(ω)

√
ω2 − 4 and δ̄ := √

4 − ω2. With this
formula, we find that

|�ξ (0+ + iω)|2 =
{ 1

(�+δ̄)2 , |ω| � 2
[ 1

2 (ω−δ)]2ξ

�2+δ2 , |ω| > 2.
(C11)

This expression is integrated over ω from −∞ to ∞ and
multiplied by 2�/2π to yield P�

det. This has already been done
in Ref. [59], whose solution we here cite:

Pdet(τ ) =
{ 2

π
1

τ 2(1−τ 2 ) {(π − 2τ )(1 − τ 2) + τ 3 − [2(1 − τ 2)2 + τ 2] arccos τ√
1−τ 2 }, |ψin〉 = |1〉

1
π

2τ
1−τ 2 [1 + 1−2τ 2

τ
arccos τ√

1−τ 2 ], |ψin〉 = |0〉. (C12)

These are the curves plotted in Fig. 2 for the non-Hermitian
Schrödinger equation. The corrected non-Hermitian data were
obtained form Eq. (C12) as well via 4P�

det − 3 [see Eq. (30)].

3. Mean detection time

The mean detection time is computed in a similar manner
to before. First, we note that the derivative of �ξ (s) can be
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written as

−d�ξ (s)

ds
= �ξ (s)

s + ξ (� + √
4 + s2)

[4 + s2] + �
√

4 + s2
. (C13)

The procedure from before applied to Eq. (6) then yields

〈T 〉� = − 1

P�
det

2�

2π i

∫ ∞

−∞
dω|�ξ (s)|2 d ln �ξ (s)

ds

∣∣∣∣
s=0++iω

.

(C14)
Combining Eqs. (C10), (C11), (C13), and (C14) and using
the symmetry of the integrands gives 〈T 〉� as a sum over two
integrals, one over |ω| < 2 and one over |ω| > 2:

〈T 〉� = 2�

2πP�
det

{∫ 2

0
dω

2ξ

δ̄(� + δ̄)2

+
∫ ∞

2
dω

2�ω
[

1
2 (ω − δ)

]2ξ

δ(�2 + δ2)2

}
. (C15)

We call the integral in the first line I1 and the one in the second
line I2.

The first integral is solved by changing variables to δ with
dδ = ωdω/δ and using Mathematica:

I1 = 1

2�

2ξτ

1 − τ 2

[
arccos(τ )√

1 − τ 2
− τ

]
. (C16)

For the second integral, we use the variable transform ω =
2 cosh x such that δ = 2 sinh x, ω − δ = 2e−x, and dω =
2 sinh xdx. This gives

I2 =
∫ ∞

2
dω

2�ω
[

1
2 (ω − δ)

]2ξ

δ(�2 + δ2)2

= τ 2

2�

∫ ∞

0
dx

e−2ξx cosh x

(1 + τ 2 sinh2 x)2
, (C17)

where we already replaced 2/� = τ for convenience. The
exact integral is calculated with Mathematica and results in
a complicated mix of polynomial and logarithmic terms in τ

for general ξ . For ξ = 0 and ξ = 1 the result is

I2 =
{ 1

2�
π
4 τ, ξ = 0

1
2�

π
4

2+τ 2

τ
− 1 − arccos(τ )

τ
√

1−τ 2 , ξ = 1.
(C18)

Adding I1 and multiplying by 2�/2πP�
det gives the conditional

mean detection time

〈T 〉� =
{

1
P�

det (ξ=1)

{
2−3τ 2+τ 2

8τ (1−τ 2 )2 − 1+τ 2

2π (1−τ 2 ) + 1−3τ 2

2πτ

arccos(τ )√
1−τ 2

}
, |ψin〉 = |1〉

1
P�

det (ξ=0)
τ
8 , |ψin〉 = |0〉. (C19)

Combined with Eq. (C12), this result is plotted in Fig. 2.

4. Total detection probability

The total detection probability for the NHH is given by
Eq. (C12). Expanding the result for ξ = 0 for small τ , one
obtains

P�
det = 1 − 1

4
τ 2 + 8

3π
τ 3 − 9

8
τ 4 + 64

15π
τ 5 − 25

16
τ 6 + · · · .

(C20)

The first-detection amplitudes from the stroboscopic approach
are obtained from the renewal equation and Eq. (C1). The first
terms read

ϕn =
{

J0(2τ ), n = 1
− 2τ

n J1(2nτ ) − 3τ 2

n2 J2(2nτ ) + · · · , n > 1.
(C21)

From this and Pϕ

det = ∑∞
n=1 |ϕn|2 we can compute the total

detection probability in orders of τ :

Pϕ

det = 1 − 2τ 2 + 32τ 3

3π
− 9τ 4

2
+ 256τ 5

15π
− 50τ 6

9
+ · · · .

(C22)
Comparing the expressions for the stroboscopic and the NHH
approach, we see that, surprisingly, the “corrected” NHH
result 4P�

det − 3 agrees with the stochastic result for the first
five orders in τ , disagreeing only at order τ 6.

APPENDIX D: DETAILS OF THE SIMULATIONS

In this Appendix we describe how the data for the figures
were obtained.

1. Infinite line

a. Total detection probability and mean first-detection time

The total detection probability that is plotted in Fig. 2
was generated in the following way. The P�

det(τ ) was already
computed in Ref. [59] for the infinite line. We repeated the
result in Eq. (C12) and plotted these curves in Fig. 2. The
corrected non-Hermitian data were obtained form Eq. (C12)
as well via 4P�

det − 3 [see Eq. (30)]. The same was done for
the mean, which we calculated in Eq. (C19).

The total detection probability and the mean first-detection
time for the stroboscopic detection protocol were obtained
from the renewal equation (12) and the exact expression
(C1). The Pϕ

det(τ ) was approximated by the sum
∑N

n=1 |ϕn|2,
where N was chosen such that the last summand was suf-
ficiently small. The same approach was taken to compute
〈T 〉 ≈ ∑N

n=1 |ϕn|2(nτ )/Pϕ

det(τ ). This way the curves for the
stroboscopic data in Fig. 2 were generated.

b. Probability density function

The stroboscopic data in Fig. 1(c) were generated from
the renewal equation as explained above. Equation (C1) was
used together with Eq. (12) to obtain ϕn. Still Fϕ (t ) contains
the δ functions δ(t − nτ ). To avoid them, we plotted the
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local average (1/τ )
∫ (n+1/2)τ

(n−1/2)τ dt Fϕ (t ) = |ϕn|2/τ instead of

Fϕ (nτ ). Hence, we used the data points (nτ, |ϕn|2/τ ) for
the stroboscopic data, where ϕn was obtained as described
above. The non-Hermitian data were obtained from numerical
quadrature of Eqs. (C4) and (C5) that we derived above and
from F (t ) = (4/τ )|�(t )|2.

2. Benzene ring

The ring Hamiltonian ĤB has four distinct energy levels
that have overlap with |ψd〉 and therefore w = 4. Both Hamil-
tonians have four energy levels which have overlap with |ψd〉
and therefore w = 4. The resolvents u� (s) and uϕ (s) are found
symbolically from the matrix representations (31) and from
Eq. (33) using Mathematica. Since w is small enough, the
poles zl and sl can also be determined symbolically, as none
of the polynomials encountered have order larger than 4.

a. Probability density function

Using the exact expressions of the poles, of the resolvents,
and of v� (s) as well as vϕ (z), we can find ϕn and �(t ) from
Eqs. (41) and (50). The expression we obtain for ϕn is a
sum of exponential functions in n, ϕn = f (n). To compare it
with the non-Hermitian data, we plotted F� (t ) = 4|�(t )|/τ
and Fϕ (t ) ≈ |ϕt/τ |2/τ = | f (t/τ )|2/τ in Fig. 1. This is the
interpolation that was mentioned in the caption of Fig. 1.

b. Moments and total detection probability

The previous method was used to compute the moments
for the non-Hermitian approach as well. The poles sl , as
well as u′

� (sl ) and v� (sl ), were computed symbolically. From
Eq. (50) we found

P�
det = τ

w−1∑
l,l ′=0

v� (sl )[v� (sl ′ )]∗

u′
� (sl )[u′

� (sl ′ )]∗
−1

sl + s∗
l ′
, (D1)

〈T 〉� = τ

P�
det

w−1∑
l,l ′=0

v� (sl )[v� (sl ′ )]∗

u′
� (sl )[u′

� (sl ′ )]∗
(−1)mm!

(sl + s∗
l ′ )

m+1
. (D2)

The stroboscopic data were obtained from the quantum
renewal equation (12) just like for the infinite line. The transi-
tion amplitudes were obtained numerically from the matrix
form of the Hamiltonian. Having numerical values for ϕn,

the non-normalized moments were obtained via 〈T m〉ϕPϕ

det ≈
τm

∑N
n=1 nm|ϕn|2. Here N was chosen such that the last sum-

mand is small compared to the sum.

3. Random Hamiltonian

A slightly different approach was chosen for the random
Hamiltonian ĤR. Here a complete symbolic computation of
the resolvents was not possible, due to the large dimension
of ĤR. Instead, ĤR was numerically diagonalized. Then it was
renormalized via

ĤR → 4γ

Emax − Emin

[
ĤR − Emax + Emin

2
132

]
, (D3)

so that its eigenvalues lay in [−2γ , 2γ ].
The eigensystem contained all energy levels El and was

also used to find the overlaps pl and ql . Having the overlaps
and the energy levels, we computed the resolvents u� (s)
[v� (s)] semisymbolically in Mathematica. This allowed us to
find the poles sl and from them �(t ) as well as all moments.

The stroboscopic PDF and the stroboscopic moments were
obtained from the renewal equation. To achieve this, the
transition and return amplitudes were computed from

〈ψd|Û (nτ )|ψin〉 =
∑

l

plql e
−in(τEl /h̄), (D4)

and similarly for 〈ψd|Û (nτ )|ψd〉. All required quantities were
given by the eigensystem of ĤR. The non-normalized mo-
ments were obtained as described in the preceding section
with N = 10 000.

However, especially for small τ , convergence was an issue.
The convergence rate of the sum

∑N
n=1 f (n)|ϕn|2 is given by

the largest modulus of the poles max |zl |. This in turn is con-
trolled by the magnitude of the overlaps pl and the distance
between adjacent energy levels �El = |El+1 − El |. Since we
did not want to choose a much larger N , we picked a realiza-
tion of ĤR for Fig. 3 such that N∗ := max(min pl , min �E2

l )
was smaller than 1000. We estimated that roughly 20% of
all matrices from the Gaussian unitary ensembles fall in
this class. The results are qualitatively the same for every
matrix of the ensemble. For matrices with a large N∗ (and
summation with a fixed N) there will be a more severe dip in
the stroboscopic data for small τ . For these one would need to
increase N and wait much longer to obtain satisfying graphs.
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