
PHYSICAL REVIEW A 102, 012212 (2020)

Non-Hermitian scattering on a tight-binding lattice

Phillip C. Burke ,1 Jan Wiersig ,2 and Masudul Haque 1,3

1Department of Theoretical Physics, Maynooth University, Maynooth, Kildare, Ireland
2Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany

3Max-Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany

(Received 4 November 2019; revised 5 June 2020; accepted 11 June 2020; published 10 July 2020)

We analyze the scattering dynamics and spectrum of a quantum particle on a tight-binding lattice subject to
a non-Hermitian (purely imaginary) local potential. The reflection, transmission, and absorption coefficients are
studied as a function of the strength of this absorbing potential. The system is found to have an exceptional
point at a certain strength of the potential. Unusually, all (or nearly all) of the spectrum pairs up into mutually
coalescing eigenstate pairs at this exceptional point. At large potential strengths, the absorption coefficient
decreases and the effect of the imaginary potential is similar to that of a real potential. We quantify this similarity
by utilizing properties of a localized eigenstate.
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I. INTRODUCTION

In recent years there has been a surge of interest in quantum
systems that are described by non-Hermitian Hamiltonians.
Although Hermiticity is regarded as a postulate of standard
quantum mechanics, non-Hermitian Hamiltonians are useful
as effective descriptions of systems where loss or gain plays
an important role, such as open quantum systems [1] and
optical systems described by wave equations formally anal-
ogous to a Schrödinger equation [2–4]. By now, a number
of experimental platforms for the study of non-Hermitian
quantum mechanics are available. These include lasers or
optical resonators [5–8], coupled optical waveguides [9–13],
microwave resonators [14–17] and arrays thereof [18], optical
microcavities [2,19,20], optomechanical systems [21], pho-
tonic crystals [22,23], acoustics [24–27] atom-cavity compos-
ites [28], exciton-polariton systems in semiconductor micro-
cavities [29,30], and various other arrangements [31–36].

Non-Hermitian Hamiltonians lead to various phenomena
not present in Hermitian systems. In general, the eigenvalues
of non-Hermitian Hamiltonians are complex. The left and
right eigenstates of a non-Hermitian Hamiltonian are gen-
erally not equal—we confine our discussion to right eigen-
states. The eigenstates are in general not mutually orthogo-
nal. This nonorthogonality becomes extreme at points in the
parameter space referred to as exceptional points [37–41].
At an exceptional point, the eigenvalues appear to become
degenerate. However, it is not a genuine degeneracy as the
corresponding eigenvectors coalesce as well. This results in
our eigenstates no longer providing a basis spanning the
entire Hilbert space. The Hamiltonian matrix is therefore
nondiagonalizable and is a defective matrix [42,43] at these
exceptional points. The surviving eigenstate at an exceptional
point is always chiral [44]; this chirality has been observed
experimentally [7,8,16,30,45]. Other phenomena associated
with exceptional points include loss-induced transparency [9],
unidirectional transmission [26,32,33], lasers with nonmono-
tonic pump dependence [5], enhanced sensing [46–48], etc.

Exceptional points are also associated with the real-to-
complex spectral transition for parity-time (PT ) symmetric
Hamiltonians [41].

In this work, we are concerned with the non-Hermitian
physics of a quantum particle on a tight-binding lattice.
Previous studies of non-Hermitian effects for a lattice par-
ticle include Anderson localization [49–52] and localization
in quasiperiodic potentials [53,54], invisibility (reflectionless
scattering) due to non-Hermitian hopping [55] or oscillat-
ing imaginary scatterer [56], flat-band physics [57], Bloch
oscillations [58], PT symmetry obtained by combining an
absorbing potential on one site with an emitting potential
on another [59–65], etc. In addition, non-Hermitian tight-
binding lattices form the basis of the study of non-Hermitian
topological many-body systems, a topic of rapidly growing in-
terest [66–68]. A few studies have also addressed interacting
many-body systems in non-Hermitian lattice systems [69,70].

We will consider an imaginary potential on one site of the
lattice, serving as an absorbing scattering potential. This can
be regarded as a lattice analog of a δ-function scattering poten-
tial in the continuum which is purely imaginary. An imaginary
scattering potential is linked to measurement [71–73], and is
thus related to quantum first-passage time problems and the
quantum Zeno effect [74–81]. In analogy to the quantum Zeno
effect, it is expected that an imaginary potential will have sup-
pressed absorption when the strength of the potential is large.
This suggests that the absorption might be nonmonotonic as
a function of the strength of the dissipative potential. In this
work, we explicitly show nonmonotonic dependence of the
amount of absorption on the potential strength, in the context
of a simple lattice model. The Hamiltonian is

H = −J
L−1∑
j=1

(| j 〉〈 j + 1| + | j + 1 〉〈 j|) − iγ |q 〉〈q|, (1)

with 1 � q � L. Here γ is a positive constant, so that the
imaginary potential is absorbing. The labels for the bra’s
and ket’s here are site labels: The particle lives on an L-site
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Impurity site

FIG. 1. The impurity is placed at one of the central sites of the
lattice, as shown here for L = 6. In this case, it could equivalently
be placed on the fourth instead of the third site. For odd L, there is a
definite central site.

chain with open boundary conditions. The hopping strength
will henceforth be set to J = 1, i.e., energies and times are
measured in units of J and 1/J , respectively, and are therefore
presented without units. Also, the spacing between sites is set
to unity, so that lengths and wave numbers are dimensionless
as well.

The site q is the location of the dissipative impurity. Since
we want to study reflection and transmission, it is convenient
to place the particle at the center of the lattice, at either site
� L

2 � or � L
2 � + 1 (Fig. 1).

We present a study of the dynamics and eigenspectrum
of the system (1). By scattering wave packets numerically
off the dissipative impurity, we show how the reflection,
transmission, and absorption fractions depend on the strength
γ of the impurity. These results are compared with the con-
tinuum problem, which is a variant of the standard textbook
problem of quantum scattering off a Hermitian delta-function
potential. In both cases the absorption coefficient is found to
be a nonmonotonic function of γ , having a maximum at a
point that depends on the momentum of the incident particle
or wave packet. In addition, we present the spectrum of the
Hamiltonian, which shows an unusual exceptional point at
γ = 2 at which all (or nearly all, depending on L) of the eigen-
values pair up. The absorption coefficient is nonmonotonic
and has a maximum near, but not necessary at, the exceptional
point. At large γ , the absorption is vanishingly small, and the
system behaves as if the impurity were a real potential V .
In particular the system has a (anti-)bound eigenstate, which
allows us to draw a correspondence between values of γ and
V . The localized eigenstate is purely a lattice phenomenon
with no analog in the continuum.

In Sec. II we present the scattering results and comparisons
with the continuum case. Section III discusses the spectrum
and exceptional points. In Sec. IV we investigate the system
at large γ values, and draw a comparison between real and
imaginary potentials via their bound states. In Sec. V we
present some discussion and concluding remarks. The Ap-
pendixes present some further details on the eigenvalues and
eigenstates.

II. SCATTERING AT AN ABSORBING
POTENTIAL—REFLECTION, TRANSMISSION,

ABSORPTION

In this section, we examine the scattering of a quantum
particle by the dissipative impurity. To make a comparison
with the corresponding continuum system, we first work out
the results for the continuum system in Sec. II A, before
turning back to our lattice problem in Sec. II B.

Continuum
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FIG. 2. Continuum scattering. The reflection, transmission, and
absorption probabilities (R, T , A), plotted against the strength γ of
the dissipative delta potential. Here k = π/2, h̄ = 1, and m = 0.5.

A. Continuum scattering by imaginary delta potential

Complex scattering potentials in the continuum have been
considered generally in the literature [72,73,82]. We are
specifically interested in the case of an imaginary potential
of delta-function shape, which is the analog of the single-site
potential on a lattice.

In the continuum, the wave function ψ (x) satisfies the
time-independent Schrödinger equation:

− h̄2

2m

d2ψ (x)

dx2
+ V (x)ψ (x) = Eψ (x). (2)

(We will eventually set h̄ = 1 but retain it for now.) We take
V (x) to be a negative imaginary delta potential: V (x) =
−iγ δ(x).

Solving the scattering problem is a variation of the stan-
dard textbook scattering problem with a real delta-function
potential [83]. We take the wave function to be of the form
eikx + re−ikx on the left half-line (x < 0) and of the form teikx

on the right half-line (x > 0), with wave number k > 0. We
then use the appropriate (dis)continuity conditions at x = 0
to solve for the reflection and transmission amplitudes (r, t).
This yields

r = −1

1 + kh̄2

mγ

, t = 1

1 + mγ

kh̄2

. (3)

Using (3) we can obtain the reflection, transmission, and now
also absorption probability as functions of the parameter γ :

R = |r|2, T = |t |2, A = 1 − R − T . (4)

We see in Fig. 2 that R = T for a particular value of γ , and
that A is maximized by some value of γ . Using Eqs. (3) and
(4), we find that these points are both equal to

γ � = kh̄2

m
. (5)

These expressions depend on h̄ and the mass m. We set
h̄ = 1. To facilitate comparison with the lattice situation, we
choose m = 1/2 so that the quadratic dispersion (h̄2k2/2m)
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on the continuum matches the low-energy part of the cosine
dispersion (−2 cos k) on the lattice without impurity. Thus

r = −γ

γ + 2k
, t = 2k

γ + 2k
, γ � = 2k. (6)

B. Lattice

We now turn to the lattice problem. Through numerical
time evolution we will calculate the reflection and transmis-
sion fractions, R and T , and obtain the absorption fraction
using A = 1 − R − T .

We initialize our particle as a (discrete version of) a Gaus-
sian wave packet, localized around the site j0 and carrying
lattice momentum k:

|ψ (0) 〉 =
∑

j

ψ j (0)| j 〉 = N−1
∑

j

e
−( j− j0 )2

2σ2 eik j | j 〉, (7)

where N is a normalization constant. A positive k ensures
that the wave packet will propagate rightwards initially. The
position j0 is chosen such that the wave packet starts on
the left side of the lattice, and does not initially overlap
significantly with either the lattice edges or the impurity. The
width σ is chosen to be significantly larger than 1, but signif-
icantly smaller than L/2. The wave packet is evolved using
the Hamiltonian: |ψ (t )〉 = e−iHt |ψ (0)〉. Expressing the wave
function at time t in the site basis, |ψ (t )〉 = ∑

j ψ j (t )| j〉, the
coefficients ψ j (t ) provide the occupancies |ψ j (t )|2.

Figure 3 shows the evolution of a wave packet for three
different values of γ , initially localized near the left end of a
500-site lattice. After the particle is incident on the impurity,
we see different portions being reflected and transmitted.
Choosing a time after the collision has occurred, such that the
reflected and transmitted packets are well-separated from the
impurity, one can define the coefficients based on the wave-
function coefficients at this time. The reflected (transmitted)
fraction is the weight to the left (right) of the impurity.
Denoting the impurity site as q,

R =
q∑

j=1

|ψ j |2, T =
L∑

j=q+1

|ψ j |2, A = 1 − R − T . (8)

Figure 4 shows the results of calculating the coefficients for
a lattice with 500 sites, with the impurity at site 250, for a
range of values for γ . The coefficients are extracted from
time evolution with a σ = 40 wave packet. The observation of
weights on the left and right parts of the lattice is performed
at a time well after the wave packet has scattered off the
impurity, but well before either the reflected or the transmitted
wave packet reaches one of the boundaries. For Fig. 4, this
time was t = 160. For other values of k (Fig. 5), the times are
different as the speed of the wave packet depends on k. We
have checked that the dependence on σ is negligible provided
1 � σ � L/2. For both Fig. 3 and Fig. 4, the wave-packet
momentum is k = π/2, for which the dispersion of the wave
packet is least severe.

C. Comparison between continuum and lattice

Comparing Figs. 2 and 4, we see that our lattice results are
very similar to the continuum results, except for a rescaling of
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FIG. 3. Wave-packet evolution illustrated by a density plot of site
occupancies |ψ j |2. Here L = 500, σ = 40, k = π/2. (a) γ = 0.5;
shows less of the wave packet being reflected than transmitted.
(b) γ = 2; shows roughly similar amounts of the wave packet being
reflected and transmitted. (c) γ = 10; shows less of the wave packet
being transmitted than reflected.

γ . In the continuum case, we have found that the main feature
[maximum of A(γ ), or crossing point of R(γ ) and T (γ )]
occurs at a value of γ that is proportional to the momentum,
γ � = 2k. One therefore expects that in the lattice case γ �

should also depend on the momentum of the scattered particle.
More specifically, since the single-particle dispersion changes

Lattice
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FIG. 4. Reflection, transmission, and absorption probabilities
calculated using wave-packet evolution on the lattice. (R, T, A plot-
ted against γ .) Here L = 500, σ = 40, k = π/2.
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FIG. 5. Comparing results of the value of γ for which absorption
is maximized in the continuum (γ � = 2k) and on the lattice (obtained
from numerical wave-packet evolution). Lattice results are obtained
with L = 250 and σ = 15. For comparison, the function 2 sin k is
plotted (dashed curve).

as k2 → −2 cos k in going from the continuum to lattice, one
expects from the dependence of γ � = 2k in the continuum that
the dependence might be γ � = 2 sin k on the lattice.

We can extract γ � for various momenta by running our nu-
merical time evolution of wave-packet scattering for various
momenta and identifying the maximum of A(γ ). The results
are shown in Fig. 5, comparing the continuum and lattice
case. Indeed the momentum dependence of the γ � appears
to be ≈2 sin k on the lattice, with a maximum of γ � ≈ 2 for
k = π/2.

III. SPECTRUM AND EXCEPTIONAL POINTS

It turns out that the value γ ≈ 2 also plays a special role in
the spectrum of our non-Hermitian lattice Hamiltonian.

Previously we presented data for systems with 500 and
250 sites. For clarity, we now show the spectrum of smaller
systems. Figure 6 presents the eigenvalues for a system with
14 sites as a function of γ . As the eigenvalues are complex,
the real and imaginary components are shown separately. We
also show the 14 eigenvalues in the complex plane, for three
different values of γ , in Fig. 7. For any value of γ , the real part
of the eigenvalues are generally spaced between −2 and +2,
as one expects from a tight-binding one-dimensional lattice.
The most visibly striking feature in the spectrum is that, at
γ = 2, the eigenvalues coalesce in pairs. (The coalescence
is visible in the real parts—the imaginary parts are already
paired up even at γ < 2.)

This is not a higher-order exceptional point [84–86], but
rather an exceptional point where all eigenvalues pair up as
second-order exceptional points, not just two eigenvalues. Of
course, observing the eigenvalues is not sufficient to say that
this is an exceptional point—the eigenfunctions also need to
coalesce. Indeed, considering the pair of eigenstates whose
eigenvalues become equal at γ = 2, we find numerically that
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0 1 2 3 4 5 6
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FIG. 6. Energy spectrum of the Hamiltonian (1), for L = 14, as a
function of the potential strength γ . Real and imaginary parts of the
eigenvalues are plotted separately.

one of the eigenstates becomes equal to −i times the other
eigenstate.

In Appendix A we show analytically that the eigenvalues
always group into degenerate pairs at γ = 2, for an even-L
lattice with the impurity at one of the central sites. One can
also show that the corresponding eigenstates for every such
pair are linearly dependent.

Unlike exceptional points which separate a PT -symmetric
phase from a PT -symmetry-broken phase, the eigenvalues
of our system are complex on both sides of the exceptional
point. The imaginary parts on average have larger mag-
nitude near the exceptional point, and generally decrease
as one moves away from γ = 2, with one striking exception.
The exception corresponds to one of the two eigenvalues

γ = 1.5 γ = 2 γ = 2.05

-2 0 2

0.0

-0.25

-0.5

Re(E)

Im
(E

)

-2 0 2

Re(E)

-2 0 2

Re(E)

FIG. 7. Eigenvalues of the Hamiltonian (1), for L = 14, for three
values of γ , below, at, and above the exceptional point. In each case,
the L eigenvalues are plotted on the complex plane. For γ = 2, only
L/2 points are visible because the eigenvalues are paired.

012212-4



NON-HERMITIAN SCATTERING ON A TIGHT-BINDING … PHYSICAL REVIEW A 102, 012212 (2020)

0 10 20 30 40
10−21

10−16

10−11

10−6

10−1

Site j

|〈j
|φ
〉|2

γ = 2.5
|V | = 2.5

FIG. 8. Site occupancies of the localized eigenstate, for both a
real (V ) and an imaginary (−iγ ) potential of magnitude 2.5, and L =
42 sites. The scale is log-linear.

whose real part becomes zero. The imaginary part becomes
large and negative as γ increases, and eventually becomes
≈ −γ . This eigenvalue corresponds to a bound state localized
at the dissipative impurity, which we will analyze in the next
section.

The structure of the spectrum discussed here for L = 14
is true for L mod 4 = 2. For other values of L, there are
variations, which we detail in Appendix C. In particular, for
odd values of L, there is only a single pair of eigenvalues
coalescing (L mod 4 = 3), or none at all (L mod 4 = 1).
However, even with an odd number of sites the localized
eigenstate still exists for large values of γ . In Appendix D
we also discuss the dependence of the location of the impurity
site.

IV. LARGE γ

At large γ the absorption decreases, suggesting that the
effect of the imaginary potential is similar to that of a real
potential. In this section we draw a comparison between the
effects of real and imaginary on-site potentials.

In Sec. III we saw there was a single eigenvalue, with a
corresponding eigenstate, which had a purely imaginary neg-
ative component. At large γ the eigenenergy approaches −iγ ,
for which a plausible explanation would be that the eigenstate
is localized at or around the impurity site q and hence its
energy is primarily determined by the −iγ |q〉〈q| term in
the Hamiltonian (1). Indeed the corresponding eigenstate is
numerically found to be exponentially localized around the
impurity site (Fig. 8).

For comparison, we also consider the effect of a real
potential, i.e., the Hermitian Hamiltonian,

H = −J
L−1∑
j=1

(| j 〉〈 j + 1| + | j + 1 〉〈 j|) + V |q 〉〈q|. (9)

Here V is a real parameter which could be either positive or
negative. It is known that this Hamiltonian supports a bound
state for negative V and an antibound state for positive V . (The
spectrum, which is real, contains one state which separates

0 2 4 6 8 10

0

5

10

γ

|V
|

γ = |V |

FIG. 9. A correspondence between the parameters of the real
and imaginary potentials, using the localization length of the bound
states, for L = 42.

from the band and at large |V | approaches V .) This eigenstate
is exponentially localized around site q.

In Fig. 8 we show the exponential localization of the
eigenstate both for the real potential (|V | = 2.5) and for the
dissipative impurity γ = 2.5. At these values, the eigenstate
is more strongly localized (has smaller localization length)
for the case of the real potential [Eq. (9)]. Approximating the
occupancies at site j by the form ∝ e( j−q)/α , where q is the
impurity position, one can extract the localization length α.
By extracting α for the localized eigenstate for various values
of γ in the case of our non-Hermitian system (1), and for
various values of V in the case of the system (9), we can assign
to each γ > 2 a value of V , for which the same localization
length is obtained. Results of this calculation are shown in
Fig. 9, for a system with L = 42 sites. This quantifies the
idea that, at large γ , an absorbing impurity behaves like a
real-valued impurity.

For values of γ < 2, there is no bound state. For γ slightly
larger than 2, the localization length corresponds to the bound
state of a very weak real potential (very small |V |). As γ

grows, the corresponding |V | increases and asymptotically
approaches |V | = γ . In other words, the effect of an absorbing
impurity of large strength γ 
 2 is similar to that of a real-
valued impurity of the same strength.

One can ask whether in the continuum case there is a
similar correspondence—in that case also the absorption is
low for the non-Hermitian model at large γ . It is well-known
that the negative real δ potential has a single bound (local-
ized) state. However, neither the positive real potential, nor
the imaginary potential, have bound states. [If one assumes
that there is a bound state for some potential, λδ(x), one
finds that λ must have a real component, which is nega-
tive.] Hence no quantitative correspondence can be drawn
in terms of the localization length, as we have done for
the lattice.

The existence of a strongly localized eigenstate provides
a simple “spectral” interpretation of the suppression of ab-
sorption at large γ that we have presented in Sec. II B. For
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large γ , the localized eigenstate has near-zero overlap with
the incident wave packet, because in the initial state the
wave packet is far from the impurity site. Thus, the wave
packet is “shielded” from the impurity, because its dynamics
is confined to the subspace of all the other eigenstates which
have near-zero weight at the impurity site. Therefore the wave
packet undergoes almost no absorption. Curiously, for the
suppression of absorption in the continuum case (Sec. II A),
the same interpretation cannot be used, as there is no localized
eigenstate in that case.

In Appendix B we show site occupancy profiles for a
sample of some of the eigenstates. Other than the special
(localized) eigenstate, the other eigenstates resemble those for
a real potential—the eigenstates at the bottom and top of the
band have few nodes, while those near the center of the band
have many nodes.

V. DISCUSSION AND CONTEXT

We have studied the scattering dynamics and the spectrum
of a tight-binding single-particle system with a non-Hermitian
absorbing impurity at one site, focusing on the case where the
impurity is near the center of the lattice.

Setups loosely similar to ours have been explored in a
few other recent works. In Ref. [56], scattering off a lo-
calized lattice impurity is studied, in the case where the
strength and phase of the impurity are oscillating. Scatter-
ing was studied using Gaussian wave packets, as in the
present work. For certain parameters, the oscillatory non-
Hermitian impurity was reported to allow perfect transmis-
sion (“Floquet invisibility”). In Ref. [87], the lattice im-
purity was placed at the lattice edge and the role of the
nonorthogonality of the eigenstates on the nonunitary time
evolution was explored. In addition, some related issues
have been discussed in the context of PT -symmetric lattice
systems formed by having imaginary potentials on multiple
sites [59–65]. The spectrum of lattices with two impurities
has been studied in Refs. [60,65]. Reference [59] reported
an eigenstate which is localized on the two impurity sites—
this may be considered a PT -symmetric version of the lo-
calized eigenstate we have studied. References [60,61] have
made comparisons between the non-Hermitian system and
corresponding Hermitian system, as we have done. After the
appearance of our preprint, our single-particle non-Hermitian
Hamiltonian has appeared in Ref. [88] as an effective
Hamiltonian.

Experimentally, lattice systems with localized losses have
been studied in several contexts. In the setup of Refs. [89,90],
a Bose-Einstein condensate is realized in a one-dimensional
optical lattice, with engineered losses on a single site acting as
a local dissipative potential. Connecting single-particle results
such as ours to many-boson physics in such a setup remains
an interesting challenge for future work.

A realization more similar to the single-particle tight-
binding system considered in this work is that with pho-
tonic lattice systems, such as those in Refs. [91,92]. In this
setup, photonic lattices are realized using femtosecond laser
writing to inscribe waveguide arrays with appropriate index
profiles in fused silica. The physics of photons in such an
architecture can be well described by a tight-binding model,

with an additional spatial direction taking the role of time.
This setup, or its variants, has been used to demonstrate a
number of paradigmatic tight-binding phenomena, including
Bloch oscillations [93] and Anderson localization [94,95].
Both one-dimensional and two-dimensional lattices have been
realized, and lossy sites and other types of non-Hermiticity
have been explored [12,92,96]. It is possible to create local-
ized excitations (wave packets) and observe their propagation
[95,97]. Thus, studies of scattering off lossy sites should be
possible in such a setup.

Another possible experimental setting for observing scat-
tering off non-Hermitian potentials in a tight-binding lattice
might be microwave realizations using coupled dielectric
resonators, such as that discussed in [18]. This setup is well
approximated by a nearest-neighbor tight-binding Hamilto-
nian. The resonance frequency of an isolated resonator, and
the coupling strength between two resonators (due to the
evanescent electromagnetic field), correspond to the on-site
energy and to the hopping term, respectively. A controllable
on-site loss is created by placing an absorbing material on a
particular resonator.

In the present work, by explicit time evolution starting from
initial states which are momentum-carrying wave packets, we
found the reflection, transmission, and absorption coefficients
(R, T , A) as a function of the impurity strength γ and of
the incident momentum k. The absorption was shown to first
increase and then decrease as the strength γ is increased. It
can be argued that this nonmonotonic behavior is related to
the quantum Zeno effect. The experimental nonmonotonic
behavior of Ref. [34] can be interpreted in the same light.
We have demonstrated and analyzed the effect in a sim-
ple lattice setting. We have also compared with the scatter-
ing of a single particle in a continuum from an absorptive
δ potential.

We have also presented the spectrum of the non-Hermitian
system. The system we focus on—even number of sites,
impurity at one of the central sites—has an unusual ex-
ceptional point structure. At the same value of γ , all the
eigenstates of the systems coalesce in pairs. This is not a
higher order of exceptional point [84–86], rather, it is a
collection of many second-order coalescences at the same
point in parameter space. At larger γ , the spectrum contains
one localized eigenstate. This is another way in which a
strong absorptive impurity acts like a real-valued impurity
potential. This feature is particular to the lattice as there are
no bound states in the corresponding continuum problem. The
eigenvalue corresponding to the localized eigenstate has a
purely imaginary value.

Our work opens up several avenues of research. We have
explored scattering dynamics. A detailed study of other types
of dynamics remains to be done, not only for tight-binding
lattices, but also for continuum particles subjected to local-
ized absorbers. Extending such dynamical considerations to
nonlinear cases [76,90,98] also deserves further exploration.
The spectral part of the present study provides motivation for
a more thorough investigation of the spectrum of relatively
simple non-Hermitian models. The structure we have found—
many pairs coalescing at the same point—suggests that non-
Hermitian spectra may hold more surprises not yet known in
the literature.
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APPENDIX A: ANALYTICAL EXPRESSIONS
FOR SPECTRUM

In the main text, we have shown numerically that the
eigenvalues of our system coalesce in pairs at γ = 2, for even
L, when the impurity site q is one of the central sites, i.e., when
q = L/2 or q = (L/2) + 1. In this Appendix, we analyze
the eigenvalues analytically. We express the characteristic
polynomial (whose roots are the eigenvalues) in a form which
allows us to predict, first, that all the eigenvalues pair up
when q is one of the central sites, and second, that this is
a multiple exceptional point because each eigenstate pair is
linearly dependent. The characteristic polynomial is treated
in Sec. A 1 and the case of q = L/2 (or q = L/2 + 1) is
considered in Sec. A 2.

1. General location, q

We want to find the eigenvalues of the L × L matrix,

[Hq] jk = −δ j,k+1 − δ j+1,k − iγ δ jqδ jk . (A1)

Here 1 � q � L. The characteristic polynomial of this matrix
up to a minus sign is the determinant of the tridiagonal matrix,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . . . . . . . . . . . . .

1 λ 1 . . . . . . . . . . . . . . .
...

...
. . .

. . .
. . . . . . . . . . . .

...
...

... 1 λ + iγ 1 . . . . . .
...

...
...

...
. . .

. . .
. . . . . .

...
...

...
...

... 1 λ 1
...

...
...

...
...

... 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Now the determinants of tridiagonal matrices satisfy a
recurrence relation. If Pn is the determinant of the n × n matrix
with elements,

Ai j = biδi, j+1 + c jδi+1, j + aiδi j, (A3)

then

Pn = anPn−1 − cn−1bn−1Pn−2. (A4)

This recurrence relation can be verified by determinant expan-
sion and appears in numerous sources, e.g., is mentioned in
Sec. 8.4 of Ref. [42]. The characteristic polynomial of H (A1),
i.e., the determinant of the matrix (A2), therefore satisfies

Pn = λPn−1 − Pn−2, if n �= q,

Pq = (λ + iγ )Pq−1 − Pq−2, if q > 1,

P0 = 1,

P1 = λ + iγ δq1. (A5)

A standard method of solving such linear recurrence relations
is to use the Z transform. Ignoring the second line in Eq. (A5),

i.e., ignoring the impurity, we can get an expression for Pn in
terms of P0, P1, and λ. Defining F (z) = Z{Pn} and using a shift
theorem, we get

z2F (z) − z2P0 − zP1 = λ(zF (z) − zP0) − F (z). (A6)

After solving for F (z) and decomposing into partial fractions,
one can take the inverse Z transform, yielding

Pn = P0√
λ2 − 4

[(x+)n+1 − (x−)n+1]

+ P1 − λP0√
λ2 − 4

[(x+)n − (x−)n], (A7)

where x±(λ) = 1
2 [λ ± √

λ2 − 4].
Defining

Kn(λ) :=
⎧⎨
⎩

1√
λ2 − 4

[
(x+)n+1 − (x−)n+1

]
, for n � 0

0 for n < 0
(A8)

we can rewrite Eq. (A7) as

Pn = P0Kn + (P1 − λP0)Kn−1. (A9)

Since we have derived this ignoring the impurity, Eqs. (A7)
and (A9) are valid either for q = 1, in which case P1 = λ +
iγ , or for values of n less than q.

For q = 1, we have P0 = 1 and P1 = λ + iγ so that Pn =
Kn + iγ Kn−1, and therefore,

PL = KL + iγ KL−1 for q = 1. (A10)

We now turn to q > 1. For n < q, Eqs. (A7) and (A9) are
valid directly with P0 = 1 and P1 = λ, i.e., with P1 − λP0 = 0,
so that

Pn = Kn for q > 1 and n < q. (A11)

We have expressions for Pn up to n = q − 1, but we want
PL and L � q. To go beyond q, we define a new sequence
of functions Qn(λ), satisfying the same recurrence relation as
Pn (A5), except with new initial conditions: Q0 = Pq−1 and
Q1 = Pq = (λ + iγ )Pq−1 − Pq−2. Thus we need to solve

Qn = λQq−1 − Qq−2, Q0 = Kq−1,

Q1 = (λ + iγ )Kq−1 − Kq−2. (A12)

Now we have already solved the same recurrence relation
for Pn, using the Z transform. The solution is Qn = Q0Kn +
(Q1 − λQ0)Kn−1. Therefore,

Qn = Kq−1Kn + (iγ Kq−1 − Kq−2)Kn−1. (A13)

Noting that Qn(λ) = Pn+q−1(λ), the determinant of the full
matrix can be found as PL(λ) = QL−q+1(λ). Thus

PL(λ) = Kq−1KL−q+1 + (iγ Kq−1 − Kq−2)KL−q. (A14)

We now introduce a slight change of notation: We refer
to this polynomial as PL,q. In other words, the characteristic
polynomial of the Hamiltonian matrix of a lattice of size L
and having the impurity at position q will be called PL,q. Note
that Eq. (A14) reduces to Eq. (A10) for q = 1; thus

PL,q = Kq−1KL−q+1 + (iγ Kq−1 − Kq−2)KL−q (A15)

for all positions of the impurity, 1 � q � L.
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By binomial expanding (x±)n+1, one can show that

PL,q(−λ∗) = (−1)LPL,q(λ)∗. (A16)

This shows that the zeros of PL,q (eigenvalues of H) are sym-
metric by reflection through the imaginary axis in the complex
plane, since if λ = a + ib is a zero then −λ∗ = −a + ib is also
a zero. This symmetry is obvious from the spectra shown in
Fig. 7.

2. Impurity at center

We now turn to the case we have focused on in this paper:
when L is even and q = L/2 or q = L

2 + 1. In this case,

PL, L
2

= K L
2 −1K L

2 +1 + (iγ K L
2 −1 − K L

2 −2)K L
2

= K L
2 −1(λK L

2
− K L

2 −1) + (iγ K L
2 −1 − K L

2 −2)K L
2

= −(K L
2 −1)2 + K L

2
(λK L

2 −1 − K L
2 −2) + iγ K L

2 −1K L
2

= (K L
2
)2 − (K L

2 −1)2 + iγ K L
2 −1K L

2
.

Now precisely when γ = 2, this can be written as

PL,L/2 = (K L
2
+ iK L

2 −1)2. (A17)

This means that every root of the polynomial is a zero of
order at least 2, i.e., the eigenspectrum is doubly degenerate at
γ = 2. We have thus analytically derived the most prominent
feature of the spectrum presented in the main text.

We now argue that, for a tridiagonal system such has
ours, a coalescence of eigenvalues implies a coalescence
of eigenstates, i.e., that the eigenstates corresponding to
the equal eigenvalues are always linearly dependent. Con-
sider some eigenvalue λ and corresponding eigenvector X =
(x1, x1, . . . , xL )T . Due to the form of the matrix, all the
components xi can be written as a function of λ and the
terms on the diagonals, times the first component x1. If we
have any two eigenvectors with the same eigenvalue λ, the
functions in the eigenvectors are the same functions, and
hence the eigenvectors only differ in the choice of x1, i.e.,
they are linearly dependent. Thus, if there is a degeneracy at
some point, the eigenvectors are linearly dependent, and hence
we have an exceptional point.

APPENDIX B: EIGENSTATES

We show some eigenstates of the system, through their
occupancy profiles.

Since the eigenvalues are complex, there is no particularly
natural way to order them. Here we order the eigenstates
based on their real component, and then by their imaginary
component, from smallest to largest, i.e., 1 − 2i comes before
1 + 2i. Figure 10 illustrates a selection of the eigenstates of
a system with L = 42 sites. They are labeled as “Ei,” i.e.,
the eigenstate presented is the state corresponding to the ith

eigenvalue, when ordered in the described manner.
Note that the eigenvectors coefficients 〈 j|φ〉 are themselves

complex; we only show the occupancies |〈 j|φ〉|2 and not
the real and imaginary parts separately. (Here |φ〉 is the
eigenvector in question and j is the site index.)

×10−2

0 10 20 30 40
0

2

4

6

8

Site j

|〈j
|φ
〉|2

(a) E2

0 10 20 30 40
0

0.2

0.4

0.6

Site j

|〈j
|φ
〉|2

(b) E21

×10−2
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2
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6

Site j

|〈j
|φ
〉|2

(c) E29

×10−2

0 10 20 30 40
0

2

4
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8
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|〈j
|φ
〉|2

(d) E42

FIG. 10. Occupancy profiles of a sample of the eigenstates, for a
L = 42 system and γ = 2.5. The second shown eigenstate from the
top is the localized eigenstate.

APPENDIX C: SIZE DEPENDENCE OF THE SPECTRUM

In Fig. 6 we saw coalescence of every pair of eigenvalues
at γ = 2. This was for a system with L = 14 sites, and the
impurity at site q = 7. We now outline the L dependence of
the spectrum. The pattern is different for odd L. For even L,

012212-8



NON-HERMITIAN SCATTERING ON A TIGHT-BINDING … PHYSICAL REVIEW A 102, 012212 (2020)

-2.0

0.0

2.0

R
e(

E
)

0 1 2 3 4 5 6

-0.4

-0.2

0.0

γ

Im
(E

)

FIG. 11. Energy spectrum of a system with L = 30. As this value
is in the L = 4n + 2 sequence, the features are the same as those
described in the main text for L = 14.

there is a difference between L values satisfying L = 4n + 2
and those satisfying L = 4n, where n is a non-negative integer.

The case L = 14, presented in the main text, belongs to
the L = 4n + 2 sequence (6, 10, 14, 18, ...). In Fig. 11 we
show the case of L = 30, showing exactly the same pattern:
All eigenvalues pair up in a multiple exceptional point ex-
actly at γ = 2. There are an odd number of pairs, and the
eigenvalues with central real values have zero eigenvalue after
the coalescence, i.e., for γ > 2. One of these two eigenvalues
correspond to the localized eigenstate, and has imaginary part
growing with γ .

For even L values satisfying L = 4n, the situation is very
similar, with one additional structure. As proved in Ap-
pendix A for even L, at exactly γ = 2, all eigenvalues pair up;
this is true for both L = 4n + 2 and L = 4n. In addition, for
L = 4n, at a value slightly above γ = 2, the two eigenvalues
with real values nearest to zero coalesce in an additional
exceptional point, as seen in Fig. 12 for L = 8. It is at this
point, γ = γ1 > 2, that the localized state appears and the
imaginary part of the corresponding eigenvalue separates off
and starts to increase unboundedly in the negative direction.
With increasing L in the sequence L = 4n, the location of the
new exceptional point γ1 approaches 2.

We now turn to odd L, with the impurity placed on the
central site, q = (L + 1)/2. For L = 4n + 3, there is only
a single exceptional point. This appears to be a third-order
exceptional point, and appears at a value γ > 2. An example
is shown in Fig. 13, for L = 7. As the system size tends to
infinity, the location of the point tends to γ → 2. There is
always a single eigenvalue that has a zero real component—

-2.0

0.0

2.0

R
e(

E
)

0 1 2 3 4 5 6
-2.0

-1.0

0.0

γ

Im
(E

)
FIG. 12. Energy spectrum of a system with L = 8. For values

of L in the sequence L = 4n, there is an extra exceptional point
slightly above γ = 2. The localized eigenstate appears beyond this
new exceptional point.

the two other eigenvalues with real parts closest to zero merge
with this at the exceptional point.

Finally, for L = 4n + 1, there appear to be no excep-
tional points; nevertheless, at large γ the eigenvalues pair
up gradually. An example is shown in Fig. 14 for L = 9. A
single eigenvalue remains unpaired with zero real component.
Although this does not merge with any other eigenvalue,
around γ ≈ 2 the imaginary component of this eigenvalue
starts increasing unboundedly with γ , indicating that the
corresponding eigenstate becomes localized.

-2.0

0.0

2.0

R
e(

E
)

0 1 2 3 4 5 6
-2.0

-1.0

0.0

γ

Im
(E

)

FIG. 13. Energy spectrum for L = 7. The impurity is on the
central site q = 4.
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FIG. 14. Energy spectrum for L = 9. The impurity is on the
central site q = 5.

In summary, although there are differences in detail be-
tween the four cases, there is always a bound state at large

γ , and around γ = 2 there is always some reorganization of
the spectrum. With increasing L, the location of these features
converge toward γ = 2.

APPENDIX D: EFFECT OF IMPURITY LOCATION

In Appendix C, we illustrated the dependence on the
lattice size L, focusing on the case where the impurity
is located at the center of the lattice, q = L/2 or q =
(L + 1)/2. In this Appendix we briefly discuss the depen-
dence of the location q of the impurity, focusing on the
case L = 4n + 2.

When the impurity is not on one of the central sites, the
eigenvalues do not all coalesce as pairs at γ = 2. As the
impurity is moved from the edge site towards the center
(q = 1, q = 2,...) there is an exceptional point at a value of
γ which is less than 2 for odd q and larger than 2 for even
q. At this exceptional point, the two eigenvalues with real
parts closest to zero coalesce. As in the case of a centrally
located impurity, when γ is raised further beyond this value,
the real parts of these two eigenvalues are locked at zero,
and the imaginary part of one of this pair starts to increase
in magnitude. This indicates an eigenstate localized at the
impurity (e.g., for q = 1 this state is localized at the edge of
the lattice).
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[7] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H.
Yılmaz, J. Wiersig, S. Rotter, and L. Yang, Chiral modes and
directional lasing at exceptional points, Proc. Natl. Acad. Sci.
USA 113, 6845 (2016).

[8] P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M.
Litchinitser, and L. Feng, Orbital angular momentum micro-
laser, Science 353, 464 (2016).

[9] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Observation of PT -Symmetry Breaking in Complex Optical
Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[10] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation of
parity-time symmetry in optics, Nat. Phys. 6, 192 (2010).

[11] B. Alfassi, O. Peleg, N. Moiseyev, and M. Segev, Diverging
Rabi Oscillations in Subwavelength Photonic Lattices, Phys.
Rev. Lett. 106, 073901 (2011).

[12] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte,
M. S. Rudner, M. Segev, and A. Szameit, Observation of a
Topological Transition in the Bulk of a Non-Hermitian System,
Phys. Rev. Lett. 115, 040402 (2015).

[13] A. Cerjan, S. Huang, M. Wang, Kevin P. Chen, Y. Chong,
and M. C. Rechtsman, Experimental realization of a Weyl
exceptional ring, Nat. Photonics 13, 623 (2019).

[14] E. Persson, I. Rotter, H.-J. Stöckmann, and M. Barth, Obser-
vation of Resonance Trapping in an Open Microwave Cavity,
Phys. Rev. Lett. 85, 2478 (2000).

[15] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.
Heiss, H. Rehfeld, and A. Richter, Experimental Observation
of the Topological Structure of Exceptional Points, Phys. Rev.
Lett. 86, 787 (2001).

[16] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine,
W. D. Heiss, and A. Richter, Observation of a Chiral State in a
Microwave Cavity, Phys. Rev. Lett. 90, 034101 (2003).

[17] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik,
F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Dynamically encircling an exceptional point for asymmetric
mode switching, Nature (London) 537, 76 (2016).

[18] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus,
Selective enhancement of topologically induced interface states
in a dielectric resonator chain, Nat. Commun. 6, 6710 (2015).

012212-10

https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/s42005-019-0130-z
https://doi.org/10.1103/PhysRevLett.108.173901
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1126/science.aaf8533
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.106.073901
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1103/PhysRevLett.85.2478
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevLett.90.034101
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/ncomms7710


NON-HERMITIAN SCATTERING ON A TIGHT-BINDING … PHYSICAL REVIEW A 102, 012212 (2020)

[19] W. Chen, S. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature (London) 548, 192 (2017).

[20] Chang-Hwan Yi, Julius Kullig, and Jan Wiersig, Pair of Excep-
tional Points in a Microdisk Cavity Under an Extremely Weak
Deformation, Phys. Rev. Lett. 120, 093902 (2018).

[21] H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological
energy transfer in an optomechanical system with exceptional
points, Nature (London) 537, 80 (2016).

[22] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-
L. Chua, J. D. Joannopoulos, and M. Soljacic, Spawning rings
of exceptional points out of Dirac cones, Nature (London) 525,
354 (2015).

[23] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D.
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