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Equilibrium stationary coherence in the multilevel spin-boson model
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Interaction between a quantum system and its environment can induce stationary coherences—off-diagonal
elements in the reduced system density matrix in the energy eigenstate basis—even at equilibrium. This work
investigates the “quantumness” of such phenomena by examining the ability of classical and semiclassical
models to describe equilibrium stationary coherence in the multilevel spin boson model, a common model
for light-harvesting systems. A well justified classical harmonic-oscillator model is found to fail to capture
equilibrium coherence. This failure is attributed to the effective weakness of classical system-bath interactions
due to the absence of a discrete system energy spectrum and, consequently, of quantized shifts in oscillator
coordinates. Semiclassical coherences also vanish for a dimeric model with parameters typical of biological
light harvesting, i.e., where both system sites couple to the bath with the same reorganization energy. In
contrast, equilibrium coherence persists in a fully quantum description of the same system, suggesting a uniquely
quantum-mechanical origin for equilibrium stationary coherence in, e.g., photosynthetic systems. Finally, as a
computational tool, a perturbative expansion is introduced that, at third order in h̄, gives qualitatively correct
behavior at ambient temperatures for all configurations examined.
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I. INTRODUCTION

System-bath interactions are typically viewed as delete-
rious to quantum coherence within the system. Yet while
this view is often correct in regard to dynamic coherence—a
transient phenomenon typically induced by interaction with
an ultrafast perturbation—it misses the fact that, under sta-
tionary conditions (either at equilibrium or in nonequilibrium
steady states), interactions with the environment can actually
induce coherence in open quantum systems [1–13]. Such
stationary coherences—i.e., nonzero off-diagonal elements in
the reduced system density matrix in the eigenbasis of the
system Hamiltonian—often persist even under physiological
conditions and can have a significant effect on biological
processes such as visual phototransduction and photosynthetic
light harvesting [1,2,7,8,12,14]. Environment-induced station-
ary coherence has attracted particular attention recently as a
potential resource for the enhanced performance of quantum
devices [3,4,15–17].

The simplest manifestation of stationary coherence occurs
in equilibrium systems, where coupling between a quantum
system and its thermal environment can induce deviations
from canonical Boltzmann statistics, including off-diagonal
elements. Such equilibrium stationary coherences (or simply
equilibrium coherences) are closely connected to the phe-
nomenon of polaron formation and have been the focus of a
number of recent studies, evaluated using both perturbative
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analytical techniques and numerically exact computational
methods [1,2,7,13].

Even in the equilibrium case, however, little progress
has been made in characterizing the conditions under which
stationary coherence represents an intrinsically quantum-
mechanical phenomenon [11]. The objective of this paper is
to explore this question in the multilevel spin-boson (MLSB)
model relevant to photosynthetic light-harvesting dynamics.
It is anticipated that the analytical results obtained here for
the equilibrium case will pave the way for future studies of
nonequilibrium systems.

The question of the “quantumness” of equilibrium coher-
ence is particularly timely in light of recent observations that
many dynamic coherence effects in quantum systems can be
reproduced by classical models [18–24]. These recent findings
are closely connected to the classic demonstrations by Meyer,
Miller, Stock, and Thoss of strong parallels between the clas-
sical dynamics of coupled harmonic oscillators and the wave-
function dynamics of finite quantum systems, even in the
presence of a dephasing environment [25–27]. The motivation
for the present study is that, while such classical models have
been shown to provide accurate descriptions of short-time
dynamic coherence effects, it is unclear whether they are capa-
ble of describing long-time equilibrium coherence effects. In
seeking such classical analogs, of course, it should be kept in
mind that the reproduction of a quantum phenomenon (such
as coherence) by a classical model does not imply that the
underlying system is fundamentally classical. Comparisons
between quantum and classical models do, however, help to
clarify which effects can be regarded as uniquely quantum
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(e.g., Bell test violations) and which can be reproduced and
understood classically.

The organization of this paper is as follows. Section II
introduces the quantum MLSB model and the phenomenon
of equilibrium coherence. Section III describes a classical
analog of the MLSB model and shows that it fails to exhibit
stationary coherence at equilibrium. Section IV introduces a
semiclassical framework for stationary coherence. Section V
quantitatively compares these semiclassical coherences with
their fully quantum analogs at second order in the system-
bath interaction strength and identifies conditions under which
classical and semiclassical models fail to capture quantum
coherence effects in the MLSB model. Section VI introduces
a small-h̄ expansion for interpolating between quantum and
classical limits and Sec. VII discusses the physical origins of
coherence in these various descriptions using a phase-space
representation. Section VIII discusses the implications of the
findings for quantum effects in light-harvesting devices and
Sec. IX summarizes the findings.

II. EQUILIBRIUM COHERENCE IN THE MLSB

Light harvesting in photosynthetic pigment-protein com-
plexes (PPCs) is often theoretically described as a system of
Frenkel excitons coupled to a harmonic bath, termed the mul-
tilevel spin boson (MLSB) model. The material Hamiltonian
reads [28–32]

Ĥ = Ĥl + Ĥss + ĤSB + ĤB, (1)

where

Ĥl =
∑

n

h̄ωn|n〉〈n|, (2)

Ĥss =
∑
n,m

h̄Vnm|n〉〈m|, (3)

ĤSB =
∑
n,k

h̄αnkQ̂k|n〉〈n|, (4)

ĤB = 1

2

∑
k

(
�2

kQ̂2
k + P̂2

k

)
. (5)

Here the states {|n〉} represent the lowest electronic excited
state of the nth pigment in an NS-site pigment-protein com-
plex, with all other pigments in their electronic ground state.
The total electronic ground state |0〉, in which no pigments
are excited, is taken to have energy zero and so is included
only implicitly in the Hamiltonian. Throughout this work,
electronic summation indices (e.g., m and n) are understood to
run over the values 1, . . . , NS, not including the ground state,
unless otherwise noted. These local excitations interact with
one another via the site-to-site interaction Hamiltonian Ĥss

and with a harmonic bath (Hamiltonian ĤB) via the system-
bath interaction Hamiltonian ĤSB. The relative strengths of
system-system and system-bath interactions are determined
by the magnitude of the coupling coefficients Vnm and αnk .
Model parameters vary between different PPCs but are subject
to the restrictions

ω̄ � ωmn,Vmn,�k,
E r

mn

h̄
(6)

and

h̄ω̄ � kBT, (7)

where kBT is the thermodynamic temperature, ω̄ = 1
NS

∑
n ωn

is the average frequency of the local sites, ωmn = ωm − ωn,
and

E r
mn ≡ h̄2

∑
k

αmkαnk

2�2
k

(8)

is the reorganization energy. These restrictions ensure that the
electronic ground and excited states do not mix and that the
thermal population of electronic excited states is negligible.

The off-diagonal reorganization energies E r
mn indicate the

degree of correlation between system-bath interactions at each
site. Three cases are particularly noteworthy. In the case of
perfectly correlated system-bath interactions, the coupling
coefficents αnk are independent of n (the system site). In
this case, all system frequencies fluctuate in sync with each
other when viewed as parametric functions of the bath coordi-
nates Q̂k , and the reorganization energy E r

mn is independent
of both m and n. In contrast, perfect anticorrelation (for a
dimer) implies that α1k = −α2k for all k, so that E r

12 = E r
21 =

−E r
11 = −E r

22. In this case, bath-dependent frequency shifts
are equal in magnitude but opposite in sign at the two sites. As
has recently been emphasized [32], anticorrelated bath modes
play a central role in the energy transfer dynamics of the
MLSB model. Finally, uncorrelated system-bath interactions
occur when each bath mode Qk couples only to a single
pigment, so that αmkαnk = 0 for m �= n; in this case, E r

mn = 0
for m �= n, and there is no correlation between bath-dependent
frequency shifts at each site.

This work investigates stationary system coherence in the
Boltzmann equilibrated (system+environment) state for the
MLSB system, projected onto the excited-state subspace.
Although our results are generic for the MLSB model, one
context in which this “equilibrium excited state” problem
arises is in the study of energy transfer between photosyn-
thetic pigment-protein complexes (PPCs). In photosynthetic
systems, the coupling energies between different PPCs are
typically much smaller than either the site-to-site or system-
bath interaction energies within a given PPC. As a result,
thermalization within each complex occurs much more rapidly
than energy transfer between complexes, and inter-PPC
couplings can be treated perturbatively in a description known
as multichromophore Förster resonance energy transfer
(MC-FRET) [7]. Note, however, that energy transfer
dynamics within each complex, the focus of this paper,
may be far outside the Förster regime. A natural framework
for treating the time dependence of intracomplex relaxation
is provided by the polaron framework which may be used
to directly study the formation of stationary coherence due
to the phonon-induced relaxation of the system-bath product
state created by solar excitation [33].

Under these conditions, the density matrix for each PPC
takes the form

ρ̂ = (1 − πexc)ρ̂g + πexcρ̂e, (9)
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where

ρ̂g = ρ̂B
eq|0〉〈0|, (10)

ρ̂e = P̂ee−βĤ P̂e

Tr{P̂ee−βĤ P̂e}
, (11)

with

P̂e =
NS∑

n=1

|n〉〈n| (12)

being the projector onto the excited-state subspace, and with

ρ̂B
eq = e−βĤB

TrB{e−βĤB} . (13)

The excited-state population πexc is determined by the relative
rates of energy absorption and deexcitation via fluorescence
or energy transfer to other complexes.

In the absence of system-bath interactions, the equilibrium
ρ̂e would be diagonal in the eigenbasis of the system Hamil-
tonian

ĤS = Ĥl + Ĥss, (14)

taking the form of a product between the bath equilibrium
density operator ρ̂B

eq and the excited-state equilibrium density
matrix

σ̂ (0)
e = P̂e

e−βĤe

Z (0)
e

P̂e, (15)

where

Ĥe = P̂e(ĤS − h̄ω̄)Pe (16)

and

Z (0)
e = Tr{P̂ee−βĤeP̂e}. (17)

System-bath interactions, however, introduce correlations
in ρ̂e both between system and bath and between different
system energy states. Correlations between system states are
reflected in off-diagonal elements in the reduced system den-
sity matrix, i.e., stationary coherences

CQ
μν = Tr{|ν〉〈μ|ρ̂e}, μ, ν > 0,

μ �= ν,
(18)

in the system eigenbasis. Here and throughout the text, Greek
indices (μ, ν, κ, λ, . . .) are used to indicate quantities in the
system eigenbasis, while Roman indices (m, n, l, . . .) indicate
quantities in the local site basis. In particular, the states |μ〉 are
eigenkets of Ĥe in the excited-state manifold, with eigenvalues
h̄ωμ, and are related to the site-basis states |n〉 by

|μ〉 =
∑

m

uμm|m〉, (19)

where uμm is the real NS×NS unitary matrix that diagonalizes
Ĥe. In this basis, Ĥe takes the simplified form

Ĥe = h̄
∑

μ

δωμ|μ〉〈μ|, (20)

where

δωμ = ωμ − ω̄. (21)

Two general features of equilibrium coherence in the
MLSB model may be noted without detailed calculation. First,

as long as the transformation matrix u is chosen to be real, the
matrix elements of the Hamiltonian are also real in the system
eigenbasis, implying [see Eqs. (11) and (18)] that equilibrium
coherences are also purely real. Second, equilibrium coher-
ences vanish whenever the thermal energy kBT = 1/β of the
environment is large relative to all the excited-state energy
scales h̄ωmn, h̄Vmn E r

mn, and h̄�k . For, in this case,

P̂ee−βĤ P̂e = e−β h̄ω̄P̂ee−β(P̂eĤP̂e−h̄ω̄)P̂e ≈ e−β h̄ω̄P̂e, (22)

since all excited-state matrix elements of P̂eĤP̂e − h̄ω̄ are
determined by ωmn, Vmn, E r

mn, and �k , and are thus small
relative to kBT . The excited-state density matrix ρ̂e of Eq. (11)
is therefore diagonal in the system eigenbasis, and stationary
coherences [Eq. (18)] vanish. Physically, this result reflects
the fact that the Boltzmann state assigns similar populations
to states with similar energies. In the high-temperature limit
(where energy differences are negligible), all excited states are
thus assigned the same population.

However, even at 300 K, the excited-state energy scales
typical of biological light-harvesting systems are comparable
to kBT ≈ 200 cm−1, indicating that the high-temperature limit
of Eq. (22) is not applicable. In fact, numerically exact studies
have shown that for typical PPC parameters, the magnitude of
the coherences CQ

μν induced in ρ̂e by system-bath interactions
can be comparable to the corresponding excited-state popu-
lations [1,2,7]. Significantly, little attention has been given to
the question of whether these coherences represent a uniquely
quantum-mechanical phenomenon or, alternatively, whether
they can be reproduced by strictly classical models. This
possibility is explored in the next section.

III. CLASSICAL COHERENCE

It has recently been shown [22,24] that light-harvesting
dynamics under the MLSB model are closely mimicked by an
analogous classical model with material Hamiltonian of the
same form as Eq. (1) with

Hl = 1

2

NS∑
n=1

(
ω2

nq2
n + p2

n

)
, (23)

Hss =
∑
m,n

√
ωmωnVmnqmqn, (24)

HB = 1

2

∑
k

(
�2

kQ2
k + P2

k

)
, (25)

HSB =
∑
n,k

αnkωnq2
nQk . (26)

Here qn and pn are classical position and momentum coor-
dinates for a fictitious oscillator representing the electronic
motion of the nth site. As in the quantum case [Eq. (14)], the
terms Hl and Hss together constitute the system Hamiltonian

HS = Hl + Hss. (27)

Note that, although the displacement-mediated couplings
(proportional to qmqn) of Eq. (24) are conventional in ap-
plications to photosynthetic light harvesting [20,22,24], the
symmetric displacement-momentum coupling of the Meyer-
Miller-Stock-Thoss framework [25–27] is more common in
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the broader literature context. However, as described briefly
in Appendix A and considered in detail in Ref. [19] the two
forms are dynamically equivalent under Eq. (6).

Under weak electromagnetic excitation (whether coherent
or incoherent), the state of this system can be represented by
an (NS + 1) × (NS + 1) matrix R, whose entries are functions
of the bath coordinates Qk, Pk [24]. The classical phase space
density ρ is related to R by

ρ =
NS∑

m,n=0

Rmn
C
mn, (28)

where

C
mn = σeq

NS∏
l=1

(βωl Jl )
δml +δnl

2 ei(δmlθm−δnl θn ). (29)

Note that the notation here differs from that of Ref. [24] in the
inclusion of the Boltzmann density σeq in Eq. (29) rather than
in Eq. (28). Here σeq is the system Boltzmann density in the
absence of the environment, and Jn and θn are the canonical
action-angle variables of the system related to qn and pn by

qn =
√

2Jn

ωn
cos θn, (30)

pn = −
√

2ωnJn sin θn. (31)

For m, n > 0, the functions C
mn represent perturbative contri-

butions to the probability density following electromagnetic
excitation of both sites m and n. Similarly, C

m0 = (C
0m)∗

represents a perturbative contribution involving the excitation
of only site m, while C

00 is the equilibrium density σeq with no
electromagnetic field induced excitations. The “classical den-
sity matrix” R follows a set of matrix equations that closely
parallel the quantum Liouville equation for ρ̂ (in the site basis)
across a wide range of system-bath interactions from the co-
herent Redfield regime to the incoherent Förster regime [24].

As described in Ref. [24], site-basis coherences correspond
in this classical framework to off-diagonal elements of the
classical density matrix R after tracing out the bath. By
analogy with the quantum-mechanical case, classical system
eigenbasis coherences CC

μν correspond to the off-diagonal
elements

CC
μν =

∫ (∏
k

dQkdPk

)
Rμν,

μ, ν > 0,

μ �= ν
(32)

of the system eigenbasis classical density matrix

Rμν =
NS∑

m,n=1

uμmuνnRmn, (33)

defined for μ, ν > 0.
To obtain a physical interpretation of classical coherences

CC
μν , we express the expansion functions C

mn [Eq. (29)] in
terms of the normal mode coordinates

qμ =
∑

m

uμmqm, (34)

pμ =
∑

m

uμm pm, (35)

and obtain (for m, n > 0)

C
mn = β

2
σeq(ωmqm − ipm)(ωnqn + ipn) (36)

≈
∑
μν

uμmuνn
β

2
σeq(ωμqμ − ipμ)(ωνqν + ipν ) (37)

and

C
m0 = (

C
0m

)∗ =
√

β

2
σeq(ωmqm − ipm) (38)

≈
∑

μ

uμm

√
β

2
σeq(ωμqμ − ipμ), (39)

where the approximations hold under Eq. (6). A brief calcula-
tion then reveals that for μ �= ν

Re CC
μν = 〈pμ pν〉

kBT
= ωμων

〈qμqν〉
kBT

, (40)

Im CC
μν = ων

〈pμqν〉
kBT

= −ωμ

〈pνqμ〉
kBT

, (41)

where the angle brackets indicate a phase-space average over
the density ρ in Eq. (28). Thus the real part of CC

μν represents
linear correlation between normal mode coordinates qμ and
qν or momenta pμ and pν , while the imaginary part represents
cross correlations between position and momentum.

It is noteworthy that an analogous result is obtained if
the classical Hamiltonian [Eqs. (23)–(26)] is quantized. In
the single-excitation manifolds, the resulting Hamiltonian is
equivalent to the quantum MLSB model of Eqs. (2)–(5) up
to zero-point shifts in ĤSB and ĤS. A brief calculation then
reveals that

Re CQ
μν = 〈p̂μ p̂ν〉

h̄
√

ωμων

= ωμων

〈q̂μq̂ν〉
h̄
√

ωμων

, (42)

Im CQ
μν = ων

〈p̂μq̂ν〉
h̄
√

ωμων

= −ωμ

〈p̂ν q̂μ〉
h̄
√

ωμων

, (43)

where 〈· · · 〉 indicates a trace over the quantum density matrix
ρ̂e of Eq. (11) and q̂μ and p̂μ are the quantum operators
associated with the classical normal mode coordinates qμ and
pμ. Thus, in both quantum and classical systems, coherences
may be interpreted as indicators of correlations amongst the
position and momentum coordinates of different oscillators.
Note that in both cases equilibrium coherences must be purely
real, so that cross correlations between position and momen-
tum must vanish for both quantum and classical systems.

However, in contrast to the quantum case, which supports
nonzero real components of CQ

μν at equilibrium, equilibrium
coherences vanish entirely in the classical system, regardless
of temperature and the strength of system-system and system-
bath interactions. This observation follows from the result
detailed in Ref. [24] that the classical dynamics of R always
support the coherence-free equipartition state

Rμν = πexc

NS
ρB

eqδμν (44)

as an equilibrium (stationary) state [34]. Here ρB
eq is the

equilibrium density for the isolated bath, analogous to Eq. (13)
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for the quantum bath, and the δμν ensures [see Eq. (32)] that
CC

μν = 0 for μ �= ν.
Intuitively, this finding corresponds to the fact that the

classical dynamics of R resemble—at all temperatures—those
of a quantum system whose thermal energy kBT is large
relative to all excited-state energy scales, so that quantum
commutators can be neglected. Since equilibrium coherences
vanish at high temperatures even for quantum systems, it is
perhaps unsurprising that classical coherences vanish at all
temperatures.

The same conclusion—that equilibrium coherence van-
ishes in the classical limit—is demonstrated in a manner
independent of any specific classical model in Sec. VI using a
small-h̄ expansion. Thus the vanishing of equilibrium coher-
ence is not an artifact of the particular classical representation
studied here [Eqs. (23)–(26)] or the present definition of clas-
sical coherence [Eq. (32)], but applies equally to any classical
model that matches the quantum system in the small-h̄ limit.

Given this finding, it is natural to ask why classical models
fail to capture equilibrium coherence in the MLSB model,
particularly given their great success at describing dynamical
coherence in the same systems [20,22,24]. One possibility
is that the classical model fails due to the relatively small
displacement in system coordinates qn during the formation
of the excited states C

mn. As discussed in Ref. [24], the energy
of a classical excited state C

mn is of the order of kBT , whereas
the energy of a quantum excited state |m〉〈n| is of the order of
h̄ω̄, corresponding to a much larger displacement in system
coordinates. (Recall that by assumption kBT 
 h̄ω̄.) Since
the system-bath interaction strength depends (via HSB) on
the overall displacement of system oscillators qn away from
equilibrium, it suggests that equilibrium coherence effects
could be recovered by introducing energy quantization “by
hand” into the classical model. This possibility is explored in
the next section.

IV. SEMICLASSICAL COHERENCE

To ascertain whether energy quantization alone is sufficient
for nonzero equilibrium coherence formation, we employ the
semiclassical framework of Refs. [35–38] to map quantum
states |μ〉〈ν| to semiclassical states

SC
μν ≡ ei(θμ−θν )

N∏
λ=1

δ

(
Jλ − h̄

2
(1 + δμλ + δνλ)

)
. (45)

Here energy quantization is enforced via the δ-function depen-
dence of the state SC

μν on the normal-mode action variables Jμ

defined via the relations [compare to the site basis expressions
in Eqs. (30) and (31)]

qμ =
√

2Jμ

ωμ

cos θμ, (46)

pμ = −√
2ωμJμ sin θμ. (47)

In the absence of the bath, diagonal states SC
μμ of this form

possess the same classical energies as their quantum counter-
parts |μ〉〈μ|, while the coherence states SC

μν oscillate under
the classical equations of motion with the same character-
istic frequencies ωμν . Moreover, in the absence of the bath,

excited-state matrix elements 〈μ|ρ̂e|ν〉 are given exactly for
this system by the classical phase-space integrals

〈μ|ρ̂e|ν〉 = e
β
(

1+ NS
2

)
h̄ω̄

Z (0)
e

∫ (∏
λ

dθλdJλ

2π

)
SC

νμe−βHS , (48)

where the prefactor eβ(1+ NS
2 )h̄ω̄ in Eq. (48) accounts for the

h̄ω̄ offset in Ĥe [compare Eq. (16) to Eq. (14)] and for the
zero-point energy not explicitly included in ĤS. Thus quantum
matrix elements for an isolated system with Hamiltonian
ĤS may be calculated exactly as projections of the classical
probability density onto the appropriate semiclassical state. It
is noteworthy that a similar semiclassical framework has been
developed for the evaluation of nonlinear response functions,
yielding exact quantum results in several important cases [39].

The significant question of interest here is whether the
relationship described by Eq. (48) continues to hold in
the presence of system-bath interactions and hence whether
the quantum coherence elements CQ

μν are accurately described
by the semiclassical projections

CSC
μν = eβ

(
1+ NS

2

)
h̄ω̄

Z (0)
e

∫ (∏
λ

dθλdJλ

2π

)
SC

νμσ SC
red . (49)

Here the bare system density e−βHS in Eq. (48) has been
replaced by the (unnormalized) semiclassical reduced density

σ SC
red =

∫ (∏
k

dQkdPk

)
e−β(HS+HSC

SB +HB)

ZC
B

, (50)

where

HSC
SB =

∑
n,k

αnkQk

(
Jn − h̄

2

)
, (51)

and where ZC
B is the partition function of the classical bath.

The semiclassical Hamiltonian HSC
SB differs from the clas-

sical HC
SB in two key features. First, the quantity ωnq2

n in

HC
SB has been replaced by the local-mode action Jn = ω2

nq2
n+p2

n
2ωn

in HSC
SB , reflecting more precisely the dependence of ĤSB

on the total energy at each local site, rather than only the
potential energy associated with q2

n. It is critical that this
replacement does not affect the failure of the classical model
to capture stationary coherence: i.e., it should be the case that
a strictly classical model featuring Jn coupling will fail in
the same way and for the same reasons as does the classical
model (with ωnq2

n coupling) studied in the last section. In
fact, under the restrictions in Eqs. (6) and (7), the classi-
cal dynamics are unaffected by the form of the coupling
(see Eq. (A15) of Ref. [24]). The replacement does, how-
ever, affect semiclassical matrix elements; due to its closer
connection to the quantum Hamiltonian, the semiclassical
Hamiltonian of Eq. (51) gives semiclassical matrix elements
in better agreement with their quantum analogs.

Second, a zero-point offset of h̄
2 has been added in HSC

SB
to ensure that (as in the quantum model) system-bath inter-
actions vanish in the semiclassical ground state. Note again
that since this replacement is equivalent to an overall shift of
the bath coordinates (and thus can be eliminated by simply
redefining the zero point of the bath modes), it has no impact

012211-5



REPPERT, REPPERT, PACHON, AND BRUMER PHYSICAL REVIEW A 102, 012211 (2020)

on the results of the last section. Thus, despite the differences
between Eqs. (26) and (51), a strictly classical treatment of
either model will (as in Sec. III) fail to capture equilibrium
coherence. The next section examines whether this limitation
is remedied by enforcing energy quantization via the semi-
classical matrix elements of Eq. (49).

Coupled dimer. A considerable amount of insight can be
gained by examining the simplest case of NS = 2 of a coupled
dimer. By completing the square in the exponent, the bath
integration in Eq. (50) can be carried out explicitly to obtain

σ SC
red ≈ e−β(HS+Heff ) (52)

with the effective Hamiltonian Heff

Heff = −
∑
mn

E r
mn

(
Jm

h̄
− 1

2

)(
Jn

h̄
− 1

2

)
. (53)

Significantly, the semiclassical reduced density σ SC
red is seen to

be determined completely by the reorganization energies E r
mn.

Here Heff is a function of the local actions Jn = 1
2ωn

(ω2
nq2

n +
p2

n) that are related to the normal mode coordinates by

Jn = 1

2

∑
μν

uμnuνn

(
ωnqμqν + pμ pν

ωn

)
(54)

≈
∑
μν

uμnuνn

√
JμJν cos(θμ − θν ). (55)

Equation (55) is obtained from Eq. (54) by expanding qμ and
pμ in action-angle variables and noting that ωn√

ωμων
≈ 1 under

Eq. (6).
For the coupled dimer, we have simply

u =
[

cos φ − sin φ

sin φ cos φ

]
, (56)

with

tan φ = 2V12

� +
√

�2 + 4V 2
12

, (57)

in terms of the site-basis frequency difference

� = ωn=2 − ωn=1. (58)

Defining the angle difference

� = θμ=2 − θμ=1, (59)

Eq. (49) now reads

CSC
12 = 1

Z (0)
e

∫ 2π

0

(∏
λ

dθλ

2π

)
e−βHo

eff ei�, (60)

where

Ho
eff = −2E r

12

(
1
4 − 4 f 2

φ cos2 �
) − E r

11

(
1
2 + 2 fφ cos �

)2

− E r
22

(
1
2 − 2 fφ cos �

)2
, (61)

with

fφ = cos φ sin φ. (62)

Ho
eff is simply Heff evaluated at Jμ = h̄ for all μ.

Equation (60) is difficult to evaluate in general. However,
a few general observations are possible. Noting that Ho

eff is a

function only of cos � implies that the integral is purely real,
i.e., that

CSC
12 = 1

Z (0)
e

∫ 2π

0

(∏
λ

dθλ

2π

)
e−βHo

eff cos �. (63)

Moreover, if E r
11 = E r

22 so that Ho
eff depends only on cos2 �,

the integrand is overall an odd-order polynomial in cos �, and
again CSC

12 = 0.
Beyond these preliminary observations, explicit evaluation

of Eq. (63) is difficult in general. An approximate expression
is readily obtained, however, by expanding the exponential to
first order. The resulting expression is accurate to second order
in HSB and reads

CSC
12 = β

Z (0)
e

cos φ sin φ
(
E r

11 − E r
22

)
. (64)

Thus, to second order, semiclassical coherences are nonzero
and directly proportional to the difference in reorganization
energies associated with the two sites. Semiclassical coher-
ences are largest at low temperatures and for strong delo-
calization. In the high-temperature limit β → 0 (or alterna-
tively in the classical limit h̄ → 0 and, hence, E r

mn → 0 [see
Eq. (8)]), the semiclassical result approaches the classical
limit CC

12 = 0 obtained in the last section.

V. QUANTUM COHERENCE

To enable a quantitative comparison between semiclassical
and quantum predictions, a similar second-order expansion
can be carried out for the quantum reduced density matrix
σ̂e = TrB{ρ̂e}. Expanding the quantum exponential e−βĤ of
Eq. (11) to second order in ĤSB gives [2,40]

σ̂e ≈ σ̂ (0)
e

(
1 − Z (2)

e

) + σ̂ (2)
e , (65)

where

Z (2)
e = TrS

{
σ̂ (2)

e

}
(66)

and

σ̂ (2)
e = h̄3σ̂ (0)

e

∫ β

0
ds2

∫ s2

0
ds1

NS∑
mn=1

∑
k

αmkαnk

2�k

× [
e(s2−s1 )h̄�k n̄(�k ) − e−(s2−s1 )h̄�k n̄(−�k )

]
× es2Ĥe |m〉〈m|e(s1−s2 )Ĥe |n〉〈n|e−s1Ĥe , (67)

with

n̄(�) = 1

eβ h̄� − 1
. (68)

[Recall that σ̂ (0)
e was defined in Eq. (15).] Equations (65) can

be derived by setting X̂ = Ĥe + P̂eĤBP̂e and Ŷ = ĤSB in the
operator expansion

e−β(X̂+Ŷ ) = e−βX̂
∞∑

n=0

∫ β

0
dsn

∫ sn

0
dsn−1 . . .

∫ s2

0
ds1

× (−1)n(esnX̂ Ŷ e−snX̂ ) . . . (es1X̂ Ŷ e−s1X̂ ), (69)

truncating at second order, and tracing over the bath. The ex-
pansion [Eq. (69)] may be verified directly by differentiating
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both sides to show that they satisfy the same operator differ-
ential equation and boundary conditions.

Expanding in the eigenbasis states via the relation

|m〉 =
∑

μ

uμm|μ〉, (70)

the integral in Eq. (67) may be evaluated directly to obtain the
second-order density matrix

σ̂ (2)
e = e−β h̄

δωμ+δων

2

Z (0)
e

∑
μνκ

∑
mn

uμmuκmuκnuνn

×
∫

d�Jmn(�)n̄(�)Kμν
κ (�)|μ〉〈ν|, (71)

where we have defined an antisymmetric spectral density

Jmn(�) = h̄
∑

k

αnkαmk

2�k
[δ(� − �k ) − δ(� + �k )] (72)

and the integration kernel

Kμν
κ = e− β h̄ωμν

2

ωμν (� + ωμκ )
− e

β h̄ωμν

2

ωμν (� + ωνκ )

+ e
β h̄

(
�−ωκ+ ωμ+ων

2

)

(� + ωνκ )(� + ωμκ )
. (73)

For diagonal elements (μ = ν), Eq. (73) must be understood
as the limiting value as ωμ → ων .

The coherences are obtained from Eq. (71) as

CQ
μν = (

σ̂ (2)
e

)
μν

. (74)

Expanding the kernel Kμν
κ and the occupation number n̄(�) in

small β reveals that in the high-temperature limit β → 0, the
semiclassical [Eq. (64)] and quantum [Eq. (74)] second-order
expressions become identical, approaching (in the case of a
dimer) the common limit [41]

CSC
12 ≈ β

2
cos φ sin φ

(
E r

11 − E r
22

)
. (75)

For finite temperatures, however, quantum and semiclas-
sical coherences have quite distinct properties. In particular,
in contrast to the semiclassical case (where only the diagonal
terms E r

nn contribute [Eq. (64)] to equilibrium coherence) the
degree of correlation between system sites—i.e., the form
of Jmn(�) when m �= n—is crucial in the quantum system.
For concreteness, suppose Jmn(�) = cJ (�) for all m �= n,
with −1 � c � 1 [42]. The case c = 1 corresponds to per-
fect correlation between the sites (αnk = αmk), while c = −1
represents perfect anticorrelation (i.e., α1k = −α2k) and
c = 0 a complete lack of correlation (i.e., independent baths).
Equation (74) then takes the form

CQ
μν = (1 − c)

e−β h̄
δωμ+δων

2

Z (0)
e

∑
nκ

uμnuνnu2
κn

×
∫

d�J (�)n̄(�)Kμν
κ (�). (76)

For perfect correlation (c = 1, where E r
mn is independent

of m and n), stationary coherences vanish, just as in the
semiclassical system. In the absence of perfect correlation,

FIG. 1. Comparison of classical (thin gray lines), semiclassical
(dots), and quantum (thick lines) equilibrium coherences C12 for a
coupled dimer with [frame (a)] identical, uncorrelated system-bath
interactions at each site or with [frame (b)] system-bath interactions
at only site 1 [lower frequency, red (upper) curves] or only site
2 [higher frequency, blue (lower) curves]. In all cases, V12 = � =
2πc×200 cm−1, while the reorganization energy E r

nn was set to
2πch̄×20 cm−1 for each site that interacts with the environment.
Dashed curves indicate approximate quantum matrix elements from
the third-order expansion of Eq. (79).

however, stationary coherence persists in the quantum system
and is maximized for anticorrelated interactions (c = −1). In
contrast, the corresponding semiclassical coherences vanish
identically, regardless of the value of c.

These findings emphasize the essential distinction between
correlated and anticorrelated system-bath interactions in the
MLSB model [32]. Since all system energy levels respond
identically to the fluctuations of a correlated bath (c = 1,
αmk = αnk), energy differences between system eigenstates
are unaffected by bath dynamics and (although the system
eigenvalues may fluctuate) the system eigenstates are static in
time. Correlated system-bath interactions are thus incapable
of driving electronic energy transfer [32] or, as demonstrated
here, of inducing stationary coherence in the equilibrium
MLSB model. In contrast, anticorrelated system-bath inter-
actions cause strong variations in intrasystem energy differ-
ences since bath dynamics induce anticorrelated fluctuations
in local site energies. Thus anticorrelated vibrations strongly
distort the energetic structure of the system, triggering both
nonadiabatic electronic energy transfer [32] and, as seen here,
the formation of stationary coherence.

For illustration, Fig. 1 plots second-order quantum (thick
solid lines) and semiclassical (dots) calculations for C12 for a
coupled dimer with V12 = � = 2πc×200 cm−1. The spectral
densities are taken to have an Ohmic form with exponen-
tial cutoff Jmn(�) ∝ � e−�/�c with �c = 2πc×50 cm−1.
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The classical result CC
12 = 0 is indicated by a thin gray

line. In frame (a), system-bath interactions are taken to
be identical but uncorrelated between the two sites, with
E r

mn = δmn2πch̄×20 cm−1. In frame (b), interactions are lo-
calized at either site 1 [lower frequency, red (upper) curves,
E r

mn = δm1δn12πch̄×20 cm−1] or site 2 [higher frequency,
blue (lower) curves, E r

mn = δm2δn22πch̄×20 cm−1]. Note that
in both cases the magnitude of the quantum equilibrium
coherence can be substantial relative to the excited-state popu-
lations (which sum to unity). In frame (b), where only a single
system site couples to the bath, the semiclassical results pro-
vide a reasonable approximation to the full quantum expres-
sion at high temperatures (above 300 K), although, in contrast
to the quantum case, semiclassical coherences decay to zero at
low temperatures. In contrast, the semiclassical result fails at
all temperatures to capture the quantum coherence exhibited
in frame (a), corresponding to configurations in which both
system sites couple with equal strength to the thermal envi-
ronment. This last failure is particularly noteworthy in that
system-bath interaction strengths are typically assumed to be
similar at all sites in biological light-harvesting systems, sug-
gesting that semiclassical descriptions are unlikely to capture
equilibrium coherence effects in these systems.

VI. QUANTUM PERTURBATION EXPANSION

The fact that even semiclassical descriptions can, as seen in
Fig. 1, capture some features of quantum stationary coherence
at physiological temperatures suggests that a perturbative ex-
pansion in “quantumness” could prove computationally useful
under biologically relevant conditions. In this section we show
that this is indeed the case. A convenient route to such an
expansion is to use the Zassenhaus formula [43] to expand
the exponential e−β(Ĥe+ĤSB+ĤB ) and then to perform a partial
Wigner transformation [44] over the bath coordinates. As
detailed in Appendix B, this procedure yields, to order h̄3,

CQ
μν = 1

NS

〈〈
μ

∣∣∣∣β2

2

(
ĤQC

SB

)2 − β3

6

[
ĤQC

SB ĤeĤQC
SB

+(
ĤQC

SB

)2
Ĥe + Ĥe

(
ĤQC

SB

)2]∣∣∣∣ν
〉〉

B

+ (h̄4), (77)

where ĤQC
SB is the system operator obtained by replacing the

bath operator Q̂k with the classical coordinate Qk in Eq. (4),
and where the notation 〈. . .〉B indicates a classical average
over the equilibrium bath ensemble. For the special case of
a dimer where

δωμ=1 = −δωμ=2, (78)

the two (ĤQC
SB )

2
terms in Eq. (77) cancel leaving, after a brief

calculation,

CQ
12 = β

2
cos φ sin φ

(
E r

11 − E r
22

)
+ β2

12
h̄�S cos φ sin φ(cos2 φ − sin2 φ)

× (
E r

11 + E r
22 − 2E r

12

) + O(h̄4), (79)

where

�S = ωμ=2 − ωμ=1 (80)

is the frequency difference between the two system eigen-
states. The first term here (of order h̄2 since E r

mn =
h̄2 ∑

k
αmkαnk

2�2
k

) is exactly the mutual high-temperature limit

[Eq. (75)] of the semiclassical and quantum second-order
expansions. As explored already, this h̄2 term vanishes for
symmetric coupling strengths (E r

11 = E r
22). This failing is

corrected by the h̄3 term in the last line of Eq. (79), which
breaks the symmetry between the two local sites and produces
nonzero stationary coherence elements even for symmetric
coupling strengths.

For illustration, stationary coherence elements CQ
12 calcu-

lated using Eq. (79) are plotted as a function of temperature
in Fig. 1 (dashed lines) for the dimer parameters considered
above. At high temperatures, the third-order result captures
the correct qualitative behavior for both symmetric [frame (a)]
and asymmetric [frame (b)] system-bath interactions. At low
temperatures, however, the expansion fails due to the finite
power of β = 1

kBT . The crossover regime in which the expan-
sion begins to reasonably approximate the true quantum result
occurs near ambient temperatures (T = 300 K), reflecting the
fact that (for our model parameters) it is in this region that
the thermal energy (kBT ≈ 200 cm−1 at 300 K) becomes
comparable to the energy scales h̄�, E r

nn, h̄V12, and h̄�k . More
generally, low-order h̄ expansions are expected to become
accurate whenever kBT becomes comparable to or greater
than all excited-state energy scales (h̄ωmn, Vmn, E r

mn, and h̄�k).
These findings indicate that, although quantum finite h̄

expansions will perform poorly at low temperatures, they may
be very useful for applications at ambient temperatures. This
approach may be particularly relevant to biological systems,
where reorganization energies are typically assumed to be
comparable at all sites so that the semiclassical treatment
of Sec. IV fails completely to capture stationary coherence
effects. A further advantage of this h̄n expansion is that
quantum properties are expressed [as in Eq. (77)] in terms of
strictly classical bath averages and thus may be amenable to
evaluation using standard classical treatments such as molec-
ular dynamics.

VII. PHASE-SPACE COMPARISON

The results above provide insight into the origin of equi-
librium stationary coherence in classical, semiclassical, and
quantum descriptions of the MLSB model. To understand
these results physically, it is useful to cast all three models into
a phase-space representation where the properties of coher-
ences can be compared directly. Classical phase-space coher-
ences are defined by Eq. (29), while (as discussed in detail in
Ref. [35]) semiclassical coherences are defined in phase space
by Eq. (45). A phase-space representation of the quantum
coherence elements |μ〉〈ν| can be obtained using a Wigner
transformation over the system coordinates. Quantization of
the classical system Hamiltonian HS of Eq. (27) produces
a quantum harmonic-oscillator Hamiltonian that (apart from
a zero-point offset) is identical in the ground-plus-single-
excitation subspace to the quantum operator ĤS of Eq. (14). A
phase-space representation Q

μν = [|μ〉〈ν|]W of the coherence
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FIG. 2. Real part of the classical [frame (a)], semiclassical [frame (b)], and quantum [frame (c)] phase-space distributions 10 for a single
harmonic oscillator defined by Eqs. (81)–(83). Positive regions are shaded blue, while negative regions are shaded red. Each plot is normalized
to have a maximum amplitude of unity. For visualization purposes, the delta function in SC

10 is assigned a finite width of 0.1
√

h̄ω.

|μ〉〈ν| of this harmonic model is then readily obtained by
applying the appropriate raising and lowering operators to the
phase-space representation of the quantum ground state |0〉〈0|
[44]. (See Appendix C.)

As a simple example, Fig. 2 plots classical [frame (a)],
semiclassical [frame (b)], and quantum [frame (c)] phase-
space distributions 10 for a single harmonic oscillator. (The
multidimensional extension is straightforward, but difficult to
represent pictorially.) The distributions are defined in this case
by

C
10 = ω

2πkBT

(
ωq − ip√

2kBT

)
e− ω2q2+p2

2kBT , (81)

SC
10 =

(
ωq − ip√

2h̄ω

)
δ

(
ω2q2 + p2

2ω
− h̄

)
, (82)


Q
10 = 2

π h̄

(
ωq − ip√

2h̄ω

)
e− ω2q2+p2

h̄ω . (83)

In each case, only the real part of the distribution is plotted; the
imaginary part is similar but rotated by 90o. Blue represents
positive features, while red represents negative; each plot
is normalized to have a maximum amplitude of unity. For
visualization purposes, the delta function in SC

10 is assigned
a finite width of 0.1

√
h̄ω.

It is noteworthy that, in all three descriptions, the variation
of 10 with the phase-space angle θ is determined by the factor

ωq − ip ∝ eiθ . (84)

Thus the 10 coherence state is associated with the displace-
ment of phase-space amplitude along either the q (Re10) or
p (Im10) axes. Since, in the multioscillator case, the phase-
space representation of |μ〉〈ν| is found by the same procedure
to be proportional to the product (ωμqμ − ipμ)(ωνqν + ipν ),
this confirms the suggestion of Eqs. (40)–(43) that coherences
are associated in phase space with the correlated displacement
of two distinct modes.

Beyond this shared rotational symmetry, however, the var-
ious phase-space representations differ considerably. That is,
although the quantum and classical distributions have iden-
tical forms the width of the distribution is proportional to√

2kBT in the classical system and
√

h̄ω in the quantum sys-
tem. As noted earlier, this difference in scale is the essential
reason why the classical model fails to capture stationary

coherence effects in excited-state equilibration for the MLSB
model. Whereas photoexcitation creates a comparatively large
displacement in the quantum oscillator, it induces a much
smaller displacement for the classical oscillator. Since the
system-bath interaction Hamiltonian scales with q2, this im-
plies that the excited quantum system experiences a much
stronger interaction with the environment than does the ex-
cited classical system. Hence the quantum system exhibits
stationary coherence, while the classical system does not.

On the other hand, the semiclassical distribution plotted
in frame Fig. 2(b) has the same overall dimensions in phase
space as the quantum distribution (see scale bar at lower right
of each panel). Formation of such a semiclassical excited state
thus induces system-bath interactions of the same magnitude
as the quantum system, giving rise, as seen earlier, to nonvan-
ishing stationary coherence elements. Nonetheless, the actual
shape of the semiclassical distribution differs strongly from
that of the quantum density, so that the two models differ in
their detailed predictions for stationary coherence elements.
It is encouraging, however, that the simple extension of this
semiclassical theory represented by Eq. (79) offers, as seen in
Fig. 1, a fairly accurate description of equilibrium stationary
coherence at biologically relevant temperatures, at least in
the weak-coupling limit for which the quantum expression
[Eq. (74)] is valid.

VIII. IS EQUILIBRIUM COHERENCE QUANTUM?

Finally, let us return to the original question: is equilibrium
coherence in the MLSB model an intrinsically quantum-
mechanical effect? The results of Sec. III indicate that equi-
librium coherence cannot be described by existing classical
models. Section IV shows that semiclassical principles are
capable of capturing equilibrium coherence in certain circum-
stances, namely at high temperatures and in the presence of
strong asymmetry between system-bath coupling strengths
at different system sites. However, even this semiclassical
treatment fails qualitatively in other cases, i.e., for config-
urations in which system-bath interactions have the same
magnitude at all system sites. This last failing is particularly
noteworthy in that it is not an obvious temperature effect
and that system-bath interactions are typically expected to
be similar for all sites in a photosynthetic PPC. Thus our
results provide strong support for the idea that (at least in
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photosynthetic systems) equilibrium coherence represents a
uniquely quantum-mechanical phenomenon.

From an applications perspective, these findings are signif-
icant in that they suggest that equilibrium coherence effects
may be an exclusive feature of quantum devices. This is in
stark contrast to dynamical coherence effects which can be
exploited in both classical and quantum architectures [45,46].
Thus, in the search for novel quantum devices, stationary
coherence effects appear to be a promising area of research.
It should be emphasized, however, that our present findings
apply only to equilibrium effects in the MLSB model. It
remains to be seen whether the same results extend to more
general nonequilibrium steady-state processes and/or to other
model systems.

It is also worth emphasizing that the failure of the semi-
classical framework of Sec. IV to capture stationary co-
herence effects does not exclude the possibility that other
semiclassical methods might be more successful. Although
our calculations demonstrate that quantization of the system
action is not alone sufficient, it would be of interest to explore
whether other semiclassical approximations (see, for some
examples, Refs. [47–49]) perform better and, if so, what
physical features are essential to the generation of equilibrium
coherence. In comparison to other methods, it is noteworthy
that the semiclassical framework of Sec. IV is based on
a static identification of quantized-action system states and
does not specify a concrete time-evolution propagator for
the system+bath composite [50]. Thus a particularly useful
alternative perspective could be provided by semiclassical
approaches based on approximate equations of motion, with
“equilibrium” states identified by their stationarity under time
evolution.

Finally, we note an alternative perspective on these re-
sults. Specifically, uncertainty relations are a cornerstone in
quantum physics and are formally expressed in terms of the
intrinsic uncertainty of quantum states [51]. The relevant
uncertainty relations here result from the fact that the energy
exchange between the system and the bath is mediated by the
system-bath term ĤSB = ∑

k B̂k ⊗ Ŝk; therefore, the system-
bath energy fluctuations will be determined by �ĤS�ĤSB �
1
2 |〈[ĤS, ĤSB]〉| with | · | denoting the absolute value, 〈·〉 =
Tr(· ρ̂e), with ρ̂e being the equilibrium distribution in Eq. (11),
and �(·) =

√
〈(·)2〉 − 〈(·)〉2.

Recently, at equilibrium, these system-bath energy-
uncertainty relations were shown to be influenced by the
spectral density of the bath and its thermal fluctuations. For
a large class of quantum systems [11], it was shown that
its classical counterpart is devoid of equilibrium stationary
coherences and, therefore, the energy-uncertainty relation is
zero. This means that, for those systems, uncertainty is solely
of a classical nature (classical thermal fluctuations).

In our case, up to second order [see Eq. (65)],

�ĤS�ĤSB � 1

2

∣∣∣∣∣
∑

k

〈[ĤS, Ŝk]〉
∣∣∣∣∣ (85)

� 1

2

∣∣∣∣∣∣
∑

k,κ,μ,ν

(
H νκ

S Sκμ

k − Sνκ
k Hκμ

S

)
CQ

μν

∣∣∣∣∣∣, (86)

with ĤS = ∑
γ ,γ ′ Hγ γ ′

S |γ 〉〈γ ′| and Ŝk = ∑
κ,κ ′ Sκκ ′

k |κ〉〈κ ′|.
The appearance of CQ

μν shows the intimate role of coherences
in providing a measure of quantum effects between system
and bath.

The classical vanishing lower-bound uncertainty is reached
in Eq. (85) when either [ĤS, Ŝk] = 0, for all k, or when CQ

μν ,
and therefore σ̂ (2)

e in Eq. (71), is diagonal. The uncertainty
relation in Eq. (85) is clearly a state dependent quantity,∑

k〈[ĤS, Ŝk]〉ρ̂ = ∑
k Tr([ĤS, Ŝk]ρ̂); therefore, the classical

and semiclassical phase-space distributions can be directly
utilized in Eq. (85). Specifically, the h̄n expansion developed
for CQ

μν in Sec. VI can be used to smoothly interpolate from
the full quantum result to the classical limit CQ

μν → CC
μν = 0

as β → 0. The latter then gives the classical only uncertainty
of �ĤS�ĤSB = 0.

Equation (85) is a key result, allowing the calculation of
the energy uncertainty bound from different levels of approx-
imation to quantum coherences, e.g., the semiclassical results
given above.

IX. CONCLUSIONS

In conclusion, existing classical descriptions fail to capture
equilibrium stationary coherence effects in the MLSB model.
Quantization of the system energy through a semiclassical
framework partially corrects this failure, giving an accurate
description of quantum stationary coherence elements at high
temperatures. Even these models, however, fail qualitatively
for the important case of symmetric system-bath interactions,
i.e., for MLSB systems in which all sites couple to the
bath with the same reorganization energy. Thus equilibrium
coherence in the MLSB model appears to be an exclusively
quantum-mechanical feature in systems relevant to light har-
vesting. In addition, a Wigner-space expansion perturbative
in h̄ (rather than in either site-to-site or system-bath inter-
action strength) is introduced and appears promising for the
efficient calculation of stationary coherence elements beyond
the weak-coupling limit. Even at third order in h̄, the results
compare favorably at biologically relevant temperatures to
fully quantum-mechanical results for the dimer model studied.
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APPENDIX A: COMPARISON TO MMST HAMILTONIAN

The MMST semiclassical representation [25–27] differs
from the classical model described in Sec. III in that site-to-
site interactions in the MMST framework are mediated both
by position [as in Hss of Eq. (24)] and momentum [26]. The
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MMST Hamiltonian corresponding to our Hss would read

H (MMST)
ss = 1

2

∑
m,n

√
ωmωnVmn

(
qmqn + pm pn

ωmωn

)
(A1)

=
∑
m,n

Vmn
√

JmJn cos θmn, (A2)

where θmn = θm − θn. Under the restriction of Eq. (6), how-
ever, classical dynamics under the two models are equivalent.
To see this, compare the classical propagator

L̂(MMST)
ss = i

{
H (MMST)

ss , ·} (A3)

generated by the MMST interaction Hamiltonian with the
propagator

L̂ss = i{Hss, ·} (A4)

generated by the Hss of Eq. (24). Here {·, ·} is the classical
Poisson bracket

{ f , g} =
∑

n

(
∂ f

∂θn

∂g

∂Jn
− ∂g

∂θn

∂ f

∂Jn

)
. (A5)

Evaluating the two propagators explicitly gives

L̂(MMST)
ss = i

∑
m,n

Vmn

√
Jm

Jn

×
(

2Jn sin θmn
∂

∂Jn
− cos θmn

∂

∂θn

)
(A6)

and

L̂ss = i
∑
m,n

Vmn

√
Jm

Jn
(2 cos θm) (A7)

×
(

−2Jn sin θn
∂

∂Jn
− cos θn

∂

∂θn

)

= L̂(MMST)
ss − i

∑
m,n

Vmn

√
Jm

Jn

×
(

2Jn sin(θm + θn)
∂

∂Jn
+ cos(θm + θn)

∂

∂θn

)
. (A8)

Thus the terms that differ between the two propagators os-
cillate with the angular sum θm + θn. Under the restriction of
Eq. (6), the time evolution of each local phase θi is dominated
by the linear evolution θi(t ) ≈ ωit due to the local Hamilto-
nian Hl of Eq. (23), so that the sum θm + θn evolves with a
frequency near 2ω̄. Under Eq. (6), such high-frequency terms
have only a negligible impact on the dynamics since they
average to zero on a very short time scale. A more complete
discussion can be found in Ref. [19].

APPENDIX B: WIGNER SPACE EXPANSION

To obtain the h̄3 expansion of Sec. VIII, perform the partial
Wigner transformation [44] over the bath coordinates so that
the reduced system density matrix σ̂e takes the form

σ̂e = P̂êP̂e

TrS{P̂êP̂e}
, (B1)

with

̂ =
∫ (∏

k

dQkdPk

)[
e−β(Ĥe+ĤB+ĤSB)]

W, (B2)

where for any operator Â

[Â]W =
∫ (∏

k

d�k

)
e

iP·�
h̄

〈
Q − �

2

∣∣∣∣Â
∣∣∣∣Q + �

2

〉
. (B3)

The partial Wigner transform [Â]W is thus an operator over the
system Hilbert space but a function of the bath coordinates.
Wigner transformations can be calculated from the rules [44]

[Q̂k]W = Qk, (B4)

[P̂k]W = Pk, (B5)

and

[ÂB̂]W = [Â]We
h̄�̂
2i [B̂]W, (B6)

where

�̂ =
∑

k

( ←−
∂

∂Pk

−→
∂

∂Qk
−

←−
∂

∂Qk

−→
∂

∂Pk

)
. (B7)

In this last expression, the arrows indicate whether the deriva-
tive is applied to the quantity on the right or left of the
expression.

Using the Zassenhaus expansion, we have

e−β(Ĥe+ĤB+ĤSB) = e−βĤB e−βĤe e−βĤSB e− β2

2 Ĉ1 e− β3

6 Ĉ2 . . . , (B8)

where

Ĉ1 = [Ĥe + ĤB, ĤSB], (B9)

Ĉ2 = [Ĥe + ĤB, Ĉ1] + 2[ĤSB, Ĉ1], (B10)

and each remaining factor is an exponential in a sum Ĉn of n
nested commutators between Ĥe + ĤB and ĤSB. The quantity
̂ can then be written

̂ =
∫ (∏

k

dQkdPk

)
[e−βĤB ]W

× [
e−βĤe e−βĤSB e− β2

2 Ĉ1 e− β3

6 Ĉ2 . . .
]

W. (B11)

The absence in Eq. (B11) of the exponential operator e
h̄�̂
2i that

normally appears in Wigner-space products [see Eq. (B6)] is
due to the integration over the bath phase space [52].

This expression now offers a concrete method for comput-
ing the reduced density matrix σ̂e to any given order in h̄.
Indeed, the Wigner transform of e−βĤB over the bath is known
analytically as

[e−βĤB ]W̄ =
∏

k

sech

(
β h̄�k

2

)

× exp

[
− tanh

(
β h̄�k

2

)
�2

kQ2
k + P2

k

h̄�k

]
. (B12)
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The second factor in Eq. (B11) is tedious but straightforward
to evaluate at any given order. In fact, Eqs. (B4)–(B6) imply
that the matrix elements of [Ĥe]W = Ĥe and

[ĤSB]W = h̄
∑

nk

αnkQk|n〉〈n| (B13)

are both proportional to h̄, while matrix elements for ĤB are
independent of h̄. Due to the factor of h̄ in the exponent of
Eq. (B6), commutation with ĤB always produces at least one
additional factor of h̄ in Wigner space since

[Â, ĤB]W = [Â]W (e
h̄�̂
2i − e− h̄�̂

2i )[ĤB]W (B14)

and since the lowest-order term in the difference e
h̄�̂
2i − e− h̄�̂

2i

is linear in h̄. As a result of this relation and the linear
scaling of [Ĥe]W and [ĤSB]W , matrix elements for each n-fold
commutator Ĉn scale as h̄n+1 or higher.

The h̄n approximation for [e−βĤe e−βĤSB e− β2

2 Ĉ1 . . .]W is thus
obtained by including commutators up to Ĉn−1, expanding
each exponential, and retaining terms up to βn.

As an explicit example, consider the h̄3 result:

e−βĤe e−βĤSB e− β2

2 Ĉ1 e− β3

6 Ĉ2 · · ·

≈ 1 − β(Ĥe + ĤSB) + β2

2

(
Ĥ2

e + Ĥ2
SB + 2ĤeĤSB − Ĉ1

)
− β3

6

[
Ĥ3

e + Ĥ3
SB + 3ĤeĤ2

SB + 3Ĥ2
e ĤSB

− 3(Ĥe + ĤSB)Ĉ1 + Ĉ2
]
. (B15)

This expression can be simplified by noting that any terms of
overall odd order in bath coordinates vanish upon integration
in Eq. (B11). Noting that Ĥe and ĤB are even in bath coor-
dinates, while ĤSB is odd, a brief calculation reveals that to
order h̄3

̂ ≈
∫ (∏

k

dQkdPk

)
[e−βĤB ]W

(
1 − βĤe+ β2

2

[
Ĥ2

e + Ĥ2
SB

]
W

− β3

6

[
Ĥ3

e + ĤSBĤeĤSB + Ĥ2
SBĤe + ĤeĤ2

SB

+ ĤSBĤBĤSB + Ĥ2
SBĤB − 2ĤBĤ2

SB

]
W

)
. (B16)

To order h̄3, the Wigner transformations of all terms in this
expression may be approximated by simply making the re-
placements Q̂k → Qk and P̂k → Pk in the quantum operators

of Eqs. (4), (5), and (16) [53]. The result is that

̂ ≈ ZC
B

〈
1 − βĤe + β2

2

[
Ĥ2

e + (
ĤQC

SB

)2 + B2
] − β3

6

[
Ĥ3

e

+ ĤQC
SB ĤeĤQC

SB + (
ĤQC

SB

)2
Ĥe + Ĥe

(
ĤQC

SB

)2]〉
B

, (B17)

where

〈. . .〉B = 1

ZC
B

∫ (∏
k

dQkdPk

)
e−βHB (. . .) (B18)

represents a classical average over bath coordinates,

ĤQC
SB =

∑
n,k

αnkQk|n〉〈n|, (B19)

and the term

B2 =
∑

k

h̄2�2
k

4

[
β
(
�2

kQ2
k + P2

k

)
3

− 1

]
(B20)

arises from the third-order expansion of Eq. (B12). Taking
off-diagonal matrix elements of Eq. (B17) in the system
eigenbasis then yields Eq. (77) of the main text. Note that,
to third order, quantum corrections to the partition function
TrS{̂} do not affect CQ

μν since the lowest nonvanishing term
is already of order h̄2 and since

TrS{Ĥe} = h̄
∑

μ

δωμ = 0 (B21)

so that the first-order correction to the partition function
vanishes.

APPENDIX C: PHASE-SPACE REPRESENTATION
OF A QUANTUM COHERENCE

The Wigner distribution for the quantum operator |0〉〈0| of
a harmonic oscillator of frequency ω is given by [44]

[|0〉〈0|]W = 1

π h̄
e− ω2q2+p2

h̄ω . (C1)

The Wigner-space representation of the raising operator â† =
ωq̂−i p̂√

2h̄ω
is simply

[a†]W = ωq − ip√
2h̄ω

. (C2)

Thus according to the Wigner-space product rule [Eq. (B7)]
(with Qk → q)

[|1〉〈0|]W = [â†|0〉〈0|]W (C3)

= [â†]W e
h̄
2i

(←−
∂
∂ p

−→
∂
∂q −

←−
∂
∂q

−→
∂
∂ p

)
[|0〉〈0|]W . (C4)

Expansion of the exponential and evaluation of the derivatives
gives Eq. (83).
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