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Macrorealism (MR) is the view that a system evolving in time possesses definite properties independent of
past or future measurements and is traditionally tested for systems described at each time by a single dichotomic
variable Q. A number of necessary and sufficient conditions for macrorealism have been derived for a dichotomic
variable using sets of Leggett-Garg (LG) inequalities, or the stronger no signaling in time (NSIT) conditions, or
a combination thereof. Here we extend this framework by establishing necessary and sufficient conditions for
macrorealism for measurements made at two and three times for systems described by variables taking three
or more values at each time. Our results include a generalization of Fine’s theorem to many-valued variables
for measurements at three pairs of times and we derive the corresponding complete set of LG inequalities. We
find that LG inequalities and NSIT conditions for many-valued variables do not enjoy the simple hierarchical
relationship exhibited by the dichotomic case. This sheds light on some recent experiments on three-level
systems which exhibit a LG inequality violation even though certain NSIT conditions are satisfied. Under
measurements of dichotomic variables using the Lüders projection rule the three-time LG inequalities cannot be
violated beyond the Lüders bound (which coincides numerically with the Tsirelson bound obeyed by correlators
in Bell experiments), but this bound can be violated in LG tests using degeneracy-breaking (von Neumann)
measurements. We identify precisely which MR conditions are violated under these circumstances.
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I. INTRODUCTION

A. Background

Much current research in quantum theory is devoted to
identifying genuinely quantum-mechanical effects that elude
any kind of classical explanation. There are at least two
reasons why this is of interest. First, to test fundamentals and
address such questions as to whether quantum coherence per-
sists to the macroscopic domain. Second, genuinely quantum
effects can be exploited as resources which encourage the
development of new technologies.

An important example of this endeavor is the Leggett-Garg
(LG) framework, which tests a specific notion of classicality
called macrorealism (MR) [1,2]. (See Ref. [3] for an extensive
review.) This is the view that a system evolving in time
possesses definite properties independent of past or future
measurements. Most theoretical and experimental investiga-
tion of the LG framework concern measurements on a single
dichotomic variable Q evolving in time. Noninvasive mea-
surements of Q are made in three experiments, each involving
three pairs of times, which permit the determination of a set
of temporal correlation functions of the form

C12 = 〈Q1Q2〉, (1.1)

where Qi denotes the value of Q at time ti, and the average is
over a large number of experimental runs of the product of the
sequentially measured values of Q1 and Q2. It is argued that
for a macrorealistic theory, the correlations functions arising
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from measurements at three pairs of times must obey the LG
inequalities:

1 + C12 + C23 + C13 � 0, (1.2)

1 − C12 − C23 + C13 � 0, (1.3)

1 + C12 − C23 − C13 � 0, (1.4)

1 − C12 + C23 − C13 � 0. (1.5)

These inequalities follow from breaking MR down into three
separate assumptions: the variable Q takes a definite value
at each time (macrorealism per se, MRps); that they can
be measured without disturbing the future evolution of the
system (noninvasive measurability, NIM); and that future
measurements cannot affect the past (induction, Ind). In brief,

MR = NIM ∧ MRps ∧ Ind. (1.6)

(Here ∧ denotes logical conjunction.) These assumptions
imply that the values of Q at the three times t1, t2, t3 possess
a joint probability distribution and the LG inequalities readily
follow. Many different experiments on a variety of different
systems have been carried out to test the LG inequalities
and violations in accordance with the predictions of quantum
mechanics have been observed. (See for example the review
Ref. [3].)

B. Necessary and sufficient conditions for macrorealism

The LG framework was developed by way of analogy
to Bell experiments [4,5] (although this analogy is at best
partial [6]). For Bell experiments on an entangled pair of
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qubits, Fine’s famous theorem ensures that the Bell or CHSH
inequalities are both necessary and sufficient conditions for
the existence of an underlying probability matching the pair-
wise marginals determined by the measurements [7–14]. This
is not the case for the LG inequalities, Eqs. (1.2)–(1.5), which
are only necessary conditions for MR. The shortfall may
however be made up by adjoining the four LG inequalities
with a set of 12 two-time LG inequalities of the form

1 + si〈Qi〉 + s j〈Qj〉 + sis jCi j � 0, (1.7)

where si = ±1, i, j take values 1,2,3 with i < j, and the
three averages 〈Qi〉 are measured using three additional ex-
periments. The set of 16 inequalities consisting of Eqs. (1.2)–
(1.5) together with Eq. (1.7) constitute a set of necessary
and sufficient conditions for macrorealism [15,16]. Almost
all experimental tests check only a subset of this set, so test
only necessity, but an experimental test of the complete set of
inequalities was recently carried out [17,18]. This framework,
involving sets of necessary and sufficient conditions for MR,
was also recently extended to measurements at an arbitrary
number of times [19] and to situations involving higher order
correlators [20] (considered earlier in Ref. [21]). Conditions
of this general type have also been derived independently in
polytope constructions [22].

However, it is important to emphasize that the definition of
MR indicated by Eq. (1.6) is open to a number of different
interpretations due to the fact that there are a number of
different and physically reasonable ways of interpreting both
MRps [6] and NIM [16,23,24]. In Ref. [16] a number of
different notions of MR were identified, corresponding to
different ways of implementing NIM. In this classification,
the above characterization of MR using LG inequalities at
two and three times, with the 〈Qi〉 and Ci j measured in six
experiments, is referred to as weak MR.

The other important class of MR conditions are those
involving no signaling in time (NSIT) conditions, which at
two times entail the determination of a probability p12(s1, s2)
through two sequential measurements of Q in a single experi-
ment and requiring that

∑

s1

p12(s1, s2) = p2(s2), (1.8)

where p2(s2) is the probability for Q at t2 with no earlier
measurement at t1 [23]. Analogous conditions at three or more
times are readily constructed [24]. Such conditions also ensure
the existence of an underlying probability, but as argued in
Refs. [15,16] these conditions test a different notion of macro-
realism which is stronger than that characterized purely by LG
inequalities. Characterizations of MR which entail only NSIT
conditions are therefore referred to in Ref. [16] as strong MR.
Intermediate possibilities also exist involving combinations of
LG inequalities and NSIT conditions. All of these notions of
MR are of interest and as we shall see there is some interplay
between the two. (Furthermore, these possibilities are not the
only ones—see for example Refs. [25,26].)

The above descriptions of weak and strong MR are suf-
ficient background for most of what follows in this paper.
However, for convenience a more extensive description sum-
marizing and extending the results of Ref. [16] is given in
Appendix A.

C. This paper

Almost all experimental studies of the LG framework
concern small systems and the original goal of using the
framework to study coherence in macroscopic systems is
still on the far horizon. (Although see the recent proposal
Ref. [27]). However, as the systems studied become pro-
gressively larger, it becomes of interest to extend the above
frameworks to embrace the new features of larger systems
not present, for example, in simple two-state systems, or for
systems described by a single dichotomic variable.

The purpose of the present paper is to develop generaliza-
tions of the above necessary and sufficient tests of macrore-
alism for the case of many-valued variables. We thus imagine
doing a set of experiments each of which may involve one,
two, or three times, and which determine certain averages
and correlators of an N-valued variable. This includes both
the case of fine-grained measurements on an N-level system,
or coarse-grained measurements on systems with dimension
greater than N . Taking first the case of weak MR, these mea-
surements provide a determination, indirectly, of a set of can-
didate two-time probabilities of the form p(n1, n2), p(n2, n3),
p(n1, n3) for the three time pairs (t1, t2), (t2, t3), (t1, t3), where
n runs from 1 to N and N � 3. The question as to whether
these candidate two-time probabilities are non-negative leads
to the desired generalization of the two-time LG inequalities,
Eq. (1.7). From there one can ask for the conditions under
which these three pairwise probabilities are the marginals
of a single three-time probability p(n1, n2, n3). We will thus
develop the appropriate generalizations of the three-time LG
inequalities and Fine’s theorem. We also develop definitions
of strong MR by exploring the generalizations of the NSIT
conditions. We will use our analysis of LG inequalities and
NSIT conditions to explore some of the novel features of
MR conditions for many-valued variables not present in the
dichotomic case.

Some of the finer details of the MR conditions derived in
the following sections are quite complicated. However, we
stress that the underlying strategy is quite simple: in each
case we will show how to express measurements on a many-
valued variable in terms of measurements on a related set of
dichotomic variables, for which the MR conditions are closely
related to those given above.

In Sec. II we review commonly used conditions for MR
for measurements of a single dichotomic variable as out-
lined above. The discussion is primarily from a quantum-
mechanical perspective, from which such conditions are seen
to be restrictions on the degree of interference between dif-
ferent histories of the system. This helps in determining the
degree to which different MR conditions are independent of
each other and also illustrates the link between LG inequalities
and NSIT conditions, preparing the way for the many-valued
case.

The extension of the standard approach involving LG
inequalities for dichotomic variables to many-valued variables
is presented in Secs. III and IV. We first, in Sec. III, consider
the simpler case of MR conditions at two times and deter-
mine the form of the LG inequalities for variables taking N
values at each time. In Sec. IV we extend our results to the
standard LG situation in which measurements are made at
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three pairs of times. We prove the generalization of Fine’s
theorem required for this case, i.e., we determine necessary
and sufficient conditions for the existence of an underlying
joint probability matching the measured two-time marginals
for N-valued variables. The conditions turn out to be a set
of LG inequalities which can be written quite simply in the
general case. We note that our results are readily extended
to measurements at many times by taking advantage of the
generalized Fine ansatz presented in Ref. [19].

In Sec. V we consider the different and stronger MR
conditions involving NSIT conditions, primarily focusing on
the two-time case and we discuss the logical relationships
between such conditions and the weaker LG inequalities. We
find that it is considerably less simple than the dichotomic
case and we use this understanding to analyze the results of
some recent experiments in which two-time LG violations are
observed even though certain NSIT conditions are satisfied.

In Sec. VI we use the methods developed above to examine
the surprising fact that the LG framework sometimes permits
violations of the LG inequalities to a degree beyond the so-
called Lüders bound [which is − 1

2 on the right-hand side
of Eqs. (1.2)–(1.5)], using particular types of measurements
available only for N � 3 [21,28–31]. This bound coincides
numerically with the Tsirelson bound for the correlators in
Bell experiments [32] but for LG tests the Lüders bound is not
in fact the maximum permitted by quantum mechanics. We
show that the violation naturally separates into a conventional
LG violation (respecting the Lüders bound) together with a
violation of a two-time NSIT condition and discuss the con-
sequences of this in terms of MR conditions. We summarize
and conclude in Sec. VII.

As mentioned, Appendix A contains a more detailed ac-
count of the different types of definitions of MR for di-
chotomic variables alluded to above [6,15,16,24]. Some use-
ful technical results from the decoherent histories approach to
quantum theory are given in Appendix B. In Appendix C we
record for future use the full list of LG inequalities for the
N = 3 case at three times, a list too lengthy for the main text.

II. CONDITIONS FOR MACROREALISM
FOR DICHOTOMIC VARIABLES

The LG framework is usually described from a purely
macrorealistic point of view in which the experimental situ-
ation is a black box, about which little is assumed in terms
of the dynamics, initial state, etc. Although we will follow
this approach where possible, in this paper we find that a
quantum-mechanical analysis is often most convenient, since
the LG inequalities and NSIT conditions that we seek to
derive have a simple interpretation in quantum mechanics as
restrictions on the size of certain interference terms, as will
become clear in what follows (and see also Ref. [15]). The
resulting understanding may subsequently be reexpressed in
purely macrorealistic terms but we do not always spell this
out explicitly.

In this section we describe the quantum-mechanical de-
scription of MR conditions for a single dichotomic variable
at two and three times. Section II A is primarily a summary
of earlier work [15], with some additional commentary, but

the details of this work are important for the generalizations
considered in later sections.

A. Two-time LG inequalities, NSIT conditions,
and interferences

We imagine a system with Hamiltonian H subject to
measurements at either single times in each experiment or
pairs of times. Measurements of the dichotomic variable Q
are described by the projection operator

Ps = 1
2 (1 + sQ̂), (2.1)

where s = ±1. (Hats are used to denote operators only when
necessary to distinguish from a classical counterpart.) For
a system in initial state ρ the probability for a single time
measurement at time t1 is

p1(s) = Tr[Ps(t1)ρ], (2.2)

where Ps(t ) = eiHt Pse−iHt is the projector in the Heisenberg
picture and we use units in which h̄ = 1. The probability for
two sequential projective measurements at times t1, t2 is

p12(s1, s2) = Tr[Ps2 (t2)Ps1 (t1)ρPs1 (t1)]. (2.3)

This matches p1(s1) when summed over s2, but does not
match the single time result Tr[Ps2 (t2)ρ] when summed over
s1. Hence the NSIT condition Eq. (1.8) is not in general
satisfied in quantum mechanics, except for initial density
operators diagonal in Q̂ at time t1.

It is also of interest to consider the two-time quasiprobabil-
ity

q(s1, s2) = ReTr[Ps2 (t2)Ps1 (t1)ρ], (2.4)

which is real and sums to 1, but can be negative [15,33]. It
matches both single-time marginals p1(s1) and p2(s2) when
summed over s2 and s1, respectively. Following the useful
general results of Refs. [34,35], it has a very useful moment
expansion,

q(s1, s2) = 1
4 (1 + 〈Q̂1〉s1 + 〈Q̂2〉s2 + C12s1s2), (2.5)

where the correlator is

C12 = 1
2 〈Q̂1Q̂2 + Q̂2Q̂1〉, (2.6)

and the averages are quantum-mechanical ones in these ex-
pressions. Here Q̂i denotes the operator Q̂ at time ti, in parallel
with the macrorealistic notation used in the Introduction. [We
will not use the notation Q̂(t ) to denote time dependence in
order to avoid confusion with a notation used later in the
many-valued case.] We see from Eq. (2.5) that, for a quantum-
mechanical system, the two-time LG inequalities [Eq. (1.7)]
are equivalent to the conditions

q(si, s j ) � 0. (2.7)

The two-time measurement probability has a similar mo-
ment expansion

p12(s1, s2) = 1
4

(
1 + 〈Q̂1〉s1 + 〈

Q̂(1)
2

〉
s2 + C12s1s2

)
. (2.8)

Here
〈
Q̂(1)

2

〉 = 〈Q̂2〉 + 1
2 〈[Q̂1, Q̂2]Q̂1〉 (2.9)
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and has the interpretation as the average of Q̂2 in the presence
of an earlier measurement at t1 with the result summed out.
The difference between Eq. (2.8) and the quasiprobability
therefore vanishes when 〈Q̂(1)

2 〉 = 〈Q̂2〉 (for example, when
Q̂1 and Q̂2 commute, but this is clearly not the only way).
Note that the quasiprobability and the two-time measurement
probability have the same correlation function [36].

We now introduce the description of interferences in rela-
tion to the quasiprobability Eq. (2.4) and the two-time proba-
bility Eq. (1.7). This may be seen from the simple relationship
(proved in greater generality in Appendix B), which is

q(s1, s2) = p12(s1, s2) +
∑

s′1
s′1 �=s1

ReD(s1, s2|s′
1, s2), (2.10)

where

D(s1, s2|s′
1, s2) = Tr

[
Ps2 (t2)Ps1 (t1)ρPs′

1
(t1)

]
(2.11)

is the so-called decoherence functional [15,37–40], and is a
very useful quantity in what follows. The off-diagonal terms
of the decoherence functional are measures of interference
between the two different quantum histories represented by
sequential pairs of projectors, Ps2 (t2)Ps1 (t1) and Ps2 (t2)Ps′

1
(t1).

For the dichotomic case considered here, there is in fact
only one term in the sum over s′

1, namely s′
1 = −s1, so the

interference terms, which for conciseness we denote I (s2), are
simply

I (s2) = ReD(s1, s2| − s1, s2), (2.12)

and are independent of s1. Note that by inserting the moment
expansions Eqs. (2.5) and (2.8) into Eq. (2.10), we may make
the identification I (s2) = 1

4 (〈Q̂2〉 − 〈Q̂(1)
2 〉)s2. Hence the two-

time interferences depend only on first moments, and not the
two-time correlator.

When the off-diagonal terms are zero there is no inter-
ference and we have q(s1, s2) = p12(s1, s2), and the NSIT
condition Eq. (1.8) is satisfied exactly. However, noting that
p12(s1, s2) is always non-negative, we see from Eq. (2.10)
that the requirement that q(s1, s2) is non-negative is equivalent
to the following bounds on the off-diagonal terms of the
decoherence functional:

−I (s2) � p12(s1, s2). (2.13)

Hence, the two-time LG inequalities represent bounds on the
degree of interference.

From Eq. (2.11) it is easy to see that the decoherence func-
tional summed over s2 gives zero for s1 �= s′

1, which means
that

∑
s2

I (s2) = 0. Hence the interference terms in Eq. (2.13)
are fixed by just one independent quantity, which could be
taken for example to be I (+) = −I (−). However, this single
interference term has four upper bounds in Eq. (2.13), which
is why there are, correspondingly, four two-time LG inequali-
ties. By contrast, the stronger NSIT condition Eq. (1.8) simply
requires that all interference terms are zero. Since there is
just one independent interference term the NSIT condition
amounts to a single condition I (+) = 0.

There is also a relationship between the interference terms
I (s2) and the so-called “coherence witness” [41], which mea-
sures the degree to which the NSIT condition Eq. (1.8) is

violated. We have

p2(s2) −
∑

s1

p12(s1, s2) =
∑

s1 ,s′1
s1 �=s′1

ReD(s1, s2|s′
1, s2) = 2I (s2).

(2.14)

Hence we identify the coherence witness with 2I (s2). (It is
often defined with a modulus sign but the signed definition
used here is convenient.)

In terms of measurements to check the two-time LG
inequalities [or equivalently measure the quasiprobability
Eq. (2.4)], the procedure is to carry out measurements of
〈Q̂1〉, 〈Q̂2〉, and C12 in three separate experiments [15,16].
These must be noninvasive (from a macrorealistic perspec-
tive) to meet the NIM requirement. This is trivial for the
two averages (since only a single measurement is made in
those experiments). For the case of C12 this is accomplished
using a pair of sequential measurements where the first one
is an ideal negative measurement (in which the detector is
coupled to, say, Q1 = +1 and a null result is taken to imply
that Q1 = −1). This determines the sequential probability
p12(s1, s2) from which the correlator is obtained [and as noted,
coincides with the correlator in the quasiprobability q(s1, s2)].
It should be added that the extent to which ideal negative
measurements really meet the NIM requirement has been a
matter of debate and alternative noninvasive measurement
protocols have been explored. (See for example Refs. [20,42]
and references therein.)

B. LG inequalities for three times

A discussion of the relationship between the LG inequali-
ties and bounds on the interferences following from Eq. (2.10)
in the two-time case may also be given for the three-time LG
inequalities using the generalizations of the quasiprobability
and two-time probability given in Appendix B. Following that
discussion, we first consider the three-time quasiprobability

q(s1, s2, s3) = ReTr
(
Cs1s2s3ρ

)
, (2.15)

where

Cs1s2s3 = Ps3 (t3)Ps2 (t2)Ps1 (t1). (2.16)

It has moment expansion

q(s1, s2, s3) = 1
8 (1 + s1〈Q̂1〉 + s2〈Q̂2〉 + s3〈Q̂3〉 + s1s2C12

+ s2s3C23 + s1s3C13 + s1s2s3D), (2.17)

where D is a triple correlator whose form is not needed here,
and is not normally measured in LG experiments [16,34].
Now we note that the quantum-mechanical expression for the
correlators Eq. (2.6) are equivalently written,

C12 =
∑

s1s2s3

s1s2 q(s1, s2, s3), (2.18)

and likewise for C23 and C13. We focus on the LG inequality
Eq. (1.2), which we write here as L1 � 0, where

L1 = 1 + C12 + C13 + C23. (2.19)
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This can be written in the quantum case as

L1 =
∑

s1s2s3

[1 + s1s2 + s1s3 + s2s3] q(s1, s2, s3). (2.20)

Since the term in square brackets is always non-negative, L1

can only be negative if q(s1, s2, s3) < 0.
Equation (B6) shows that the quasiprobability q(s1, s2, s3)

is related to the three-time sequential measurement probabil-
ity p123(s1, s2, s3) by

q(s1, s2, s3) = p123(s1, s2, s3) + ReTr
(
Cs1s2s3 ρ C

†
s1s2s3

)
,

(2.21)
where Cs1s2s3 = 1 − Cs1s2s3 . This means the interference terms
need to be sufficiently large and negative in order for
q(s1, s2, s3) to become negative, in parallel with the two-time
case. However, unlike the two-time case, the LG inequality L1

is a coarse graining of the three-time quasiprobability and we
need to be more specific in identifying the interference terms
responsible for a LG violation.

A very convenient way of identifying the specific form
of the interference terms in Eq. (2.21) is to note that
p123(s1, s2, s3) also has a moment expansion, which is

p123(s1, s2, s3) = 1
8 (1 + s1〈Q̂1〉 + s2

〈
Q̂(1)

2

〉 + s3
〈
Q̂(12)

3

〉

+ s1s2C12+ s2s3C
(1)
23 + s1s3C

(2)
13 + s1s2s3D).

(2.22)

Here, as in Eq. (2.9), the superscripts on the averages and two-
time correlators denote the presence of earlier or intermediate
measurements whose results are summed over [16] (and the
details of such averages and correlators is not relevant here—
we need only the general form of the interference terms). So
for example, C(2)

13 is the correlator for the time pair t1, t3 in
the presence of an intermediate measurement at t2 which has
been summed out. Taking the difference between Eqs. (2.17)
and (2.22), we find that the interference terms have the form

ReTr
(
Cs1s2s3 ρ C

†
s1s2s3

)

= 1
8

(
s2

(〈Q̂2〉 − 〈
Q̂(1)

2

〉) + s3
(〈Q̂3〉 − 〈

Q̂(12)
3

〉)

+ s2s3
(
C23 − C(1)

23

) + s1s3
(
C13 − C(2)

13

))
. (2.23)

Inserting this into Eqs. (2.21) and (2.20), we find

L1 =
∑

s1s2s3

[1 + s1s2 + s1s3 + s2s3] p123(s1, s2, s3)

+ (
C23 − C(1)

23

) + (
C13 − C(2)

13

)
, (2.24)

and note that the first order moment terms have dropped
out entirely. The first term on the right-hand side is clearly
non-negative, and hence the interference terms responsible for
a three-time LG violation are the remaining terms on the right,
involving the difference between two-time correlators. These
terms are completely independent of the quantities controlling
the two-time LG violations, which as we saw above, are the
quantities (〈Q̂2〉 − 〈Q̂(1)

2 〉)s2 (and similarly for the other two-
time pairs). Hence the two-time and three-time LG inequali-
ties test for the presence of completely independent types of
interference terms. This observation is relevant to the study of
Lüders bound violations in Sec. VI.

We briefly note that the three-time LG inequalities
Eqs. (1.2)–(1.5) may be written in terms of the quasiproba-
bility Eq. (2.4) as

q(s1,−s2) + q(s2,−s3) + q(−s1, s3) � 1. (2.25)

We will see that this is a convenient starting point for general-
izations.

III. CONDITIONS FOR MACROREALISM USING
LEGGETT-GARG INEQUALITIES AT TWO TIMES

We now come to the main work of this paper which is to
establish MR conditions for many-valued variables. In this
section and the next we do so using LG inequalities, which,
in the language of Appendix A, characterize weak MR. In this
section we focus on two times and consider three and more
times in the next section.

A. Projectors for many-valued variables

We suppose that measurements on our system may be
described by a set of projection operators En, where n =
1, 2, . . . , N and

∑
n En = 1, where 1 denotes the identity

operator. (To avoid confusion, we use the notation Ps with
s = ±1, for projectors only in the dichotomic case.) These
could be fine-grained measurements En = |n〉〈n| on an N-
level system, or coarse-grained measurements on a system of
dimension greater than N . These projections may be regarded
as measurements of any Hermitian operator which has a
spectral expansion in terms of the En, and this is the sort
of “many-valued variable” we have in mind, but we will not
make explicit use of such an operator in what follows. Some
of the MR conditions we develop in what follows may be
extended to the case in which the En describe ambiguous
measurements (see Ref. [43] for example) but we will not
spell this out explicitly here.

As stated in the Introduction, our strategy for deriving MR
conditions is to link the En with a set of dichotomic variables.
The widest class of such variables have the form

Q̂ =
N∑

n=1

ε(n)En, (3.1)

where ε(n) takes values ±1 with at least one +1 and one −1.
However, for our purposes we have found that it is sufficient in
almost all cases to focus on a more restricted class, consisting
of the N dichotomic variables in which ε(n) has a single
+1 and the rest of the values are −1. (The only exception
we have encountered concerns NSIT conditions for N > 3
briefly discussed later on.) Each Q therefore has the form, for
fixed n,

Q̂(n) = En − En, (3.2)

where En = 1 − En, the negation of En. Each projector En

may therefore be written

En = 1
2 (1 + Q̂(n)). (3.3)
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Since the En sum to the identity, the N dichotomic variables
Q̂(n) satisfy

N∑

n=1

Q̂(n) = (2 − N )1. (3.4)

This means that they are still more than the minimum needed
to uniquely fix the state of the system. This nonminimal set
of variables is convenient to use but it will sometimes be
convenient to revert to a set of N − 1 independent variables.

So far the description is quantum mechanical but since LG
conditions are best formulated in a macrorealistic setting, we
introduce the classical analogs of the projectors En, denoted
E(n), which take values 0 or 1, and a corresponding classical
object Q(n), with the two related by

E(n) = 1
2 [1 + Q(n)]. (3.5)

In what follows we are interested in the values of Q(n)
and Q̂(n) at times ti and, following the notation introduced
earlier, we denote those values by Qi(n) and Q̂i(n). The label
n always denotes one of the N dichotomic variables and times
are always denoted using subscripts. [This is why we avoid
the commonly used notation Q(t ) to denote time dependence,
as noted earlier.]

B. Two-time LG inequalities

We now consider conditions for weak MR at two times
for many-valued variables, using generalizations of the two-
time LG inequalities for the dichotomic case Eq. (1.7). We
suppose that noninvasive measurements are made, as de-
scribed in Sec. II, on the N dichotomic variables Q(n) which
determine the averages 〈Q1(n1)〉, 〈Q2(n2)〉 and the correlator
〈Q1(n1)Q2(n2)〉. From these quantities we seek to construct a
candidate probability p(n1, n2). It is reasonably clear that the
desired probability is

p(n1, n2) = 〈E2(n2)E1(n1)〉, (3.6)

where again the subscripts are time labels. This is clearly the
classical analog of the quantum-mechanical quasiprobability,

q(n1, n2) = ReTr[En2 (t2)En1 (t1)ρ], (3.7)

which is the natural generalization of Eq. (2.4). The desired
two-time LG inequalities are then simply the requirement that
the two-time probability is non-negative, which, written out in
terms of the Q(n) variables, read

1 + 〈Q1(n1)〉 + 〈Q2(n2)〉 + 〈Q1(n1)Q2(n2)〉 � 0. (3.8)

These N2 LG inequalities are necessary and sufficient condi-
tions for MR at two times. Necessity is trivially established
and sufficiency follows since the probabilities themselves,
p(n1, n2), are proportional to the inequalities. The LG in-
equalities involve a set of averages and correlators of the N
variables Q(n). However, as indicated, this is a nonminimal
set since they satisfy Eq. (3.4). This means that in practice it is
only necessary to make measurements on N − 1 of the Q(n),
and the averages and correlators involving the unmeasured
variable readily obtained using Eq. (3.4). We will see this
explicitly below for the N = 3 case.

It may seem unusual that Eq. (3.8) contains only plus signs,
in contrast to the usual two-time LG inequalities Eq. (1.7),
which contains plus and minus signs. However, this relates
to the nonminimal nature of the set of variables Q(n) and
different forms of the LG inequalities may be obtained by
taking linear combinations. In particular, suppose Eq. (3.6) is
summed over all n1 �= n′

1 for some n′
1, and we use the fact that

∑

n1 �=n′
1

E1(n1) = 1 − E1(n′
1) ≡ E1(n′

1). (3.9)

This is easily seen to have the effect of replacing Q1(n1) with
−Q1(n′

1), so we get

1 − 〈Q1(n′
1)〉 + 〈Q2(n2)〉 − 〈Q1(n′

1)Q2(n2)〉 � 0. (3.10)

This means that the set of inequalities Eq. (3.8) is equivalent
to any other set in which any of the Q(n)’s have reversed sign.
It is therefore sufficient to work with any one set with a fixed
set of signs. Note also that for the dichotomic case N = 2,
Eq. (3.4) implies that the two dichotomic variables Q(1),
Q(2) satisfy Q(1) = −Q(2), and the four LG inequalities
Eq. (3.8) coincide with the two-time LG inequalities Eq. (1.7),
as required.

C. Two-time LG inequalities for the N = 3 case

The LG inequalities Eq. (3.8) are simplest in form when
written in terms of the nonminimal set of N variables Q(n),
but in terms of measurements to check them, it is actually
only necessary to measure N − 1 variables at each time and
use Eq. (3.4) to determine the correlators and averages for the
remaining unmeasured variable. We write this out explicitly
for the case N = 3. It is notationally more convenient in
the N = 3 case to take n = A, B,C (following common us-
age [43]). Instead of the three variables Q(n) for n = A, B,C,
for notational convenience we use the three dichotomic vari-
ables Q, R, S and use the classical projectors

E(A) = 1
2 (1 + Q), (3.11)

E(B) = 1
2 (1 + R), (3.12)

E(C) = 1
2 (1 + S). (3.13)

The requirement that these sum to 1 is equivalent to the
statement Q + R + S = −1. This relation between Q, R, and
S may seem to unduly constrain the system (because for
example we cannot have Q = R = +1) but this does not
matter since at each time only one or the other is measured.

In terms of these variables the nine two-time LG inequali-
ties have the form Eq. (3.8) and four of those relations are

1 + 〈Q1〉 + 〈Q2〉 + 〈Q1Q2〉 � 0, (3.14)

1 + 〈R1〉 + 〈Q2〉 + 〈R1Q2〉 � 0, (3.15)

1 + 〈Q1〉 + 〈R2〉 + 〈Q1R2〉 � 0, (3.16)

1 + 〈R1〉 + 〈R2〉 + 〈R1R2〉 � 0. (3.17)

The other five are similar in form and all involve the variable
S. However, the relation Q + R + S = −1 means that all
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averages and correlators involving S may be expressed in
terms of averages and correlators involving Q and R. Carrying
this out explicitly yields

〈Q1Q2〉 + 〈Q1R2〉 + 〈R1Q2〉 + 〈R1R2〉 � 0, (3.18)

〈Q1〉 + 〈R1〉 + 〈Q1Q2〉 + 〈R1Q2〉 � 0, (3.19)

〈Q1〉 + 〈R1〉 + 〈Q1R2〉 + 〈R1R2〉 � 0, (3.20)

〈Q2〉 + 〈R2〉 + 〈Q1Q2〉 + 〈Q1R2〉 � 0, (3.21)

〈Q2〉 + 〈R2〉 + 〈R1Q2〉 + 〈R1R2〉 � 0. (3.22)

Note that the last four inequalities are upper, not lower
bounds. This is the most useful form to use for experi-
mental tests since no measurements on S are required, only
on Q and R. This will clearly be true more generally—
measurements on only N − 1 of the Q(n) variables are
required.

An experiment to test inequalities of this type on a three-
level system was in fact carried out recently [43,44]. The ex-
periment used ambiguous measurements to determine all nine
components of the quasiprobability Eq. (3.7) and observed
violations. It therefore represents a test of a complete set of
necessary and sufficient conditions for MR at two times for
a three-level system. (This experiment also involved a NSIT
condition, discussed further below.)

IV. CONDITIONS FOR MACROREALISM USING
LEGGETT-GARG INEQUALITIES AT THREE

AND MORE TIMES

We turn now to the three-time case and look for conditions
for weak MR involving a set of three-time LG inequalities for
many-valued variables in conjunction with the two-time LG
inequalities already derived. We thus generalize the results of
Refs. [13,16,19].

A. Three-time LG inequalities and Fine’s theorem

We seek necessary and sufficient conditions for the ex-
istence of a joint probability p(n1, n2, n3) matching the
three pairwise probabilities p(n1, n2), p(n2, n3), and p(n1, n3)
which take the form 〈Ei(ni )E j (n j )〉. The dichotomic case
expressed in the form Eq. (2.25) suggests the following propo-
sition: the necessary and sufficient conditions are a set of two-
time LG inequalities of the form 〈Ei(ni )E j (n j )〉 � 0 ensuring
the non-negativity of the pairwise probabilities, together with
the N3 inequalities,

〈E1(n1)E2(n2)〉 + 〈E2(n2)E3(n3)〉 + 〈E1(n1)E3(n3)〉 � 1.

(4.1)

Writing E(n) = 1
2 [1 + Q(n)], these inequalities read

1+ 〈Q1(n1)Q2(n2)〉+ 〈Q2(n2)Q3(n3)〉+ 〈Q1(n1)Q3(n3)〉 � 0.

(4.2)

We will prove the proposition below. Although this is a
complete set of LG inequalities as it stands, like the two-time
case it appears to involve only one set of signs in front of

the correlators. However, again it is possible to demonstrate
equivalence with LG inequalities with another set of signs.
This can be accomplished for example, by summing Eq. (4.2)
over all n1 �= n′

1 [as in Eqs. (3.9) and (3.10)], and using
Eq. (3.4). This yields a sum of a three-time LG inequality of
the form Eq. (4.2) with Q1(n1) replaced with −Q1(n1) and a
two-time LG inequality. Hence taken together with the two-
time LG inequalities (which we assume hold), the three-time
LG inequalities may be written in a number of different forms.

For N = 2 we may write Q(1) = Q and Q(2) = −Q, and
we see that the eight inequalities Eq. (4.2) boil down to the
four familiar LG inequalities Eqs. (1.2)–(1.5). This simplifi-
cation does not seem to happen for N � 3. For N = 3, for
example, we have 27 three-time LG inequalities in terms of
the Q(n). However, the fact that the Q(n) are a nonminimal set
of dichotomic variables, obeying Eq. (3.4) reduces the number
of correlators that have to be measured, as we saw in the
two-time case already. In particular, we may write out the 27
LG inequalities in the N = 3 case in terms of the variables Q,
R, S introduced in Sec. III C, satisfying Q + R + S = −1. Any
correlators or averages involving S may then be expressed
in terms of those involving only Q and R. We thus obtain
a set of three-time LG inequalities analogous to the two-
time set, Eqs. (3.14)–(3.22). These are written out in full in
Appendix C.

B. Proof of the generalized Fine’s theorem

We now prove the above proposition. Necessity trivially
follows from the simple identity

〈[Q(n1) + Q(n2) + Q(n3)]2〉 � 1. (4.3)

To prove sufficiency we use the moment expansion of
p(n1, n2, n3), making use of Eq. (3.3), defined by

p(n1, n2, n3)

= 〈E1(n1)E2(n2)E3(n3)〉
= 1

8 (1 + 〈Q1(n1)〉 + 〈Q2(n2)〉 + 〈Q3(n3)〉
+ 〈Q1(n1)Q2(n2)〉 + 〈Q2(n2)Q3(n3)〉 + 〈Q1(n1)Q3(n3)〉
+ 〈Q1(n1)Q2(n2)Q3(n3)〉). (4.4)

This clearly matches the pairwise marginals as
required. It involves a set of unfixed triple correlators
〈Q1(n1)Q2(n2)Q3(n3)〉 so the aim is to determine the con-
ditions under which these may be chosen to ensure that

0 � p(n1, n2, n3) � 1. (4.5)

Since the probability p(n1, n2, n3) sums to 1 by construction,
the upper bound of 1 is guaranteed as long as we can show that
all N3 terms are non-negative. However, it turns out to be more
convenient to focus on fixed values of n1, n2, n3 and prove
that p(n1, n2, n3) satisfies Eq. (4.5). The lower bound is clearly
satisfied by suitable choice of the triple correlator. It turns out
that the upper bound is most easily handled by reexpressing
it as a set of lower bounds on related probabilities, using the
identity

〈[E1(n1)+ E1(n1)][E2(n2)+ E2(n2)][E3(n3)+ E3(n3)]〉 = 1.

(4.6)
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When expanded out, this is readily seen to imply that

1 − p(n1, n2, n3)

= 〈E1(n1)E2(n2)E3(n3)〉 + 〈E1(n1)E2(n2)E3(n3)〉
+ 〈E1(n1)E2(n2)E3(n3)〉 + 〈E1(n1)E2(n2)E3(n3)〉
+ 〈E1(n1)E2(n2)E3(n3)〉 + 〈E1(n1)E2(n2)E3(n3)〉
+ 〈E1(n1)E2(n2)E3(n3)〉. (4.7)

It follows that p(n1, n2, n3) � 1 as long as the seven proba-
bilities on the right-hand side are non-negative. Each of these
probabilities has a moment expansion of the form Eq. (4.4), in
which one, two, or three of the Q(n)’s have their sign flipped,
and which are readily seen to yield more upper and lower
bounds on the triple correlator.

The remaining steps in the proof are very similar to the
dichotomic case covered in Refs. [13,19]. For simplicity we
write p(n1, n2, n3) � 0 as

F [Q1(n1), Q2(n2), Q3(n3)] + 〈Q1(n1)Q2(n2)Q3(n3)〉 � 0,

(4.8)
where F is read off from Eq. (4.4). This clearly gives a
lower bound on the triple correlator. The triple correlator has
the same sign for the moment expansion of the last three
probabilities on the right-hand side of Eq. (4.7). We thus find
that non-negativity of four of the probabilities is ensured if the
triple correlator has a total of four lower bounds defined by

〈Q1(n1)Q2(n2)Q3(n3)〉
� −F [s1Q1(n1), s2Q2(n2), s3Q3(n3)]

∣∣
s1s2s3=+1, (4.9)

where the si take values ±1. Similarly, the first four probabil-
ities on the right-hand side of Eq. (4.7), have a minus sign in
front of the triple correlator, and we thus obtain the four upper
bounds defined by

F [s1Q1(n1), s2Q2(n2), s3Q3(n3)]|s1s2s3=−1

� 〈Q1(n1)Q2(n2)Q3(n3)〉. (4.10)

A triple correlator ensuring that Eq. (4.5) holds may therefore
be found as long as the four lower bounds are less than the four
upper bounds, i.e.,

F [s′
1Q1(n1), s′

2Q2(n2), s′
3Q3(n3)]

∣∣
s′

1s′
2s′

3=−1

+ F [s1Q1(n1), s2Q2(n2), s3Q3(n3)]
∣∣
s1s2s3=+1 � 0,

(4.11)

for all possible choices of si, s′
i satisfying the stated restric-

tions. Written out in full, these inequalities are readily seen
to coincide with the two-time LG inequalities Eq. (3.8) and
the three-time LG inequalities Eq. (4.2) (and their variants
obtained under sign changes). One also needs to check that
the choice of triple correlator satisfying these upper and lower
bounds lies in the correct range, [−1, 1], however this is
also ensured by the two- and three-time LG inequalities (and
this is readily seen from the proof in Ref. [19]). This proves
sufficiency.

C. Four and more times

The dichotomic case is usually formulated in terms of
measurements at both three and four times. It was recently
generalized to measurements made at an arbitrary number of
times and the corresponding Fine’s theorem derived [19]. This
extension from three to many times made use of a generaliza-
tion of a famous ansatz of Fine, which expresses the four-time
problem entirely in terms of three-time probabilities. This
ansatz was originally given in terms of dichotomic variables,
but we make the simple observation that the ansatz still works
for many-valued variables and, for the four-time case is

p(n1, n2, n3, n4) = p(n1, n2, n3) p(n1, n3, n4)

p(n1, n3)
. (4.12)

This is the solution to the matching problem in which we
seek a probability p(n1, n2, n3, n4) matching the four pairwise
marginals p(n1, n2), p(n2, n3), p(n3, n4), and p(n1, n4). It re-
duces the problem of showing that the four-time probability is
non-negative to that of showing that two three-time probabil-
ities are non-negative, which is guaranteed if two appropriate
sets of three-time LG inequalities are satisfied, which we may
choose to be

1 + 〈Q(n1)Q(n2)〉 + 〈Q(n2)Q(n3)〉 + 〈Q(n1)Q(n3)〉 � 0,

(4.13)

1 − 〈Q(n1)Q(n3)〉 + 〈Q(n3)Q(n4)〉 − 〈Q(n1)Q(n4)〉 � 0.

(4.14)

The choice of signs here is purely for convenience and ex-
ploits the equivalence between different sets of three-time LG
inequalities under sign flips of the Q(n). Eliminating the un-
fixed correlator 〈Q(n1)Q(n3)〉 between these two inequalities
we obtain the N4 inequalities:

〈Q(n1)Q(n2)〉 + 〈Q(n2)Q(n3)〉 + 〈Q(n3)Q(n4)〉
− 〈Q(n1)Q(n4)〉 � −2. (4.15)

We compare this with the set of CHSH-type inequalities,
which for fixed ni consists of eight inequalities, the first two
of which are

− 2 � 〈Q(n1)Q(n2)〉 + 〈Q(n2)Q(n3)〉 + 〈Q(n3)Q(n4)〉
− 〈Q(n1)Q(n4)〉 � 2, (4.16)

and the remaining three pairs are obtained by moving the
minus sign to the other three possible locations. The condition
Eq. (4.15) just derived is clearly just one of these. However,
again using the nonminimal property of the set of Q(n) and
the consequent possibility of sign flips described in Eqs. (3.9)
and (3.10), any one of these eight inequalities may be trans-
formed into any other. Hence the necessary and sufficient
conditions for (weak) MR at four times, consist of the non-
negativity of the pairwise marginals together with any one
of the CHSH-type inequalities Eq. (4.16). As expected these
conditions reduce to the standard set of eight four-time LG
inequalities in the dichotomic case with Q(1) = −Q(2) = Q.

The complete set of LG inequalities for arbitrarily many
times in the dichotomic case was given in Ref. [19]. This may
be generalized to the case of many-valued variables at many
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times by proceeding along the same lines as the four-time case
above.

V. NO SIGNALING IN TIME CONDITIONS

We now consider stronger conditions for MR characterized
by NSIT conditions. We focus primarily on the two-time case,
with brief mention of three-time MR conditions.

A. Two-time NSIT conditions

The NSIT condition Eq. (1.8) naturally generalizes to the
N conditions,

N∑

n1=1

p12(n1, n2) = p2(n2). (5.1)

Since both sides sum to 1, the number of independent con-
ditions is N − 1. However, for N � 3, this is not the only
type of NSIT condition. One can instead measure any one
of a number of dichotomic variables Q at the first time to
determine a probability pQ

12(s1, n2) for s1 = ±1, to which
there corresponds a NSIT condition,

∑

s1

pQ
12(s1, n2) = p2(n2). (5.2)

There will in general be a number of conditions of this type,
depending on how Q is defined. Recalling that the NSIT
condition Eq. (1.8) is only satisfied for zero interference,
the natural way to determine the most complete set of NSIT
conditions in the N � 3 case is to look at the interferences,
generalizing the analysis of Sec. II, and derive a set of NSIT
conditions which ensure that they are all zero. (Unlike the
analysis of LG inequalities presented above, the analysis
of NSIT conditions is quantum mechanical in nature. A
macrorealistic presentation is still possible here but we find
the quantum-mechanical ones most convenient since it can
take advantage of the machinery of the decoherent histories
approach briefly outlined in Appendix B).

The probability pQ
12(s1, n2) cannot simply be obtained from

p12(n1, n2) by coarse graining over n1 because of interfer-
ences. As described in Appendix B, both probabilities and in-
terference terms are described by the decoherence functional,

D(n1, n2|n′
1, n2) = Tr

[
En2 (t2)En1 (t1)ρEn′

1
(t1)

]
, (5.3)

and both of the probabilities p12(n1, n2) and pQ
12(s1, n2) may

be obtained from it, as we now show. The interferences
themselves are represented by the off-diagonal terms of the
decoherence functional. The probability p12(n1, n2) is simply
D(n1, n2|n1, n2). The probability pQ

12(s1, n2) is the diagonal
part of the decoherence functional,

D(s1, n2|s′
1, n2) = Tr

[
En2 (t2)Ps1 (t1)ρPs′

1
(t1)

]
, (5.4)

where Ps is the projector onto the values of Q, Eq. (2.1), and
may be written in terms of the projectors En as

Ps =
∑

n

csnEn. (5.5)

Here the coefficients csn are 0 or 1 and depend in a simple way
on how Q is defined. We thus see that these two decoherence
functionals are related by

D(s1, n2|s′
1, n2) =

∑

n1,n′
1

cs1n1 cs′
1n′

1
D(n1, n2|n′

1, n2). (5.6)

This, via Eq. (5.4), gives an expression for pQ
12(s1, n2) in terms

of Eq. (5.3).
The NSIT conditions in a quantum-mechanical setting may

be checked by writing each side in terms of the decoherence
functional. Consider first Eq. (5.1). We have

p2(n2) =
∑

n1,n′
1

D(n1, n2|n′
1, n2)

=
∑

n1

p12(n1, n2) +
∑

n1 ,n′
1

n1 �=n′
1

ReD(n1, n2|n′
1, n2). (5.7)

We again introduce a slightly more condensed notation for the
interference terms,

In1n′
1
(n2) = ReD(n1, n2|n′

1, n2), (5.8)

for n1 �= n′
1. The coherence witness for the NSIT condition

Eq. (5.1) is a sum terms of this form, so the NSIT condition is
violated unless the interference terms are zero.

Similarly, the violation of Eq. (5.2) is seen to be

p2(n2) =
∑

s1s′
1

D(s1, n2|s′
1, n2)

=
∑

s1

pQ
12(s1, n2) +

∑

s1 ,s′1
s1 �=s′1

ReD(s1, n2|s′
1, n2)

=
∑

s1

pQ
12(s1, n2) +

∑

s1 ,s′1
s1 �=s′1

∑

n1,n′
1

cs1n1 cs′
1n′

1
In1n′

1
(n2). (5.9)

This shows that the two different types of NSIT conditions,
Eqs. (5.1) and (5.2), imply that different combinations of
interference terms are zero. It then seems reasonably clear that
we can make all the interference terms zero, as required by
choosing suitable combinations of NSIT conditions. This is
most easily seen in specific examples.

For general N there are N (N − 1)/2 ways in which n1 �=
n′

1. The interferences terms sum to zero when summed over
n2 which means that are N − 1 interferences terms for fixed
n1 �= n′

1, and therefore a total of N (N − 1)2/2 independent
interference terms. This means there is just one for the N = 2
case, as we know already, but this jumps up to six for the
N = 3 case, which we now study in detail.

B. Two-time NSIT conditions for the N = 3 case

For the N = 3 case the violation of the NSIT condition
Eq. (5.1) reads

p2(n2) =
∑

n1

p12(n1, n2) + 2IAB(n2) + 2IAC(n2) + 2IBC(n2),

(5.10)
where we use In1n′

1
(n2) defined in Eq. (5.8) and again use the

labeling n = A, B,C for the N = 3 case. Each interference
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term sums to zero when summed over n2, so each term
In1n′

1
(n2) has two independent values for fixed n1, n′

1. Hence
there are a total of six interference terms as expected. There
are three different choices for the NSIT condition Eq. (5.2)
depending on how the dichotomic variables Q(n) are defined.
We denote the three choices Q, R, S, where Q = EA − EA,
R = EB − EB, and S = EC − EC , So, for example, for Q, the
values of csn defined in Eq. (5.5) are c+,A = c−,B = c−,C =
1, and the rest zero. From Eq. (5.9) this yields the NSIT
violations

p2(n2) =
∑

s1

pQ
12(s1, n2) + 2IAB(n2) + 2IAC(n2), (5.11)

p2(n2) =
∑

s1

pR
12(s1, n2) + 2IAB(n2) + 2IBC(n2), (5.12)

p2(n2) =
∑

s1

pS
12(s1, n2) + 2IAC(n2) + 2IBC(n2). (5.13)

Equations (5.10)–(5.13) is a set of eight conditions (since each
one involves two independent conditions for N = 3), but since
there are only six interference terms to be constrained to zero,
clearly only six of the eight NSIT conditions are required.
For example, we could require that the interference terms
in Eqs. (5.11)–(5.13) vanish, which implies that all of the
In1n′

1
(n2) are zero. Or, we could require that the interference

terms in Eq. (5.10) vanish along with the interference terms in
any pair of Eqs. (5.11)–(5.13), with the same consequence.

We now note a significant new and general feature that
arises for N � 3, which is that the hierarchical relationship
between two-time LG inequalities and NSIT conditions out-
lined in Appendix A for the dichotomic case becomes more
complicated. In the dichotomic case, the relationship between
these two different types of conditions is simple. As we
can see from Eq. (2.10), if p12(s1, s2) satisfies NSIT, then
the interference term vanishes and q(s1, s2) = p12(s1, s2) and
is therefore non-negative, i.e., the two-time LG inequalities
hold. Equivalently, if the LG inequalities fail, NSIT must be
violated. (However, the LG inequalities may still hold even if
NSIT is violated).

In the many-valued case, if a suitably large set of in-
dependent NSIT conditions are satisfied, then all possible
interference terms vanish. And since Eq. (B6) for the many-
valued case reads

q(n1, n2) = p12(n1, n2) +
∑

n′
1

n′
1 �=n1

In1n′
1
(n2), (5.14)

this means that q(n1, n2) � 0, i.e., the two-time LG inequal-
ities hold. So far this hierarchical relationship is the same as
the dichotomic case, as outlined in Appendix A. However, we
can have a situation in which some, but not all, combinations
of the interference terms vanish. This would mean that the LG
inequalities could be violated but some of the NSIT conditions
are still satisfied.

For example in the N = 3 case, consider the NSIT con-
ditions Eq. (5.1) along with the LG inequalities for the di-
chotomic variable Q = EA − EA. It is then readily shown that
the quasiprobability (i.e., the set of two-time LG inequalities)
is

q(s1, s2) = pQ
12(s1, s2) + IAB(s2) + IAC(s2), (5.15)

where IAB(+) = IAB(A) and IAB(−) = IAB(B) + IAB(C) and
similarly for IAC(s2). It is then clearly possible for these
interference terms to be nonzero and sufficiently negative that
q(s1, s2) � 0 (i.e., the two-time LG inequalities fail), but with
the sum over interference terms in Eq. (5.10) equal to zero, so
that the two NSIT conditions Eq. (5.1) are satisfied.

Precisely such a situation was observed in two recent
experiments which both note two-time LG violations when
NSIT conditions are satisfied in a three-level system [43–45].
This seems surprising on the face of it, but these papers
consider only NSIT conditions of the form Eq. (5.1). If a
complete set of all six NSIT conditions is imposed then all
interferences are zero and all two-time LG inequalities must
be satisfied. A similar feature was observed in a recent LG
analysis of the triple slit experiment [46].

Note that there are still some hierarchical relationships
between NSIT conditions and LG inequalities. For example,
if the NSIT time condition involving Q is satisfied, i.e., the
interference terms in Eq. (5.11) vanish, then the quasiproba-
bility Eq. (5.15) is non-negative, so the LG inequality holds.
However, the general point here is that there is a clear logical
relation between NSIT conditions and LG inequalities only if
all possible NSIT conditions are satisfied, and if only some
are, then the two types of conditions are no longer simply
related.

We may also phrase this all in terms of the characteriza-
tions of MR for dichotomic variables outlined in Appendix A.
For many-valued variables, a natural definition of strong MR
at two times is to require that a suitably large set of NSIT
conditions are satisfied (large enough to ensure that all inter-
ference terms vanish). Similarly weak MR at two times is the
requirement that the full set of N2 two-time LG inequalities
hold. Clearly the former implies the latter but for many-valued
variables there are then a variety of intermediate possibilities
which are not simply related to each other.

The relationship between NSIT conditions and interfer-
ence terms becomes more complicated for N > 3, since it
is not sufficient to work with dichotomic variables of the
form Q̂(n) = En − En. For example, for N = 4, there are
18 interference terms in the decoherence functional. There
are four choices of Q(n) in the form defined above which
means that there are 12 NSIT conditions involving pQ

12(s1, n2)
which, unlike the N = 3 case, is not enough to ensure that
all interference terms are zero. What is required is a more
general dichotomic variable, for example, of the form Q =
P1 + P2 − P3 − P4. By including two variables of this type we
can bring the number of NSIT conditions up to 18 which is
enough to kill all the interference terms.

C. Three-time NSIT conditions

We now briefly consider three-time NSIT conditions for
the many-valued case, the generalizations of the relations,
Eqs. (A3)–(A5), used in the dichotomic case. We saw in
the two-time case in Sec. V B that, for the N = 3 case, it is
possible to write down a set of NSIT conditions involving
three dichotomic variables Q, R, S, which ensures that all
interference terms are zero. Hence by analogy, we anticipate
that in the three-time case for N = 3, a complete set of NSIT
conditions consists of Eqs. (A3)–(A5) in which Q, R, or S is
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measured at the first pair of times (with a measurement En3

at the final time). We will not give any more details here. For
N > 3 a more judicious choice of dichotomic variables may
be required as we saw for the N = 4 case for two times.

VI. VIOLATIONS OF THE LÜDERS BOUND

In quantum mechanics, the LG inequalities Eqs. (1.2)–(1.5)
with correlation functions given by Eq. (2.6) have a maximum
violation of − 1

2 on the right-hand side. This follows from the
inequality

〈(s1Q̂1 + s2Q̂2 + s3Q̂3)2〉 � 0, (6.1)

which is readily seen to imply that

1 + s1s2C12 + s1s3C13 + s2s3C23 � − 1
2 . (6.2)

This relation has the same mathematical form as the Tsirelson
bound for the correlators in Bell-type experiments [32]
and in the LG context this is often known as the Lüders
bound [21,28–31]. However, unlike the Tsirelson bound for
measurements on entangled pairs which represents the max-
imal violation permitted by quantum mechanics, the Lüders
bound can in fact be violated under certain circumstances.
These violations can in principle go right up to the algebraic
maximum of −2 on the right-hand side, accomplished for
example when C12 = C23 = C13 = −1, an outright logical
paradox from the classical point of view (rather than just the
statistical paradox implied by standard LG violations).

The Lüders bound violation is possible for systems with
N � 3 in which the correlator is measured in a different way.
In the usual method, one measures the dichotomic variable

Q̂ =
∑

n

ε(n)En, (6.3)

for some coefficients ε(n) = ±1 using a projector Ps onto Q̂.
This is often referred to as a Lüders measurement [47]. We
will refer to the resulting correlation function Eq. (2.6) as the
Lüders correlator CL

12, and it has an equivalent expression in
terms of the quasiprobability,

CL
12 =

∑

n1,n2

ε(n1)ε(n2) q(n1, n2). (6.4)

However, there is a macrorealistically equivalent method,
which is to determine the two-time sequential measurement
probability p12(n1, n2) using von Neumann (vN) measure-
ments (sometimes also called “degeneracy breaking”), mod-
eled by the En, and related to the Lüders measurements by
Eq. (5.5). We then construct the von Neumann correlator

CvN
12 =

∑

n1,n2

ε(n1)ε(n2) p12(n1, n2). (6.5)

Unlike the Lüders correlator, LG inequalities constructed
from CvN

12 need not satisfy the Lüders bound, Eq. (6.2).
However, we would argue, using the understanding of

earlier sections, that such a violation is different in character
to the usual three-time LG violations. Using Eq. (5.14), it is
readily seen that

CvN
12 = CL

12 −
∑

n1 �=n′
1

∑

n2

ε(n1)ε(n2) In1n′
1
(n2). (6.6)

We thus see that the difference between the von Neumann
and Lüders correlators depends on the two-time interference
terms, i.e., on the degree to which the various two-time
NSIT conditions are violated. This difference vanishes in the
dichotomic case, as is readily shown.

The significance of this is as follows. As argued in Sec. II,
violations of the three-time LG inequalities with the usual
Lüders correlators arise entirely due to interference terms
present at three times but not present at two times. Violation
of the Lüders bound using the von Neumann correlators
therefore arises due to a combination of the usual three-
time interferences plus some additional two-time interference
terms for each time pair—it is not due to any new kind of
three-time interference term.

This effect can then be regarded in two different ways. One
attitude would be to say that since this new effect (compared
to the more usual LG violations) comes solely from two-
time interference, in a systematic exploration of various MR
conditions at two and three times, it might be more natural
to identify these effects using two-time NSIT conditions, not
the three-time inequalities Eq. (6.2). For example, one could
first explore MR conditions for measurements on all pairs of
times and look for parameter ranges in which such conditions
are violated or satisfied. On proceeding to the three-time case,
it would then be natural to restrict only to those parameter
ranges for which all two-time MR conditions hold, in order
to clearly distinguish between MR conditions at two and three
times. The interferences producing the Lüders bound violation
would disappear if all two-time NSIT conditions are enforced,
but a three-time LG violation up to the Lüders bound is still
possible.

The second attitude would be to note that a Lüders vio-
lation requires violation of both a three-time LG inequality
and a two-time NSIT condition. Hence it represents a certain
economy since it tests the violation of two conditions in a
single experiment. In the language of Appendix A, the two
conditions are strong MR at two times (which for the many-
valued case we take to mean that all two-time NSIT conditions
hold) and weak MR at three times.

Lüders bounds violations are also possible with two-time
LG conditions and similar comments apply in terms of the MR
conditions affected. For example, the two-time LG inequality

1 + 〈Q1〉 + 〈Q2〉 + C12 � 0, (6.7)

has Lüders bound − 1
2 on the right-hand side if the correlator

is the usual Lüders one. This LG inequality can be violated
if certain two-time interference terms are sufficiently large, as
we have seen, for example, in Eq. (5.15). From a macroreal-
istic point of view this inequality still holds if the correlator
is measured using degeneracy breaking measurements. The
correlator is then taken to be the von Neumann one CvN

12 and a
violation of the two-time Lüders bound is then possible, due to
the presence of additional two-time interference terms. Hence
here a Lüders violation tests the presence of a sum of two-time
interference terms seen in Eq. (6.6).

However, as stressed already, there are typically many
interference terms for systems with N � 3 which can all be
constrained to various degrees by various LG inequalities
and NSIT conditions. A Lüders bound violation in this case
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signals a violation of a combination of certain two-time LG
inequalities and certain two-time NSIT conditions.

To see this in more detail, consider the N = 3 case dis-
cussed in detail in Sec. V. We have three dichotomic variables
Q, R, S and we note that the LG inequality Eq. (6.7) is
proportional (up to a factor of 1/4) to the quasiprobability
q(+,+) in Eq. (5.15), which we write out explicitly:

q(+,+) = pQ
12(+,+) + IAB(A) + IAC(A). (6.8)

To see the extra interference arising in a Lüders violation, we
compute Eq. (6.6). We have ε(A) = 1 and ε(B) = ε(C) = −1
and noting that

∑
n2

In1n′
1
(n2) = 0, we readily find

CvN
12 = CL

12 − 4IBC(A). (6.9)

These relations together imply that

1 + 〈Q1〉 + 〈Q2〉 + CvN
12

= 4
(
pQ

12(+,+) + IAB(A) + IAC(A) − IBC(A)
)

(6.10)

and it is the presence of the term IBC(A) which makes a Lüders
violation possible. The LG and NSIT conditions described in
Sec. V B will imply restrictions on all six of the interference
terms in the N = 3 case. In particular, it is not hard to see
that nontrivial values of IBC(A) can be identified with NSIT
or conventional LG violations without having to appeal to a
Lüders violation.

Equation (6.10) has another interesting feature which is
that it may be negative even when the operators Q̂1 and Q̂2

commute. The NSIT conditions Eq. (5.11) are satisfied under
those conditions and so the interference terms IAB(A) and
IAC(A) are zero, but since IBC(A) �= 0 Eq. (6.10) indicates
that a LG violation is still possible. This conclusion is in
agreement with the earlier work [31] in which this phe-
nomenon was examined more generally (and also investigated
the conceptual relevance of Lüders violations, as we do here).

To be clear, none of the above remarks undermine the
significance of Lüders bound violations, which are truly strik-
ing nonclassical effects, even more so than conventional LG
violations. Here we have argued here that the presence of the
underlying interference terms producing them can be detected
by less striking means and also identified the particular type
of MR conditions that Lüders violations test.

VII. SUMMARY AND CONCLUSION

We have shown how to extend the standard conditions
for macrorealism for dichotomic variables, namely two- and
three-time LG inequalities and NSIT conditions, to situations
described by N-valued variables. We have in addition ex-
plored the various new features of these conditions and their
relationships that do not arise in the dichotomic case.

To prepare the ground, we carried out a detailed quantum-
mechanical analysis of the dichotomic case in Sec. II. This
highlighted the fact that conditions for MR act as constraints
on the degree of interference.

In Sec. III we considered conditions for MR using LG
inequalities at two times. We established a complete set of
two-time LG inequalities Eq. (3.8) in terms of the dichotomic
variables Q(n), which are necessary and sufficient conditions
for the existence of a pairwise joint probability p(n1, n2).

The N variables Q(n) are however not a minimal set and we
exhibited a minimal set for the case N = 3 involving just two
dichotomic variables.

MR conditions using LG inequalities at three or more times
were considered in Sec. IV. We proved a generalization of
Fine’s theorem, i.e., established the necessary and sufficient
conditions under which a set of three pairwise probabilities
of the form p(ni, n j ) could be matched to an underlying joint
probability. The conditions in question turned out to be a nat-
ural generalization of the familiar three-time LG inequalities
for the dichotomic case. We then generalized this treatment
to four or more times. We noted that Fine’s ansatz for the
N-valued variable case readily extends to the case of four or
more times (as studied in the dichotomic case in Ref. [19]),
which indicates that, like the dichotomic case, MR conditions
involving LG inequalities boil down to the three-time case

In Sec. V we considered the stronger MR conditions char-
acterized by NSIT conditions for the N � 3 case and eluci-
dated their connection to the vanishing of certain interference
terms. We noted that the N � 3 case has a much richer set
of NSIT conditions than the dichotomic case. In particular,
Eq. (5.1) is not the only type of NSIT condition and many new
conditions can be generated by considering measurements
of different choices of dichotomic variables Q(n) at the first
time. We derived the conditions in detail in the N = 3 case
and applied this understanding to some recent experiments,
in which two-time LG inequality violations were observed,
even though the NSIT conditions Eq. (5.1) were satisfied.
This illustrates an important general feature: the set of NSIT
conditions and LG inequalities for many-valued variables do
not have the simple hierarchical relationship enjoyed by the
dichotomic case (summarized in Appendix A).

In Sec. VI we used the understanding gained earlier to
examine violations of the Lüders bound for three-time LG
inequalities. We noted that these entail violations of two dis-
tinct MR conditions—a two-time NSIT condition and a three-
time conventional LG violation. The effect would therefore
be absent in an approach which requires all two-time MR
conditions to be satisfied before proceeding to three times, but
could also be regarded as an economical way of identifying
two different MR condition violations in a single experiment.
Similar observations were also made for the case of two-time
Lüders violations.

The present work suggests a number of new possibilities
for experimental tests of macrorealism. The main one would
be to test a complete set of MR conditions for a system
with N � 3, as was recently carried out for the dichotomic
case [17]. This would involve making measurements which
are able to check all of the two-time and three-time LG in-
equalities, Eqs. (3.8) and (4.2), thereby checking for violations
of MR at both two times and three times. A limited number of
LG tests involving three-level systems have been carried out
but none test a complete set of two- and three-time MR condi-
tions (although the one recent experiment discussed in Sec. III
which tested a complete set of two-time conditions [44] is an
important step forwards here). The proposed new experiments
could readily be carried out by simple extensions of existing
approaches. We also note that the recent proposal to test MR in
the context of the harmonic oscillator, involving a dichotomic
variable equal to the sign of the position operator [27], could
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readily be extended to many-valued variables by partitioning
the position into more than two values. Further tests of the
Lüders bound are also of interest.
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APPENDIX A: DETAILED CHARACTERIZATION
OF DIFFERENT TYPES OF MACROREALISM

So far we have discussed conditions for MR based on
LG inequalities and NSIT conditions, which, as indicated in
the Introduction, are different types of conditions for MR.
For clarity, we now make these different definitions more
precise, following Refs. [15,16]. As stated already, Eq. (1.6),
macrorealism is the logical conjunction of NIM, MRps, and
induction. The last requirement, induction, is rarely contested.
The first two can be interpreted in a number of different ways,
so elaboration is required.

First of all, MRps comes in three different types [6], but the
LG framework tests only one of them, which are essentially
hidden variable theories of the GRW type [48]. The other two
types are hidden variable theories in which the wave function
itself is included in the specification of the ontic state, as
is the case, for example, in de Broglie–Bohm theory, and
models of this type are much harder to rule out experimentally.
Second, the NIM requirement may also be interpreted in a
number of different ways depending on how many quantities
are determined in each individual experiment. We illustrate
this for MR tests at both two and three times.

At two times, there are two natural ways to proceed. One
is to measure the two-time probability p12(s1, s2) using se-
quential measurements in a single experiment and then require
that it satisfies the NSIT condition Eq. (1.8), which we denote
NSIT(1)2 [23]. We refer to the version of NIM involved in such
a test as sequential NIM, denoted NIMseq, and refer to the
definition of MR tested in this way as strong MR:

MRstrong = NSIT(1)2 ∧ Ind. (A1)

Note that the NSIT condition embraces both NIM and MRps
in this approach, since it both shows that the first of the two
measurements does not disturb the second and supplies the
joint probability for the pair of measurements.

The other way is to measure 〈Q1〉, 〈Q2〉, and C12 in three
different experiments, requiring noninvasiveness in each in-
dividual experiment. The only nontrivial issue in terms of
invasiveness is the measurement of C12 which is carried out
using standard methods in LG experiments, as described in
Sec. II A. Crucially, here we do not demand that the mea-
surements in different experiments would still be noninvasive
if combined. That is, noninvasiveness is maintained only in

each separate piece of the data set, but not the whole. (This
is a direct analogy to what is done in Bell experiments.)
We therefore refer to this version of NIM as piecewise, and
denote it NIMpw. Since NIMpw is clearly weaker than NIMseq,
the corresponding version of MR is much weaker, and we
denote it

MRweak = NIMpw ∧ LG12 ∧ Ind. (A2)

At three times one may proceed similarly. One may use
NIMseq and measure the three-time probability p123(s1, s2, s3)
directly using three sequential measurements in a single ex-
periment and then require that it satisfies a set of NSIT
conditions [23,24]. A suitable set are the conditions

∑

s2

p23(s2, s3) = p3(s3), (A3)

∑

s1

p123(s1, s2, s3) = p23(s2, s3), (A4)

∑

s2

p123(s1, s2, s3) = p13(s1, s3), (A5)

which are denoted NSIT(2)3, NSIT(1)23, and NSIT1(2)3, respec-
tively. The corresponding definition of strong MR is

MRstrong = NSIT(2)3 ∧ NSIT(1)23 ∧ NSIT1(2)3 ∧ Ind. (A6)

Alternatively, one can work with NIMpw in which the re-
sults of a number of different experiments are combined.
In particular, six experiments are carried out to determine
the three 〈Qi〉 and three Ci j , so no more than two measure-
ments are made in each individual experiment. Weak MR is
then defined using a combination of two and three time LG
inequalities:

MRweak = NIMpw ∧ LG12 ∧ LG23 ∧ LG13 ∧ LG123 ∧ Ind.

(A7)
An intermediate possibility is to use NIMseq for the two-
time measurements, but use NIMpw in assembling the two-
time probabilities into a three-time probability, leading to the
definition of MR:

MRint = NSIT(1)2 ∧ NSIT(1)3 ∧ NSIT(2)3 ∧ LG123 ∧ Ind.

(A8)
Most LG experiments to date appear to be testing either
MRweak or MRint although this is not necessarily made clear
in many previous works.

There is a clear hierarchy in these conditions, namely

MRstrong ⇒ MRint ⇒ MRweak, (A9)

which follows because the NSIT conditions imply that LG
inequalities must hold but the converse is not true. However,
this hierarchy is specifically for the case of measurements of
a single dichotomic variable. For the case of many-valued
variables we consider in this paper there is a richer variety
of NSIT conditions and LG inequalities, and consequently a
richer variety of intermediate MR conditions which do not
have a straightforward hierarchical relationship.
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APPENDIX B: SOME RESULTS FROM THE DECOHERENT
HISTORIES APPROACH TO QUANTUM MECHANICS

Here we briefly outline some properties of the decoher-
ence functional and its relation to the quasiprobability and
sequential measurement formula. These results are standard
mathematical ones from the decoherent histories approach to
quantum theory [15,37–40] although this is not a decoherent
histories analysis.

Histories consisting of measurements at n times are repre-
sented by “class operators”

Cα = Psn (tn) · · · Ps2 (t2)Ps1 (t1), (B1)

where α denotes the string (s1, s2, . . . , sn). They sum to the
identity. Each class operator has negation defined by

Cα = 1 − Cα =
∑

α′ �=α

Cα′ , (B2)

which therefore represents all the histories not corresponding
to the string (s1, s2, . . . , sn). The probability for a sequence of
measurements at n times is

p(α) = Tr(CαρC†
α ), (B3)

and the associated quasiprobability is

q(α) = ReTr(Cαρ). (B4)

We also introduce the decoherence functional

D(α, α′) = Tr(CαρC†
α′ ), (B5)

describing interference between the history Cα and history Cα′ .
Simple algebra then shows that

q(α) = p(α) + ReD(α, ᾱ), (B6)

where

D(α, ᾱ) = Tr(CαρC
†
α ) (B7)

is the decoherence functional describing the interference be-
tween history Cα and its negation Cα . Equation (B6) may also
be written

q(α) = p(α) +
∑

α′
α′ �=α

ReD(α, α′). (B8)

APPENDIX C: LEGGETT-GARG INEQUALITIES
AT THREE TIMES FOR THE N = 3 CASE

We give here the explicit form for the three-time LG
inequalities Eq. (4.2) in the N = 3 case, in terms of the three
dichotomic variables Q, R, and S, satisfying Q + R + S = −1.
They are

1 + 〈Q1Q2〉 + 〈Q2Q3〉 + 〈Q1Q3〉 � 0, (C1)

1 + 〈R1Q2〉 + 〈Q2Q3〉 + 〈R1Q3〉 � 0, (C2)

1 + 〈Q1R2〉 + 〈R2Q3〉 + 〈Q1Q3〉 � 0, (C3)

1 + 〈R1R2〉 + 〈R2Q3〉 + 〈R1Q3〉 � 0, (C4)

1 + 〈Q1Q2〉 + 〈Q2R3〉 + 〈Q1R3〉 � 0, (C5)

1 + 〈R1Q2〉 + 〈Q2R3〉 + 〈R1R3〉 � 0, (C6)

1 + 〈Q1R2〉 + 〈R2R3〉 + 〈Q1R3〉 � 0, (C7)
1 + 〈R1R2〉 + 〈R2R3〉 + 〈R1R3〉 � 0, (C8)

1 + 〈S1Q2〉 + 〈Q2Q3〉 + 〈S1Q3〉 � 0, (C9)

1 + 〈S1R2〉 + 〈R2Q3〉 + 〈S1Q3〉 � 0, (C10)

1 + 〈S1Q2〉 + 〈Q2R3〉 + 〈S1R3〉 � 0, (C11)

1 + 〈S1R2〉 + 〈R2R3〉 + 〈S1R3〉 � 0, (C12)

1 + 〈Q1S2〉 + 〈S2Q3〉 + 〈Q1Q3〉 � 0, (C13)

1 + 〈R1S2〉 + 〈S2Q3〉 + 〈R1Q3〉 � 0, (C14)

1 + 〈Q1S2〉 + 〈S2R3〉 + 〈Q1R3〉 � 0, (C15)

1 + 〈R1S2〉 + 〈S2R3〉 + 〈R1R3〉 � 0, (C16)

1 + 〈Q1Q2〉 + 〈Q2S3〉 + 〈Q1S3〉 � 0, (C17)

1 + 〈R1Q2〉 + 〈Q2S3〉 + 〈R1S3〉 � 0, (C18)

1 + 〈Q1R2〉 + 〈R2S3〉 + 〈Q1S3〉 � 0, (C19)

1 + 〈R1R2〉 + 〈R2S3〉 + 〈R1S3〉 � 0, (C20)

1 + 〈S1S2〉 + 〈S2R3〉 + 〈S1R3〉 � 0, (C21)

1 + 〈S1S2〉 + 〈S2Q3〉 + 〈S1Q3〉 � 0, (C22)

1 + 〈Q1S2〉 + 〈S2S3〉 + 〈Q1S3〉 � 0, (C23)

1 + 〈R1S2〉 + 〈S2S3〉 + 〈R1S3〉 � 0, (C24)

1 + 〈S1Q2〉 + 〈Q2S3〉 + 〈S1S3〉 � 0, (C25)

1 + 〈S1R2〉 + 〈R2S3〉 + 〈S1S3〉 � 0, (C26)

1 + 〈S1S2〉 + 〈S2S3〉 + 〈S1S3〉 � 0. (C27)

Due to the nonminimal nature of the set Q, R, S, we in fact do
not need to measure all 27 correlators, since all averages and
correlators involving S may be expressed in terms of Q and R.
So we have for example

〈S1Q2〉 = −〈Q2〉 − 〈Q1Q2〉 − 〈R1Q2〉, (C28)

and also

〈S1S2〉 = 1 + 〈Q1〉 + 〈Q2〉 + 〈R1〉 + 〈R2〉 + 〈Q1Q2〉
+ 〈Q1R2〉 + 〈R1Q2〉 + 〈R1R2〉. (C29)

All other cases have this general form and we will not write
them out here. The set of quantities to be measured then
consists of the 12 correlators of the form 〈QiRj〉, 〈QiQj〉,
〈RiRj〉 (the last two with i < j), along with the six averages
〈Qi〉 and 〈Ri〉, for i, j = 1, 2, 3.
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