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One of the advantages of a reconstruction of quantum mechanics based on transparent physical axioms is
that it may offer insight to naturally generalize quantum mechanics by relaxing the axioms. Here, we discuss
possible extensions of quantum mechanics within a general epistemic framework based on an operational
scheme of estimation of momentum given information on the conjugate positions under epistemic restriction.
The epistemic restriction is parameterized by a global-nonseparable random variable on the order of Planck
constant, an ontic extension to the separable classical phase-space variables. Within the estimation scheme, the
canonical quantum laws are reconstructed for a specific estimator and estimation error. In the present work,
keeping the Born’s quadratic law intact, we construct a class of nonlinear variants of Schrödinger equation
and generalized Heisenberg uncertainty principle within the estimation scheme by assuming a more general
class of estimation errors. The nonlinearity of the Schrödinger equation and the deviation from the Heisenberg
uncertainty principle thus have a common transparent operational origin in terms of generalizations of estimation
errors. We then argue that a broad class of nonlinearities and deviations from the Heisenberg uncertainty principle
arise from estimation errors violating a plausible inferential-causality principle of estimation independence
which is respected by the standard quantum mechanics. This result therefore constrains possible extensions of
quantum mechanics and suggests directions to generalize quantum mechanics which comply with the principle
of estimation independence.
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I. INTRODUCTION

The linearity of the Schrödinger equation with Hermitian
quantum Hamiltonian, together with the Born’s quadratic
law, i.e., the Born’s statistical interpretation of wave func-
tion, and the Heisenberg uncertainty principle, are the central
tenets of quantum mechanics. Hitherto, they have passed all
experimental tests with unprecedented accuracy. In spite of
their monumental empirical successes, there are nonetheless
important reasons to mull over possible generalizations of,
and deviations from, these canonical quantum laws: as a guide
to conceive stringent precision tests of quantum mechanics
which is motivated by the argument that the linearity of
the theory might be an approximation to a deeper theory
with an extremely weak nonlinearity [1,2], or that the Born’s
quadratic law applies only in a specific situation of quantum
equilibrium [3]; to construct a general framework for a broad
class of nonclassical theories which provide a foil to the
standard quantum mechanics to better understand concep-
tually what deeply distinguishes quantum mechanics from
the alternative nonclassical theories [4–10]; to study their
information-processing capabilities in comparison with those
based on quantum mechanics [11–16]; to resolve the infamous
measurement problem that the present linear Schrödinger
equation may lead to an embarrassing superposition of per-
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ceptible macroscopic objects [17–22] (i.e., the well-known
Schrödinger’s cat [23]); and to develop a general framework
which may encompass quantum mechanics and general rela-
tivity [24,25].

It has been argued, however, that nonlinear modifica-
tions of the Schrödinger equation may violate the relativistic
causality principle of no-signaling [26–30]. Moreover, intro-
ducing a non-Hermitian quantum Hamiltonian [31] may also
be in conflict with no-signaling [32]. In contrast to this, while
quantum mechanics allows stronger than classical correla-
tion [33,34], such nonclassical correlations cannot be used
to perform faster than light communication; hence, quantum
mechanics elegantly respects no-signaling. However, as the
Popescu-Rohrlich box shows [35], quantum mechanics is not
the only theory which allows stronger than classical correla-
tion and at the same time also complies with no-signaling.
Hence, no-signaling is not sufficient to uniquely single out
quantum mechanics from among all possible nonclassical
theories. These simple but fundamental results yet suggest
that the abstract quantum laws may be deeply rooted in some
forms of causality principles. This belief is further supported
by the theoretical findings that introducing nonlinearity in the
Schrödinger equation and a deviation from the Heisenberg
uncertainty principle may also lead to violations of the second
law of thermodynamics [36,37] (see, however, Ref. [38]). In
addition, a deviation from the Heisenberg uncertainty princi-
ple may imply stronger than quantum correlation [39], which
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in turn allows implausible computational power [40–47]. Is
quantum mechanics the unique nonclassical theory that obeys
certain causality principles [35]? This line of inquiry to
reconstruct quantum mechanics from deep but simple and
transparent axioms [48] may not only lead to a better un-
derstanding on the meaning of quantum mechanics but may
also offer fresh insight and useful intuition to suggest a
logically coherent possible extensions of quantum mechanics
by slightly varying the parameters unfixed by the axioms or
by relaxing some of the axioms.

On the other hand, previously, we have shown that the
abstract formalism of nonrelativistic spinless quantum me-
chanics can be reconstructed within an epistemic framework
based on an operational scheme of estimation of momen-
tum given the information on the conjugate positions [49],
under a fundamental epistemic restriction [50] so that the
allowed probability distribution of positions that an agent
can prepare are irreducibly parametrized by the underlying
momentum field. The momentum field is assumed to fluctuate
randomly, induced by a global-nonseparable random variable
on the order of the Planck constant, an ontic extension to
the separable classical phase-space variables [51]. Within this
operational scheme of estimation under epistemic restriction,
we showed in Refs. [49,51] that the mathematical rules of
quantum mechanics in complex Hilbert space formalism, in-
cluding the linear Schrödinger equation with Hermitian quan-
tum Hamiltonian, the Born’s quadratic law, and also the exact
form of the Heisenberg uncertainty principle, emerge when
the associated estimator and estimation error, take specific
forms. Such a specific operational scheme of estimation of
momentum based on information on positions has a well-
defined implementation in terms of weak momentum value
measurement [52–54], which leads to a simple method for the
reconstruction of quantum wave function [49,55].

In the present work, we show that the above epistemic
framework based on the operational scheme of estimation
under epistemic restriction, is flexible to transparently accom-
modate a broad class of possible extensions of quantum me-
chanics. Keeping the Born’s quadratic law intact, we first con-
struct a broad class of nonlinear variants of the Schrödinger
equation and generalized Heisenberg uncertainty principle,
by choosing a more general class of estimation errors. Both
deviations from the canonical laws of quantum mechanics
have thus a common origin from, and a transparent operational
meaning in terms of, the generalizations of the estimation
errors. They are thus deeply interrelated. In particular, there
is no nonlinearity without a deviation from the Heisenberg
uncertainty principle, suggesting that it is difficult to modify
a part of quantum mechanics without changing the other
important parts of the theory. We then show that a broad
class of nonlinear Schrödinger equations and deviations from
the Heisenberg uncertainty principle arise from estimation
errors violating a plausible inferential-causality principle of
estimation independence [56]. By contrast, the principle of
estimation independence is strictly and pleasingly respected
by the specific estimation error leading to the standard quan-
tum mechanics. The result thus constrains possible extensions
of quantum mechanics and offers insight to the kinds of
generalization of quantum mechanics which comply with the
principle of estimation independence.

The rest of the paper is organized as follows. In Sec. II,
we give a brief summary on the epistemic reconstruction
of nonrelativistic spinless quantum mechanics proposed in
Refs. [49,51,56], based on the operational scheme of esti-
mation of momentum given information on positions under
epistemic restriction parameterized by a global random vari-
able, with specific estimator and estimation error. In Sec. III A,
we consider a generalization of the estimation scheme by
employing a class of more general estimation errors, based
on which we derive a broad nonlinear variants of Schrödinger
equation in Sec. III B and generalized Heisenberg uncertainty
principle in Sec. III C. We proceed in Sec. IV to discuss the
relation between the resulting nonlinearity in the Schrödinger
equation and the deviation from the Heisenberg uncertainty
principle, and show that a large class of nonlinearities and
deviations from the Heisenberg uncertainty principle arise
from estimation schemes with estimation errors violating a
physically transparent and plausible inferential-causality prin-
ciple of estimation independence. We end in Sec. V with
conclusions and offer a sketch of several future directions for
possible generalizations of quantum mechanics which do not
violate the principle of estimation independence.

II. QUANTUM MECHANICS FROM A SPECIFIC SCHEME
OF ESTIMATION UNDER EPISTEMIC RESTRICTION

PARAMETERIZED BY A GLOBAL RANDOM VARIABLE
ON THE ORDER OF PLANCK CONSTANT

Consider a system with a spatial configuration q =
(q1, . . . , qN ) and the conjugate momentum p = (p1, . . . , pN ).
First, recall that in classical mechanics, working within the
Hamilton-Jacobi formalism [57], the momentum field can be
written as

p̃C(q, t ) = ∂qSC(q, t ), (1)

where ∂q = (∂q1 , . . . , ∂qN ), and SC(q, t ) is a real-valued scalar
function of the positions q and time t , called as the Hamilton’s
principal function. (In the paper, we label the momentum
field with p̃, whereas p is used to denote the specific value
of momentum). It is then clear from Eq. (1) that in classical
mechanics, given a momentum field p̃C(q) (trivial dependence
on time is notationally suppressed) arising in a fixed experi-
mental arrangement, it is in principle possible for an agent, by
repeating the experiments many times, to prepare an ensemble
of trajectories with arbitrary distribution of positions ρ(q).
Namely, each trajectory in the momentum field p̃C(q) can
be assigned an arbitrary weight ρ(q). Hence, in classical
mechanics, the distribution of positions ρ(q) is fundamentally
independent of, and thus is not irreducibly parametrized by,
the underlying momentum field p̃C(q).

We postulate that the above epistemic freedom, namely the
freedom to prepare the probability distribution of positions
independent of the underlying momentum field, is no longer
respected in the microscopic world [51]. Assume first that in
the microscopic world, there is a global-nonseparable variable
ξ of action dimensional, fluctuating randomly and inducing
a random fluctuations of the momentum field p̃(q, t ; ξ ) =
( p̃1(q, t ; ξ ), . . . , p̃N (q, t ; ξ )). We then assume that the en-
semble of trajectories obtained by identically repeating the
experiment suffers a fundamental epistemic restriction [51]:
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Namely, unlike in classical mechanics discussed above, it is
no longer possible for an agent to assign each trajectory in
the momentum field p̃(q; ξ ) an arbitrary weight. The probabil-
ity distributions of positions therefore fundamentally depend
on, and thus are irreducibly parametrized by, the underlying
momentum field p̃(q; ξ ). To make explicit this intrinsic de-
pendence, we write the probability distribution of positions as
ρp̃(q) with a subscript p̃. Furthermore, we assume that in the
formal limit of vanishing global fluctuation ξ , the epistemic
restriction disappears, i.e., limξ→0 ρp̃(q) = ρ(q), and we re-
gain classical mechanics satisfying Eq. (1) with the epistemic
freedom recovered. The fluctuation of ξ thus characterizes
the strength of the epistemic restriction and therefore must be
practically ignorable in the macroscopic physical regime. We
emphasize that the global-nonseparable variable ξ provides
an ontic extension to the separable classical phase-space
variables.

We have argued in Refs. [49,51] that the abstract mathe-
matical rules of nonrelativistic spinless quantum mechanics
can be derived within an operational scheme of estimation of
momentum given information on positions, under the above
epistemic restriction, combined with the Bayesian reasoning
given the experimental settings. A concrete illustration of the
reconstruction of quantum laws based on such an estimation
scheme in a single- and double-slit experiment is given in
Appendix A. First, suppose that the agent has access to q
via some position measurement. Note that, as emphasized
by Bell [58], any measurement should be reducible to the
measurement of position. Since q is sampled from ρp̃(q)
parametrized by p̃(q; ξ ), then it must somehow contain some
information about p̃(q; ξ ). How can the agent use her informa-
tion about position, in the most reasonable way, to estimate the
conjugate momentum? To answer this parameter estimation
problem, we need to choose the estimator and the associated
estimation error [59].

Let us construct a reasonable estimator for p̃(q; ξ ). First,
we select a subensemble of trajectories that are passing q(t )
at time t , where different trajectories in the subensemble
correspond to different fluctuations of ξ . Then, along each
of the trajectory in the subensemble, we make a naive clas-
sical momentum measurement via two consecutive position
measurements as follows. Just before the system is detected
at q(t ), we perform a sufficiently weak measurement of the
position at time t − �t without appreciably disturbing the
trajectory, yielding q(t − �t ), where �t is extremely small.
The velocity along the trajectory at q(t ) can then be computed
in the conventional way by evaluating the difference between
q(t ) and q(t − �t ) and dividing it with �t , from which we
also get the momentum p̃(q; ξ ) along that particular trajectory.
Note that because of the fluctuation of ξ , each such single
measurement of momentum must yield a random outcome.
We then define the estimator p(q) = (p1(q), . . . , pN (q)) for
p̃(q; ξ ) at time t by taking the average of the above measure-
ment outcomes over all the trajectories in the subensemble.
Within the statistical model, such a conditional ensemble
average of momentum p(q) thus corresponds to the average
of p̃(q; ξ ) over ξ , i.e.,

p(q)
.=

∫
dξ p̃(q; ξ )χ (ξ ), (2)

where χ (ξ ) is the probability distribution of ξ . Clearly, by
construction, in the absence of ξ , the above scheme for
estimating the momentum reduces to the conventional mea-
surement of momentum at q in classical mechanics which
must give back Eq. (1).

Next, to have a smooth correspondence with classical me-
chanics, we assume that the above estimator p(q) for p̃(q; ξ )
at q can be written as follows:

p(q)
.= ∂qS(q), (3)

where S(q) is a real-valued scalar function, so that in the
macroscopic physical regime, the estimator is expected to
approach the gradient of the Hamilton’s principal function,
i.e., p(q) = ∂qS(q) → ∂qSC(q), recovering Eq. (1) of classical
mechanics. Of course, since we want to reconstruct quantum
mechanics from the above estimation scheme, for consistency,
we need to check afterward whether the above operational
protocol for estimating the momentum at q(t ), by first weakly
measuring the position at time t − �t and then followed
immediately by a position postselection (strong position mea-
surement) at time t , is consistent with quantum mechanics.
That this is indeed the case is shown by Wiseman in Ref. [60]
(see also Refs. [49,55]), which has led to the impressive
experimental reconstruction of the average trajectory in the
double-slit experiment [61]. Namely, implementing the above
estimation of the momentum at q with the quantum weak
measurement over a preselected wave function ψ (q) and a
position postselection at q [52–54], indeed yields Eq. (3),
where S(q) is identified as the phase of the quantum wave
function ψ (q).

Moreover, given q, let us assume that the error in a single-
shot estimation of p̃(q; ξ ) with the estimator p(q) = ∂qS(q)
has the following specific form [49]:

εp(q; ξ )
.= p̃(q; ξ ) − ∂qS(q) = ξ

2
∂q ln ρp̃(q). (4)

One can see that in the mathematical limit ξ → 0, the estima-
tion error is vanishing, and we regain the classical relation
of Eq. (1), limξ→0 p̃ = p = ∂qS, so that the epistemic re-
striction disappears, as required. Furthermore, assuming that
ρp̃(q) is vanishing at the boundary, the above estimation error
is on average vanishing for all ξ , i.e.,

∫
dqεp(q; ξ )ρp̃(q) =

ξ

2

∫
dq∂qρp̃(q) = 0, dq = dq1 . . . dqN ; hence, it is desirably

(weakly) unbiased.
Let us further assume that the global variable ξ is fluctuat-

ing randomly on a microscopic timescale so that its first and
second moments are independent of time, given by [51]

ξ
.=

∫
dξ ξ χ (ξ ) = 0, ξ 2 = h̄2. (5)

The left equation guarantees that the conditional (subensem-
ble) average of p given q is equal to the estimator satisfying
Eq. (3); i.e., from Eq. (4), we have p(q) = ∫

dξ p̃(q; ξ )χ (ξ ) =
∂qS(q). On the other hand, the right equation in Eq. (5) shows
that the strength of the estimation error is on the order of
Planck constant. It therefore ensures that in the macroscopic
physical regime, the estimation error is much smaller than the
estimator, i.e., |∂qS| � | ξ

2 ∂q ln ρp̃|, so that Eq. (4) effectively
reduces back to the classical relation: p̃ ≈ ∂qS. Finally, one
can also argue that in the above estimation scheme, the
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estimator p(q) = ∂qS(q) best estimates p̃(q; ξ ), in the sense
that it minimizes the mean-squared (MS) error defined
as E2

p
.= ∫

dqdξ (εp(q; ξ ))2χ (ξ )ρp̃(q) [49] (see also Ap-
pendix B). This estimation scheme is thus also consistent
with the argument advanced in Refs. [62,63] wherein Eq. (3),
with S(q) is given by the phase of the wave function, is
interpreted as the optimal estimate of momentum based on
the measurement of position.

For later comparison, let us write Eq. (4) as

p̃(q; ξ ) = ∂qS(q) + ξ

2

∂qρp̃(q)

ρp̃(q)
. (6)

Hence, we have a random momentum field which is decom-
posed into two terms. We emphasize that, by construction,
the above decomposition of the random momentum field is
not ontic (physical), happening in physical space. Rather,
the decomposition is epistemic (i.e., informational); namely,
it happens in the agent’s mind, artificially devised by the
agent to describe her best estimate of the momentum given
information on positions [the first term on the right-hand side
of Eq. (6)] and the associated single-shot estimation error [the
second term] [49]. Equation (6) is just the specific epistemic
restriction we postulated in Ref. [51], based on which we
derived the mathematical formalism of quantum mechanics.

Within the epistemic reconstruction based on the specific
operational scheme of estimation under epistemic restric-
tion, the quantum wave function ψ (q, t ) characterizing a
preparation is a mathematical object which summarizes the
estimator of Eq. (3) and the estimation error of Eq. (4) via
(S(q, t ), ρp̃(q, t )) as [49]

ψ (q, t )
.= √

ρp̃(q, t ) exp[iS(q, t )/h̄]. (7)

As in Refs. [60,62,63], S(q, t ) operationally defined in Eq. (3)
indeed constitutes the phase of the quantum wave function.
In this sense, basically, the estimation of momentum given
information on positions described above thus operationally
leads to the reconstruction of quantum wave function charac-
terizing the preparation [55]. For example, consider a prepa-
ration setting so that quantum mechanically it results in a
Gaussian wave function ψ (q) = ( 1

2πσ 2
q

)1/4e−(q−qo)2/4σ 2
q +ipoq/h̄.

Within the above epistemic interpretation, noting Eqs. (3)
and (4), it means that given information on q, the agent should
assign p(q) = po as her best estimate of the momentum of
the system, with the single-shot estimation error εp(q; ξ ) =
− ξ

2σ 2
q

(q − qo) so that the MS error reads E2
p = h̄2/4σ 2

q . In

particular, a preparation leading to a plane-wave function,
ψ (q) ∼ eipoq/h̄, means that the agent’s best estimate of mo-
mentum p = po is sharp with a vanishing MS error, E2

p = 0.
Hence, by construction, quantum wave function is not an

agent-independent objective physical attribute of the system,
but it represents the agent’s estimation about the momentum
field arising in her preparation based on information on the
conjugate positions [49]. Note that from the definition of wave
function in Eq. (7), the epistemic decomposition of momen-
tum field in Eq. (6) is invariant under the transformation of
wave function ψ �→ Zψ , where Z is an arbitrary complex
constant. Namely, the estimator and the estimation error of
Eqs. (3) and (4) are invariant under such transformation of

wave function. ψ and Zψ thus represent the same estimation
scheme; i.e., the statistical content encoded in ψ and Zψ are
the same, as in standard quantum mechanics. One can also see
that, by construction, Eq. (7) leads to the Born’s quadratic law,

ρp̃(q, t ) = |ψ (q, t )|2. (8)

Finally, within the above specific estimation scheme, the
linear Schrödinger equation can be seen as a Bayesian rule
for updating the specific estimator and estimation error rep-
resented by the wave function via Eqs. (3) and (4), when she
does not make measurement [49]. To see this, first note that
measurement is in practice carried out by making a selection
of a subensemble of trajectories associated with a particular
measurement outcome (see Appendix A for a concrete illus-
tration). No measurement thus corresponds to no selection of
trajectories. In the absence of measurement, it is therefore
natural for the agent to update her estimation represented by
the wave function by imposing the statistical-informational
constraints of conservation of trajectories and average energy.
It is shown in Ref. [51] that, within the estimation scheme with
the specific estimator and estimation error given by Eqs. (3)
and (4), the above conservation principles lead to the deriva-
tion of the celebrated linear Schrödinger equation. We shall
rederive the linear Schrödinger equation as a specific case of a
more general dynamical equation in Sec. III B. Moreover, the
Heisenberg-Kennard uncertainty relation between momentum
and position can be traced back to the trade-off between the
MS errors of simultaneous estimations of momentum field
and mean position, which in turn is implied by the specific
choice of estimation error of Eq. (4). This fundamentally
distinctive feature of quantum mechanics will also be red-
erived in Sec. III C as a specific case of a more general
uncertainty relation.

III. GENERALIZED ESTIMATION ERRORS: NONLINEAR
SCHRÖDINGER EQUATION, AND GENERALIZED

HEISENBERG UNCERTAINTY PRINCIPLE

A. A class of generalized estimation errors

One of the advantages of the epistemic reconstruction of
quantum mechanics within the operational scheme of estima-
tion under epistemic restriction is that it provides a flexible
operational framework for transparently accommodating a
broad class of possible generalizations of quantum mechanics.
As summarized above, since the exact forms of the linear
Schrödinger equation and the Heisenberg uncertainty princi-
ple can be obtained starting from the scheme of estimation of
momentum given positions with the help of specific estimator
and estimation error respectively given by Eqs. (3) and (4),
it is instructive to generalize the above estimation scheme by
relaxing Eqs. (3) and/or (4), to search for possible nontrivial
extensions of quantum mechanics. To this end, recall that, as
discussed in the previous section, the choice of the estimator
of Eq. (3) is primarily motivated by a desire to have a smooth
macroscopic classicality, requiring the estimator to recover
the classical relation of Eq. (1) in the macroscopic physical
regime. In this sense, the form of the estimator of Eq. (3)
appears to be very natural. By contrast, the form of the

012205-4



NONLINEAR SCHRÖDINGER EQUATIONS AND … PHYSICAL REVIEW A 102, 012205 (2020)

estimation error of Eq. (4) appears to be apparently ad hoc.
Hence, it is instructive to try various possible alternative
forms of estimation error, and work out and analyze the
modifications they imply to the canonical laws of standard
quantum mechanics such as the linear Schrödinger equation
and the Heisenberg uncertainty principle.

Let us therefore consider a generalized scheme of estima-
tion of the momentum based on information on the conjugate
positions, with the estimator given by Eq. (3), but with an es-
timation error which generalizes Eq. (4) having the following
general form:

εp f (q; ξ )
.= p̃(q; ξ ) − ∂qS(q)

= ξ

2

∂qρp̃(q)

ρp̃(q)
+ ξ

2
f (ρp̃(q), ∂qρp̃(q)), (9)

where ξ is again assumed to satisfy Eq. (5), and f =
( f1(ρp̃, ∂qρp̃), . . . , fN (ρp̃, ∂qρp̃)) is a real vector-valued func-
tion of ρp̃(q) and its spatial gradient ∂qρp̃(q). Generalization
to include higher degrees of spatial derivatives of ρp̃(q) are
straightforward. Comparing Eq. (9) with Eq. (4), we have thus
added a minimal yet general nontrivial correction term given
by the last term on the right-hand side of Eq. (9).

Several desirable properties of the specific estimation
scheme of Sec. II are shared by the above more general
estimation scheme. First, in the limit of vanishing global
fluctuation ξ , the estimation error of Eq. (9) is vanishing,
and we consistently recover Eq. (1) of classical mechanics,
i.e., limξ→0 p̃ = p = ∂qS. Next, in the macroscopic regime
where the estimation error of Eq. (9) is much smaller than the
estimator of Eq. (3), we again effectively regain the classical
relation of Eq. (1), i.e., p̃ ≈ ∂qS(q). Moreover, noting Eq. (5),
from Eq. (9), the conditional average of p given q is equal
to the estimator of Eq. (3), i.e.,

∫
dξ p̃(q; ξ )χ (ξ ) = ∂qS(q), as

required. Finally, as shown in Appendix B, like the specific
scheme of estimation in Sec. II, in the estimation scheme
with the general estimation error of Eq. (9), the estimator of
Eq. (3) also provides the best estimate of momentum based on
information on positions, minimizing the MS error.

We show below that the general form of estimation error
of Eq. (9) will lead to a broad class of nonlinear variants of
Schrödinger equation when the agent does not make mea-
surement (Sec. III B) and a class of generalized Heisenberg
uncertainty principle (Sec. III C). We note that in Ref. [56]
we have also briefly discussed a specific modification of
estimation error of Eq. (4) leading to a specific deviation
from the Heisenberg uncertainty principle; this specific mod-
ification belongs to the class of estimation errors of Eq. (9)
with a specific f = �∂qρp̃(q), where � is a dimensionless
real constant.

B. A class of nonlinear Schrödinger equations

Let us derive the equation that governs the time evolution
of the agent’s estimation of momentum given information
on positions, namely the time evolution of the estimator and
estimation error respectively given by Eqs. (3) and (9), when
the agent does not make any selection of trajectories. We thus
need to find out how the agent should rationally update the
pair of functions S(q, t ) and ρp̃(q, t ) which determine the

estimator and estimation error, provided that she does not
make any selection of trajectories. To do this, first, we rewrite
Eq. (9) as

p̃(q; ξ ) = ∂qS(q) + ξ

2

∂qρp̃(q)

ρp̃(q)
+ ξ

2
f (ρp̃(q), ∂qρp̃(q)). (10)

As for the case of Eq. (6), by construction, the above de-
composition of the random momentum field on the left-hand
side, into three terms on the right-hand side, is not ontic,
happening in physical space; rather, it is epistemic, artificially
constructed in the agent’s mind to organize her experiences.

Now, for simplicity, we confine our discussion to a system
of N one-dimensional (or N/3 three-dimensional) particles
subjected to a scalar potential V (q) with the classical Hamil-
tonian taking the following form: H (p, q) = ∑N

j=1 p2
j/2mj +

V (q), where mj is the mass of the jth particle. (Application to
more general classical Hamiltonian can be done following the
same steps below). In this case, the velocity q̇ j = dq j/dt , j =
1, . . . , N and the momentum are related as q̇ j = ∂H/∂ p j =
p j/mj , j = 1, . . . , N , so that inserting Eq. (10), the veloc-
ity field is epistemically decomposed as ˜̇q j (q; ξ ) = p̃ j/mj =
∂q j S

mj
+ ξ

2mj

∂q j ρ p̃

ρ p̃
+ ξ

2mj
f j (ρp̃, ∂qρp̃), j = 1, . . . , N . The first

term on the right-hand side is just the agent’s best estimate of
the velocity based on information on positions, and the other
two terms comprise the estimation error. Hence, averaging
over ξ and noting Eq. (5), we obtain the conditional average
velocity at q which is equal to the best estimate, i.e.,

q̇ j (q) = ∂q j S(q)/mj, (11)

j = 1, . . . , N .
Next, since the agent does not make any selection of trajec-

tories, it is reasonable to require that her estimator and estima-
tion error should be updated in such a way that they respect the
conservation of trajectories or probability current. The agent’s
estimation should therefore satisfy the following continuity
equation: ∂tρp̃ + ∑N

j=1 ∂q j (q̇ jρp̃) = 0. Inserting Eq. (11), one
thus obtains

∂tρp̃ +
N∑

j=1

∂q j

(
∂q j S

mj
ρp̃

)
= 0. (12)

Moreover, note that since the underlying momentum field is
random due to the fluctuation of ξ , each single trajectory does
not in general conserve the energy. However, since the agent
does not make any selection of trajectories, it is reasonable to
assume that her estimation should respect a weaker constraint
of conservation of average energy, i.e.,

d

dt
〈H〉{S,ρ p̃} = 0. (13)

Here, the average energy 〈H〉{S,ρ p̃} is defined as
in conventional probability theory, i.e., 〈H〉{S,ρ p̃} =∫

dqdξd pH (p, q)Pr(p, q|ξ )χ (ξ ), where Pr(p, q|ξ ) =∏N
j=1 δ(p j − p̃ j (q; ξ ))ρp̃(q) is “the epistemically restricted

phase-space distribution” induced by the momentum field
p̃(q; ξ ) defined in Eq. (10) [51,55].

We show below that the above two reasonable statistical-
informational constraints for updating the agent’s estima-
tion of the momentum field when she does not make any
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selection of trajectories, i.e., the conservation of trajectories
and average energy respectively mathematically expressed by
Eqs. (12) and (13), are sufficient to deduce the time evolution
of S(q, t ) and ρp̃(q, t ), which in turn determines the time
evolution of the agent’s estimator and estimation error via
respectively Eqs. (3) and (9). First, to solve Eq. (13), we must
first compute the ensemble average energy, using Eq. (10),
to obtain

〈H〉{S,ρ p̃}

.=
∫

dqdξd pH (p, q)
N∏

j=1

δ(p j − p̃ j (q; ξ ))χ (ξ )ρp̃(q)

=
N∑

j=1

∫
dqρp̃(q)

[(
∂q j S

)2

2mj
+ V + h̄2

8mj

(
∂q j ρp̃

ρp̃

)2
]

+ D f [ρp̃], (14)

where we have used Eq. (5), and D f is a functional of ρp̃(q)
defined as

D f [ρp̃]
.=

N∑
j=1

∫
dq

(
h̄2

4mj

∂q j ρp̃

ρp̃
f j + h̄2

8mj
f 2

j

)
ρp̃(q). (15)

Taking the total derivative of Eq. (14) with respect to time,
one gets

d

dt
〈H〉{S,ρ p̃} =

N∑
j=1

∫
dq ∂tρp̃(q)

[
∂t S +

(
∂q j S

)2

2mj
+ V

− h̄2

2mj

∂2
q j

√
ρp̃√

ρp̃
+ N f (ρp̃)

]
, (16)

where we have made use of Eq. (12), and N f is defined as the
functional derivative of D f [ρp̃] with respect to ρp̃(q) as

N f (ρp̃(q)) .= δD f

δρp̃(q)
. (17)

See Appendix C for the straightforward derivation. Equating
the right-hand side of Eq. (16) to zero, i.e., imposing the
conservation of average energy of Eq. (13), one thus obtains
the following equation:

∂t S +
N∑

j=1

[(
∂q j S

)2

2mj
− h̄2

2mj

∂2
q j

√
ρp̃√

ρp̃

]
+ V + N f (ρp̃) = 0.

(18)

Hence, to comply with the conservation of trajectories and
average energy, the agent’s estimation of the momentum based
on information on positions with the associated estimator
and estimation error determined by (S(q), ρp̃(q)) via Eqs. (3)
and (9), must satisfy a pair of differential equations, i.e.,
Eqs. (12) and (18). Finally, defining the wave function as
in Eq. (7), the two coupled differential equations can be
recast in a compact form into the following general nonlinear
Schrödinger equation:

ih̄∂tψ (q, t ) = −
N∑

j=1

h̄2

2mj
∂2

q j
ψ (q, t ) + V (q)ψ (q, t )

+N f (|ψ (q)|2)ψ (q, t ); (19)

that is, Eqs. (12) and (18) are respectively the imaginary and
the real parts of Eq. (19). In the limit of vanishing N f , we
regain the standard linear Schrödinger equation

ih̄∂tψ (q, t ) = −
N∑

j=1

h̄2

2mj
∂2

q j
ψ (q, t ) + V (q)ψ (q, t ). (20)

N f defined in Eq. (17) thus determines the form and strength
of the nonlinearity in the Schrödinger equation of Eq. (19).
Moreover, when the estimation error εp f (q; ξ ) is much smaller
than the estimator ∂qS, or the global fluctuation ξ is ignorable,
the third and fifth terms in Eq. (18) (i.e., the h̄-dependent
terms) are ignorable, so that it reduces smoothly to the classi-

cal Hamilton-Jacobi equation: ∂t S + ∑N
j=1

(∂q j S)2

2mj
+ V = 0.

One can see that the above general scheme of estimation
under epistemic restriction provides a flexible framework to
construct a broad class of nonlinear variants of Schrödinger
equation with a transparent operational meaning. As a con-
crete example, first, consider an estimation scheme so that f
that appears in the estimation error of Eq. (9) has the following
form:

f j (ρp̃(q)) = � jρp̃(q)α, (21)

j = 1, . . . , N , where � j is a real parameter with the dimen-
sion [length]−1, and α is a nonvanishing real number. In the
limit � j → 0, we have f j → 0, j = 1, . . . , N , so that the
estimation error of Eq. (9) reduces back to the specific form
assumed in Sec. II given by Eq. (4). Inserting Eq. (21) into
Eq. (15), one has

D f [ρp̃] =
N∑

j=1

∫
dq

(
h̄2� j

4mj
ρα

p̃ ∂q j ρp̃ + h̄2�2
j

8mj
ρ2α+1

p̃

)
. (22)

From Eqs. (17) and (22), we therefore obtain

N f (ρp̃(q)) = �ρp̃(q)2α = �|ψ (q)|4α, (23)

where � = ∑N
j=1

h̄2�2
j

8mj
(2α + 1), and we have used Eq. (8) in

the last equality. Inserting into Eq. (19), we finally obtain the
following polynomial nonlinear Schrödinger equation:

ih̄∂tψ (q, t ) = −
N∑

j=1

h̄2

2mj
∂2

q ψ (q, t ) + V (q)ψ (q, t )

+�|ψ (q, t )|4αψ (q, t ), (24)

which gives the well-known quadratic nonlinear Schrödinger
equation when α = 1/2.

As another example, and for later comparison, consider an
estimation scheme so that f in Eq. (9) has the following form:

f j (ρp̃(q), ∂qρp̃(q)) = � j

(
∂q j ρp̃(q)

ρp̃(q)

)β

, (25)

j = 1, . . . , N , where β > 1, and � j is a real parameter with
the dimension of [length]β−1. We have thus assumed a higher
order error term postulated in Eq. (4). Inserting Eq. (25) into
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Eq. (15), we obtain

D f [ρp̃] =
N∑

j=1

∫
dq

(
h̄2� j

4mj
∂q j ρp̃

(
∂q j ρp̃

ρp̃

)β

+ h̄2�2
j

8mj
ρp̃

(
∂q j ρp̃

ρp̃

)2β
)

. (26)

Finally, using Eq. (17), the nonlinearity N f in the Schrödinger equation of Eq. (19) can be computed to get

N f (|ψ |2) =
N∑

j=1

h̄2� j

4mj

⎡
⎣−β

(
∂q j |ψ |2
|ψ |2

)β+1

− (β + 1)∂q j

(
∂q j |ψ |2
|ψ |2

)β
⎤
⎦

+
N∑

j=1

h̄2�2
j

8mj

⎡
⎣−(2β − 1)

(
∂q j |ψ |2
|ψ |2

)2β

− 2β∂q j

(
∂q j |ψ |2
|ψ |2

)2β−1
⎤
⎦, (27)

where we have used Eq. (8).
Let us give a few remarks concerning the derivation of

the class of nonlinear variants of Schrödinger equation of
Eq. (19). First, we note importantly that defining the wave
function as in Eq. (7) amounts to the assumption that the
Born’s quadratic law of Eq. (8) is kept valid. This is un-
like the generalizations of quantum mechanics suggested in
Refs. [3,12], wherein the Born’s quadratic law is somehow
violated.

Notice that the epistemic decomposition of the momentum
field of Eq. (10) is invariant under the addition of a global
phase to the wave function, i.e., ψ �→ eiαψ , where α is an
arbitrary real number. But, unlike the specific estimation
scheme of Sec. II with the epistemic decomposition of
momentum field given by Eq. (6), that in Eq. (10) is in general
no longer invariant under the more general transformation of
wave function: ψ �→ Zψ , where Z is an arbitrary complex
number. We note, however, that while the epistemic decom-
position of momentum field of Eq. (10) with the specific f
given by Eq. (21) is not invariant under the transformation
ψ �→ Zψ , that with the specific f given by Eq. (25) is
invariant under the transformation. As will be argued in
Sec. IV, the two different f s in Eqs. (21) and (25), leading
to two different variants of nonlinearity in the Schrödinger
equations respectively given by Eqs. (23) and (27), are
also fundamentally distinguished with respect to certain
inferential-causality principle. One can also see that the form
of the nonlinearity N f determined in Eq. (17) does not depend
on S(q), which is due to the assumption that f in Eq. (9) does
not depend on S(q) either. Of course, it can be mathematically
extended to depend also on S(q). However, in this case, both
the estimator of Eq. (3) and the estimation error depend on
S(q), so that they are no longer independent of each other,
which is undesirable from the information theoretical point of
view.

Note further that, using the definition of wave function in
Eq. (7), the average energy given in Eq. (14) can be expressed
in terms of wave function as

〈H〉{S,ρ p̃} = 〈ψ |Ĥ |ψ〉 + D f [|ψ |2], (28)

where Ĥ = ∑N
j=1 p̂2

j/2mj + V (q̂) is the usual Hermitian
quantum Hamiltonian. Hence, D f [|ψ |2] defined in Eq. (15)
provides the correction to the quantum average energy
〈ψ |Ĥ |ψ〉. The functional form of this correction term de-

pends on the estimation error of Eq. (9) via f (ρp̃, ∂qρp̃) =
f (|ψ |2, ∂q|ψ |2), and is responsible for the appearance of the
nonlinearity N f in the Schrödinger equation of Eq. (19) via
Eq. (17). The correction of average energy D f [|ψ |2], and
thus the nonlinearity N f (|ψ |2), vanishes for all ψ (i.e., for
all estimation schemes characterized by (S, ρp̃)), if and only
if f = 0, so that the generalized estimation error of Eq. (9)
reduces back to the specific estimation error of Eq. (4),
leading to the standard quantum mechanics. Moreover, unlike
the quantum average energy 〈ψ |Ĥ |ψ〉, the correction term
D f [|ψ |2] is in general not bilinear in ψ .

Next, as in the case of linear Schrödinger equation, the non-
linear Schrödinger equation of Eq. (19) conserves the average
energy and probability current. In fact, as demonstrated above,
we have upgraded the conservation of average energy and
conservation of trajectories (which implies the conservation
of probability current) as the principles which single out
the dynamical equation when the agent does not make any
selection of trajectories, encompassing both the linear and
nonlinear variants of the Schrödinger equation [49] (see also
Appendix A). We emphasize that the above two constraints,
i.e., conservation of trajectories and average energy, are not
agent-independent objective physical constraints like the prin-
ciple of least action. Rather, they are subjective epistemic
constraints conditional on the agent’s action that she does not
make a selection of trajectories manifested in the setting of
the experiment. Hence, the nonlinear Schrödinger equation
of Eq. (19) should be seen as a Bayesian-inferential rule to
update the agent’s estimation about her system when she does
not make any selection of trajectories.

If the agent instead makes a selection trajectories, she
must no longer impose conservation of average energy and
trajectories, so that the Bayesian updating of her estimation no
longer follows the nonlinear Schrödinger equation of Eq. (19).
Such a selection of trajectories is necessary when the agent
makes a measurement [49] (see also Appendix A). From this
observation, the nonlinearity in the Schrödinger equation of
Eq. (19) therefore clearly, by construction, has nothing to do
with the problem of Schrödinger’s cat, unlike those nonlin-
earities discussed in Refs. [18–22], which were introduced
mathematically to circumvent this central aspect of quantum
measurement problem. We note additionally that within our
estimation scheme, since we assume that the system has a
definite configuration all the time as in classical mechanics,
by construction, there is no problem of Schrödinger’s cat.
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Finally, we mention that some authors have proposed sev-
eral different frameworks to introduce nonlinearities in the
Schrödinger equation [1,2,24,64,65], with the main goal to
give a guide for stringent precision test of quantum mechanics.
In particular, Weinberg offered an elegant general “Hamilto-
nian framework” to nonlinearly generalize quantum mechan-
ics [2]. This is done by assuming that, unlike in standard
quantum mechanics, the average energy, or, the “Hamiltonian
functional,” is in general nonbilinear in the wave functions as
in our epistemic model. Moreover, the time evolution, i.e., the
nonlinear Schrödinger equation, is obtained by imposing the
action principle. We emphasize that in Weinberg’s approach,
the nonlinearities are devised as possible mathematical in-
novations relative to the original linear theory, rather than
motivated by deep conceptual reflection. While mathemati-
cally elegant and beautiful, the physical origin and operational
meaning of the nonlinearities are not entirely clear so that
the physical correspondence with the original linear theory
is not conceptually transparent. Moreover, it suffers the same
interpretational problem as that of the linear theory.

By contrast, here we work within a general epistemic
framework based on an operationally transparent scheme
of estimation of momentum given the positions under
epistemic restriction. Most importantly, unlike those in
Refs. [1,2,24,64,65], within the general scheme of estimation,
by construction, the nonlinearity in the Schrödinger equations
has a conceptually transparent operational meaning in terms
of generalization of estimation errors. This transparent inter-
pretation of the nonlinearities in the Schrödinger equation, as
will be discussed in Sec. IV, allows us to impose a physi-
cally transparent and reasonable inferential-causality princi-
ple which rules out a broad class of nonlinear generalizations
of the Schrödinger equation. Another important conceptual
advantage of our general epistemic framework based on the
scheme of estimation of momentum given information on
positions is that, as will be shown in Sec. III C, we can
directly derive the associated modifications of the Heisenberg
uncertainty principle, and study its transparent relation with
the resulting nonlinearities in the Schrödinger equation.

The above observation also suggests an interesting point
that the principle of conservation of average energy and
trajectories employed in the present paper to derive the (linear
and nonlinear) Schrödinger equation are deeply connected
with the action principle used in Weinberg’s approach. A
derivation of the (linear and nonlinear) Schrödinger equation
using action principle, following that in Ref. [66], which is
closely related to our derivation, is given in the Appendix D.
Note, importantly, that unlike the least action principle, which
is independent of the agent’s action and thus objective, the
principle of conservation of average energy and trajectories
employed in the present work are epistemic or informational,
conditional on the agent’s action. Within our model, as dis-
cussed above, the Schrödinger equation arises only when the
agent does not make measurement (i.e., she does not make
a selection of trajectories associated with the measurement
outcomes) so that the conservation of average energy and
trajectories apply. By contrast, from the principle of least
action, it seems to be unclear why (at least the linear)
Schrödinger equation only applies when the agent does not
make a measurement. Hence, while the two approaches lead

to the same equation, the meaning of the resulting Schrödinger
equation are different. Moreover, the principle of conservation
of average energy and trajectories are natural, transparent, and
intuitive, whereas the principle of least action is somehow
ad hoc.

C. A class of generalized Heisenberg uncertainty principle

In this section, we derive a broad class of generalized
Heisenberg uncertainty principle from the general estimation
error of Eq. (9). For notational simplicity, we consider a sys-
tem with one spatial degree of freedom. Note before proceed-
ing that to derive the uncertainty relations rigorously within
the epistemic framework based on the generalized scheme
of estimation, we need to develop a detailed mechanism of
measurement. However, we shall not pursue this problem,
and instead assume that any reliable measurement mechanism
within the generalized scheme of estimation must satisfy a
reasonable informational requirement as mentioned below.

Consider first the estimation scheme discussed in Sec. II,
namely when f in Eq. (9) is vanishing so that the estimation
error takes the specific form given by Eq. (4). This specific
estimation scheme, as elaborated in Refs. [49,51], reproduces
the prediction of standard quantum mechanics. In this case, it
was shown in Ref. [51] that, in general, the ensemble average
of a physical quantity O(p, q) up to second order in p is equal
to the average of the outcomes of the quantum measurement
of a Hermitian quantum observable Ô associated with O, i.e.,

〈O〉{S,ρ p̃} =
∫

dqd pdξO(p, q)Pr{S,ρ p̃}(p, q|ξ )χ (ξ )

= 〈ψ |Ô|ψ〉 =
∑

j

o jPr(o j |ψ ), (29)

where we have used Eqs. (5) and (7). Here Pr{S,ρ p̃}(p, q|ξ ) =∑N
j=1 δ(p j − p̃ j (q; ξ ))ρp̃(q) with p̃(q; ξ ) defined in Eq. (6),

oj , j = 1, 2, . . . is the eigenvalue of Ô, and Pr(o j |ψ ) is the
probability to obtain outcome o j . This equality suggests that,
while each single measurement outcome given by one of the
eigenvalues of Ô does not in general reveal the objective
value of O prior to measurement, each single measurement
outcome can be seen as an unbiased estimate of the average
value of O, so that the average of the measurement out-
comes is equal to the average of O as expressed in Eq. (29).
In particular, as a corollary of Eq. (29), we have σ 2

p̂
.=

〈ψ |( p̂− 〈ψ | p̂|ψ〉)2|ψ〉= 〈(p− 〈p〉{S,ρ p̃})
2〉{S,ρ p̃} =σ 2

p , and sim-

ilarly σ 2
q̂

.= 〈ψ |(q̂ − 〈ψ |q̂|ψ〉)2|ψ〉 = 〈(q − 〈q〉{S,ρ p̃})
2〉{S,ρ p̃}

.=
σ 2

q . Namely, the variance of the outcomes of momentum
(position) measurement, i.e., σ 2

p̂ (σ 2
q̂ ), is equal to the variance

of the momentum (position) of the statistical model, σ 2
p (σ 2

q ).
We assume below that the above conclusion drawn from

the case when f = 0 — namely that the statistical mean of
measurement outcomes of physical quantities (up to second
order in momentum) reproduces the statistical mean of the
corresponding (classical) physical quantity of the underlying
statistical model — can be carried over to the case when f 
= 0.
A similar assumption is also postulated by Weinberg in his
general Hamiltonian framework for introducing nonlinearity
in the Schrödinger equation [2]. Hence, we require that, within
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the epistemic framework based on the generalized estimation
scheme with the estimation error given by Eq. (9), even when
f 
= 0, any reliable measurement scheme must be such that
the variance of the outcome of the momentum measurement
is equal to the variance of the momentum p of the underlying
statistical model, denoted by σ 2

p f
(with a subscript f ). Simi-

larly, the variance of the outcome of the position measurement
is equal to the variance of q of the statistical model σ 2

q f
. To

study the uncertainty relation between the statistics of the
outcomes of measurement of momentum and position in this
generalized estimation scheme, it is thus sufficient to develop
the uncertainty relation between σ 2

p f
and σ 2

q f
.

First, from Eq. (9), we can compute the MS error for the
estimation of momentum field to obtain, noting Eq. (5),

E2
p f

=
∫

dq(εp f (q; ξ ))2χ (ξ )ρp̃(q) = h̄2

4
Jq f + Cf . (30)

Here, Jq f

.= ∫
dq( ∂qρ p̃(q)

ρ p̃(q) )2
ρp̃(q) is the Fisher information

about the mean position contained in ρp̃(q), and Cf is a
functional of ρp̃(q) defined as

Cf [ρp̃]
.= h̄2

4

∫
dq

(
2
∂qρp̃

ρp̃
f + f 2

)
ρp̃(q)

= 2mD f [ρp̃], (31)

where we have used Eq. (15) in the second equality which
is valid for the specific case of particles in a scalar potential.
On the other hand, in the estimation of mean position qo

.=∫
dqqρp̃(q) with the unbiased estimator q, the associated MS

error must satisfy the Cramér-Rao inequality [59]:

E2
q f

=
∫

dq(q − qo)2ρp̃(q) � 1

Jq f

. (32)

Combining Eq. (30) with Eq. (32), we thus obtain the follow-
ing uncertainty relation between the MS errors of the simulta-
neous estimation of momentum field and mean position:

E2
p f
E2

q f
� h̄2

4
+ Cf

Jq f

. (33)

On the other hand, from Eq. (10), the variance of the
momentum can be computed to obtain

σ 2
p f

= �2
p f

+ E2
p f

, (34)

where we have used Eq. (5), E2
p f

is given in (30), and �2
p f

.=∫
dq(∂qS(q) − ∫

dq′∂q′S(q′)ρp̃(q′))2ρp̃(q) is the variance of
the estimator ∂qS(q). Hence, the variance of the momentum
can be decomposed into the accuracy of the estimation of
momentum E2

p f
of Eq. (30), and the precision of the esti-

mation �2
p f

. Moreover, one also straightforwardly has σ 2
q f

=
E2

q f
. Multiplying this with Eq. (34), and using Eq. (33), one

finally obtains the following uncertainty relation between the
variances of momentum and position:

σ 2
p f

σ 2
q f

= �2
p f
E2

q f
+ E2

p f
E2

q f

� �2
p f
E2

q f
+ h̄2

4
+ Cf

Jq f

. (35)

Furthermore, when Cf = 0 we regain the Heisenberg-
Kennard uncertainty relation [67,68]

σ 2
p σ 2

q � �2
pE2

q + h̄2

4
� h̄2

4
, (36)

where, e.g., σ 2
p

.= σ 2
p f

|Cf =0, etc. This is the case for all esti-
mation schemes characterized by the pairs of (S, ρp̃), if and
only if f = 0 so that the estimation error of Eq. (9) reduces
back to the specific form given by Eq. (4). The last term
on the right-hand side of Eq. (35) thus provides a nontrivial
correction to the Heisenberg-Kennard uncertainty relation of
Eq. (36). In Ref. [56], we have derived Eq. (35) but for a
specific case of Eq. (9) with f = �∂qρp̃.

Now, let us consider a specific preparation
characterized by a Gaussian wave function, ψ (q) =
(2πσ 2

q f
)−1/4e

−(q−qo)2/4σ 2
q f

+ipoq/h̄
. In this case, we have ρp̃(q) =

(2πσ 2
q f

)−1/2e
−(q−qo)2/2σ 2

q f so that Jq f = 1/σ 2
q f

= 1/E2
q f

, and
therefore Eq. (32) is saturated. Noting Eq. (30), it follows
then that Eq. (33) is also saturated. Moreover, since for
Gaussian wave function S(q) = poq, we have �2

p f
= 0,

Eq. (34) becomes σ 2
p f

= E2
p f

. Combining all these facts, we
thus finally obtain, for Gaussian wave functions,

σ 2
p f

σ 2
q f

= h̄2

4
+ σ 2

q f
Cf , (37)

which reduces to the usual relation for Gaussian wave func-
tion in standard quantum mechanics when Cf = 0, i.e., when
f = 0. Hence, for nonvanishing Cf , unlike in standard quan-
tum mechanics, the product σ 2

p f
σ 2

q f
of the variances of mo-

mentum and position depends on the profile of the Gaussian
wave function; i.e., it is no longer invariant for all Gaussians.
As a concrete example, consider the case when f is given by
Eq. (21) with α = 1/2, so that Cf in Eq. (37) has the form

Cf = h̄2�2

4

∫
dqρ2

p̃ = h̄2�2

8π1/2σq f
� 0, where � = h̄2�2

4m character-

izes the strength of the nonlinearity in the quadratic nonlinear
Schrödinger equation of Eq. (24). Hence, in this case, we
have σ 2

p f
σ 2

q f
� σ 2

p σ 2
q = h̄2

4 , i.e., the model has a “stronger
than quantum uncertainty.” Moreover, increasing the strength
of the estimation error � increases both the uncertainty and
nonlinearity. Next, let us consider the case when f is given by
Eq. (25) with β = 3. In this case, we have Cf = h̄2

4σ 6
q f

(6�σ 2
q f

+
15�2), so that Cf < 0 for − 6

15σ 2
q f

< � < 0, and Cf � 0

otherwise. When Cf < 0, we thus have σ 2
p f

σ 2
q f

� σ 2
p σ 2

q = h̄2

4 .
Note that such a “weaker than quantum uncertainty” does not
necessarily mean that the statistical model is more classical
than quantum mechanics. This can be seen from the fact that
even in this case f in Eq. (25) could be very large.

IV. DISCUSSION: NONLINEARITY, DEVIATION
FROM THE HEISENBERG UNCERTAINTY,

AND ESTIMATION INDEPENDENCE

We have shown that within the scheme of estimation of
momentum given information on positions, with the estimator
of Eq. (3) and the generalized estimation errors of Eq. (9)
encapsulated (up to ξ ) by the wave function defined in
Eq. (7), the agent’s estimation when she does not make any
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measurement must be updated in time according the nonlinear
Schrödinger equation of Eq. (19). Moreover, the variances
of the outcomes of momentum and position measurements
must satisfy the generalized Heisenberg-Kennard uncertainty
relation of Eq. (35). We emphasize that, by construction, both
the nonlinearity in the Schrödinger equation and the deviation
from the Heisenberg uncertainty principle, respectively char-
acterized by N f and Cf defined in Eqs. (17) and (31), arise
from the same estimation error of Eq. (9) via f . They therefore
should be closely related to each other.

Indeed, in general, by construction, it is easy to see that
no nonlinearity in the Schrödinger equation arises without a
deviation from the Heisenberg uncertainty principle. In partic-
ular, noting Eqs. (17) and (31), for a single one-dimensional
particle of mass m, they are directly related as

N f (|ψ (q)|2) = 1

2m

δCf

δρp̃(q)

∣∣∣∣
ρ p̃(q)=|ψ (q)|2

. (38)

The above relation shows that to have nonlinearity in the
Schrödinger equation for a single particle, the deviation
from the Heisenberg uncertainty principle, i.e., Cf defined
in Eq. (31), cannot be a functional linear in ρp̃(q) or/and in
its spatial derivatives, ∂qρp̃(q). One may thus conclude that,
within the estimation scheme, the nonlinearity is generated
by the deviation from the Heisenberg uncertainty principle.
Furthermore, from Eq. (38), since it is possible to have
Cf 
= 0 with N f = 0, one can still have a nontrivial deviation
from the Heisenberg uncertainty relation without inducing
nonlinearity in the Schrödinger equation. This is the case, for
example, when f = F (q), where F is independent of ρp̃(q)
and ∂qρp̃(q), so that from Eq. (31), C f is linear in ρp̃(q) and
∂qρp̃(q). It suggests that one can still have a superposition
principle while the Heisenberg uncertainty relation is to some
extent modified.

Remarkably, within the epistemic reconstruction based on
scheme of estimation of momentum based on information
on positions with the estimation error having the general
form of Eq. (9), noting Eqs. (17) and (31), and assuming
that the definition of wave function is given by Eq. (7), i.e.,
assuming that the Born’s quadratic law of Eq. (8) stays solid,
the linear Schrödinger equation of Eq. (20), and the exact form
of Heisenberg-Kennard uncertainty relation of Eq. (36), are
regained if and only if f = 0, so that the estimation error of
Eq. (9) reduces back to the specific form given by Eq. (4).
Keeping this observation in mind, we may therefore conclude
that not only standard quantum mechanics corresponds to a
specific estimation scheme with the specific estimator and
estimation error given respectively by Eqs. (3) and (4), but
also that it is difficult to nontrivially modify a part of quantum
mechanics, e.g., the linearity of the Schrödinger equation,
without changing the other fundamental parts of the theory,
e.g., the exact form of the Heisenberg uncertainty principle.

Finally, having obtained the various variants of
Schrödinger equations given in Eq. (19) and uncertainty
relations of Eq. (35), how do we choose among them? To
this end, remember first that the standard linear Schrödinger
equation of Eq. (20) and the Heisenberg-Kennard uncertainty
relation of Eq. (36) have passed all stringent tests conceived
to date. Moreover, there are striking theoretical results

which suggest that nonlinearities in the Schrödinger equation
and/or deviations from the exact Heisenberg uncertainty
principle may imply violations of some forms of causality,
e.g., superluminal signaling [26–30] and/or the second
law of thermodynamics [36,37]. It is therefore instructive
to see, within the general epistemic framework based on
the operational scheme of estimation of momentum given
information on positions, if the specific estimation error given
by Eq. (4), which together with the estimator of Eq. (3) leads
to the standard linear Schrödinger equation and the exact form
of Heisenberg-Kennard uncertainty relation [49,51], might be
justified based on some reasonable premises about causality.

To investigate this last tantalizing question, let us discuss
a physically transparent and plausible inferential-causality
principle of estimation independence introduced in Ref. [56].
Consider two systems, referred to as system 1 and system 2,
with a configuration (q1, q2) and the corresponding conjugate
momentum (p1, p2), prepared independently of each
other. First, recall that in classical mechanics, for such
independent preparations of two systems, the total Lagrangian
is decomposable, so that the associated Hamilton’s
principal function is also decomposable, i.e., SC(q1, q2, t ) =∫ (q,t ) dt ′ (L1(q′

1, q̇′
1) + L2(q′

2, q̇′
2)) = ∫ (q1,t ) dt ′L1(q′

1, q̇′
1) +∫ (q2,t ) dt ′L2(q′

2, q̇′
2) = SC1 (q1, t ) + SC2 (q2, t ), where Lj is the

(classical) Lagrangian associated with system j, j = 1, 2.
To have a smooth classical correspondence, it is therefore
reasonable to assume that, within the generalized estimation
scheme, S(q) defined in Eq. (3) for such pairs of independent
preparations should also be decomposable:

S(q1, q2) = S1(q1) + S2(q2). (39)

Moreover, it is also natural to assume that in such pairs
of independent preparations, the probability distribution of
positions are factorizable, as in classical mechanics, i.e.,

ρp̃(q1, q2) = ρp̃1 (q1)ρp̃2 (q2). (40)

Recalling the definition of wave function given in Eq. (7),
the above two assumptions amount to the postulate in stan-
dard quantum mechanics that the wave function associ-
ated with the independent preparations of the two systems
is factorizable (unentangled), i.e., ψ (q1, q2) = √

ρp̃eiS/h̄ =√
ρp̃1ρp̃2 ei(S1+S2 )/h̄ = ψ1(q1)ψ2(q2). The principle of estima-

tion independence then requires that in such independent
preparations, the estimation of momentum p̃ j of system j, i.e.,
the associated estimator pj and estimation error εp j , should
be reasonably independent of the position qi of the system
i, i 
= j, i, j = 1, 2 [56]. It thus captures an intuitive form of
inferential-causality constraint.

We shall impose the above plausible requirement to scruti-
nize the various estimation schemes discussed in the previous
sections. Let us first consider the estimation scheme discussed
in Sec. II, i.e., when the estimator and the estimation error
take the specific forms respectively given by Eqs. (3) and (4),
leading to the standard quantum mechanics [49,51]. Inserting
Eq. (39) into Eq. (3), one has

pj = ∂q j S(q1, q2) = ∂q j S j (q j ), (41)

j = 1, 2. Hence, the estimator pj for estimating the momen-
tum field p̃ j of system j is indeed independent of the position
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qi of system i, i 
= j, i, j = 1, 2, respecting the principle of
estimation independence. Moreover, inserting Eq. (40) into
Eq. (4), one obtains

εp j = ξ

2
∂q j ln ρp̃(q1, q2) = ξ

2
∂q j ln ρp̃ j (q j ), (42)

j = 1, 2. Namely, the error εp j of estimating p̃ j of system j is
also independent of qi of system i, i 
= j, i, j = 1, 2, satisfying
the requirement of estimation independence. In this sense,
standard quantum mechanics with the linear Schrödinger
equation and the exact form of the Heisenberg uncertainty
principle reformulated within the operational scheme of esti-
mation thus elegantly respects the natural inferential-causality
principle of estimation independence.

Let us show that the above natural requirement of estima-
tion independence is not fulfilled by a broad class of schemes
of estimation of momentum given information on positions
discussed in Sec. III with an estimator having the same form
as that in Sec. II given by Eq. (3), but with an estimation error
of the form given by Eq. (9) which generalizes Eq. (4) via a
nonvanishing f . We only need to check whether the estimation
error of Eq. (9) passes the requirement of estimation indepen-
dence. Since the first term on the right-hand side of Eq. (9)
is already shown above respecting the principle of estimation
independence, we need only to examine the correction term f
under the estimation independence.

Consider first the specific scheme of estimation of momen-
tum given information on positions with the estimation error
having the form of Eq. (9) where f is given by Eq. (21),
leading to the polynomial nonlinear Schrödinger equation of
Eq. (24). Inserting Eq. (40) into Eq. (21), one has

f j
(
ρp̃(q1, q2)

) = f j
(
ρp̃1 (q1)ρp̃2 (q2)

)
= � j

(
ρp̃1ρp̃2 )α 
= � jρ

α
p̃ j

= f j
(
ρp̃ j (q j )

)
, (43)

j = 1, 2. Hence, in this case, the error εp f j
of estimating the

momentum p̃ j of system j depends on the position qi of
system i, i 
= j, i, j = 1, 2, even when the two systems are
prepared independently of each other, violating the principle
of estimation independence. In fact, one can check that any f
which is an analytical function only of ρp̃ (hence, independent
of its spatial gradient) will not pass the reasonable require-
ment of estimation independence. This shows that, within
the operational scheme of estimation of momentum based on
information on positions with the estimation error having the
general form of Eq. (9), the requirement of estimation inde-
pendence rules out a broad class of forms of estimation errors,
thus excluding a broad class of nonlinear generalizations of
Schrödinger equation.

By contrast, one can straightforwardly show that the es-
timation error of Eq. (9) with f given by Eq. (25) satisfies
the plausible requirement of estimation independence; i.e.,
inserting Eq. (40) into Eq. (25), we have

f j
(
ρp̃1 (q1)ρp̃2 (q2)

) = � j

(
∂q j

(
ρp̃1 (q1)ρp̃2 (q2)

)
ρp̃1 (q1)ρp̃2 (q2)

)β

= � j

(
∂q j ρp̃ j (q j )

ρp̃ j (q j )

)β

= f j
(
ρp̃ j (q j )

)
, (44)

j = 1, 2. Indeed, all f which have the form f j = G(
∂q j ρ p̃

ρ p̃
),

where G is some scalar function of
∂q j ρ p̃

ρ p̃
, satisfy the require-

ment of estimation independence. Note, however, that while
this class of forms of f does fulfill the requirement of esti-
mation independence, it in general does not transform in the
same way as the rest of terms in the epistemic decomposition
of momentum field of Eq. (10), so that the latter does not
transform covariantly.

A different kind of f which satisfies the requirement of

estimation independence takes the form f j = G(
∂q j ρ p̃

ρ p̃
, ∂q j S),

j = 1, . . . , N . This can be checked directly for two systems
prepared independently of each other so that Eqs. (39)
and (40) apply. Namely, we have f j (ρp̃1ρp̃2 , S1 + S2) =
G(

∂q j (ρ p̃1 ρ p̃2 )

ρ p̃1 ρ p̃2
, ∂q j (S1 + S2)) = G(

∂q j ρ p̃ j

ρ p̃ j
, ∂q j S j ) = f j (ρp̃ j , S j ),

j = 1, 2. One can work out directly that such a choice
of f will lead to a different class of nonlinear variants of
Schrödinger equation and generalized Heisenberg uncertainty
principle. Note, however, that in this case, the estimation
error becomes correlated with the estimator ∂qS which is
unappealing from the information theoretical view point.

Notice that when f satisfies the requirement of estimation
independence, e.g., that given by Eq. (25), the associated
correction term D f [ρp̃] to the quantum average energy defined
in Eq. (15) for two noninteracting systems is decomposable
into that of each system. This can be seen directly by inserting
Eq. (40) into Eq. (15) for such f s. Accordingly, in this case,
the nonlinearity N f defined in Eq. (17) for two noninteracting
systems is also decomposable; i.e., one has

N f
(
ρp̃1 (q1)ρp̃2 (q2)

) = N f
(
ρp̃1 (q1)

) + N f
(
ρp̃2 (q2)

)
, (45)

as is exemplified by the nonlinearity in Eq. (27). This is not
the case when f does not respect the principle of estimation
independence, as, e.g., that given by Eq. (21) with the asso-
ciated nondecomposable nonlinearity in Eq. (23). Within the
estimation scheme, the principle of estimation independence
thus implies that the product of two wave functions associated
with two noninteracting systems will evolve in time indepen-
dently of each other, as intuitively expected. Such a natural
separability condition for the dynamics of noninteracting
systems is employed to single out the logarithmic nonlinear
Schrödinger equation by Bialynicki-Birula and Mycielski [1].
Moreover, the separability for the dynamics of noninteracting
systems are attained in Weinberg’s Hamiltonian formalism
by imposing the homogeneity condition together with the
additivity of the Hamiltonian functional [2]. We emphasize
that within our estimation scheme, unlike the latter two
approaches, the separability condition for the dynamics of
noninteracting systems has a transparent operational interpre-
tation in terms of a natural inferential-causality principle of
estimation independence.

Next, it is interesting to note that in the estimation scheme
with the generalized estimation error of Eq. (9) and with f
given by Eq. (21), which does not comply with the prin-
ciple of estimation independence, the associated epistemic
decomposition of the momentum fields of Eq. (10) is not
invariant under the transformation of wave function ψ → Zψ ,
where Z is an arbitrary complex number. In contrast to this,
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for f given by Eq. (25), which complies with the estima-
tion independence, the associated epistemic decomposition
of the momentum fields of Eq. (10) is invariant under the
transformation ψ → Zψ . It is instructive to ask if this nice
relation between the principle of estimation independence and
the invariance of epistemic decomposition of the momentum
fields of Eq. (10) under ψ → Zψ applies for all forms of
f . Since the invariance of the nonlinear Schrödinger equa-
tion with respect to ψ → Zψ is obtained in the Weinberg’s
Hamiltonian formalism by imposing the homogeneity condi-
tion to the Hamiltonian functional [2], this suggests a possi-
ble deep connection between the mathematical condition of
homogeneity and the physically transparent inferential-
causality principle of estimation independence, worth further
study in the future.

All the above observations show that the plausible
inferential-causality principle of estimation independence
puts a tight physical-informational constraint which rules
out a significantly large class of mathematically possible
modifications of standard quantum mechanics. Indeed, we
have argued in Ref. [56] that requiring the estimation error
εp(q; ξ ) to satisfy the following conditions: (i) independent
of the estimator p = ∂qS, (ii) transforms covariantly with
the estimator, and (iii) respecting the principle of estimation
independence, will single out the specific form of estimation
error given by Eq. (4) up to the statistics of ξ , which has
been argued in Refs. [49,51] to imply the standard quantum
mechanics. We note that Simon et al. [29] argued that the
principle of no-signaling can be used to single out the linear
quantum dynamics by assuming, at the outset, the quantum
kinematics and the quantum trace rule for computing the
probability of measurement outcomes. See also Ref. [30] for
a similar argument. By contrast, within the above estimation
scheme, the principle of estimation independence is used to
reconstruct the underlying quantum kinematics by constrain-
ing the allowed forms of estimation error, without assuming
any quantum structures. While we have assumed the Born’s
quadratic law of Eq. (8) via the definition of wave function
in Eq. (7), it is not the same as, and weaker than, assuming
the quantum trace rule as in Ref. [29]. Moreover, within the
epistemic reconstruction framework based on the operational
scheme of estimation, the linear Schrödinger equation follows
from the kinematics via imposing the conservation laws, i.e.,
the conservation of trajectories and average energy, naturally
embodying the assumption that the agent does not make any
measurement via a selection of trajectories.

V. CONCLUSIONS AND REMARKS

We have generalized the specific operational scheme of
estimation of momentum given information on the conjugate
positions under epistemic restriction to reconstruct quan-
tum mechanics proposed in Refs. [49,51], by considering
a more general class of estimation errors. We showed that,
provided Born’s quadratic law is kept intact, it leads to a
broad class of nonlinear variants of Schrödinger equation
when the agent does not make measurement and a class
of generalized Heisenberg uncertainty principle. Within the
operational scheme of estimation, both the nonlinearities in
the Schrödinger equation and the deviation from the Heisen-

berg uncertainty principle have thus a transparent opera-
tional interpretation in terms of generalization of the esti-
mation errors. Hence, they are deeply related to each other;
in particular, there is no nonlinearity in the Schrödinger
equation without a deviation from the Heisenberg uncer-
tainty principle. With this in mind, it is interesting to fur-
ther study the connection between the deviation from the
Heinseberg uncertainty principle, which allows stronger than
quantum correlation [15,39] and in turn may imply implausi-
ble computational power [40–47], and the nonlinearity in the
Schrödinger equation, which may lead to a violation of no
signaling [26–30] and computational schemes fundamentally
much faster than quantum computation [11,12]. It is also
interesting to investigate the above deep connection between
the nonlinearity in the Schrödinger equation and the deviation
from the Heisenberg uncertainty principle, with the theoretical
results that both may imply violations of the second law of
thermodynamics [36,37].

It is remarkable that the linear Schrödinger equation of
Eq. (20) and the exact form of Heisenberg uncertainty prin-
ciple of Eq. (36) are regained for a specific estimation scheme
with the estimation error taking the specific form given by
Eq. (4), satisfying the principle of estimation independence.
On the other hand, other forms of estimation errors violat-
ing the principle of estimation independence and/or having
unpleasant statistical property from the view of statistical
estimation lead to nonlinear corrections to the Schrödinger
equation and deviations from the Heisenberg uncertainty prin-
ciple. Noting that such deviations from the linear Schrödinger
equation and Heisenberg uncertainty principle may be in
conflict with the principle of no signaling and the second
law of thermodynamics, or imply implausible computational
power, it is natural to ask if the inferential-causality principle
of estimation independence together with other reasonable
informational constraints may be upgraded as the axioms to
single out uniquely the specific form of estimation error of
Eq. (4) leading to the standard quantum mechanics. That this
might be so is argued in a different work [56]. Our results
also suggest possible deep interlinks between the principle
of estimation independence, no-signaling, the second law
of thermodynamics, and other principles used to single out
quantum correlation such as information causality [45] or
data processing inequality [69–71], which are worth further
investigation in the future.

The above observation prompts the following question:
Beside that mentioned in Sec. III, what kinds of general-
izations of the specific estimation scheme of Sec. II com-
ply with the principle of estimation independence, leading
to possible nontrivial extensions of the standard quantum
mechanics? First, when deriving Eq. (18) by imposing the
conservation of average energy of Eq. (13), leading to the
derivation of the Schrödinger equation, we have implicitly
assumed that the Planck constant h̄, which is the variance
of the global random variable ξ , is indeed constant in time.
One could thus ponder the possibility that h̄ may, though
extremely weakly, depend on time, i.e., ∂t h̄ 
= 0. Such an
assumption clearly does not violate the principle of estimation
independence and may lead to a weak nontrivial nonlinearity
in the Schrödinger equation. We may also study the trade-off
between the resulting nonlinearity in the Schrödinger equation
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and the possible violations of Born’s quadratic law envisioned
in Refs. [3,12]. Following Valentini’s insight in Ref. [3], it
might be interesting to see the implications of such possible
weak temporal fluctuation of h̄ in the early universe. One may
also impose additional statistical constraints, reflecting some
other symmetries of the statistical estimation problems, when
exercising the conservation of average energy of Eq. (13).
For example, one may assume that some measures of in-
formation are (or are not) conserved. Yet another interesting
way to generalize quantum mechanics within the operational
framework of estimation without violating the principle of
estimation independence is to assume that the conservation of
trajectories of Eq. (12) is no longer valid as in open systems, or
to assume that the conservation of average energy of Eq. (13)
is somehow violated as in dynamical collapse models [22],
which, for example, might be relevant in the cosmological
context [72].

Hence, like other operational approaches to reconstruct
quantum mechanics [4–10], the operational scheme of es-
timation of momentum given the positions under epistemic
restriction discussed in the present work provides a general
epistemic framework encompassing classical, quantum, and a
broad class of possible postquantum theories. Note, however,
that unlike those in Refs. [4–10] we have worked directly with
the phase-space variables so that the transition to classical
mechanics is conceptually less painful. Noting this, it is
intriguing to investigate possible hybrid interactions among
quantum, postquantum, and classical systems to yet general-
ize quantum mechanics within the general epistemic frame-
work based on the operational scheme of estimation under
epistemic restriction. For example, a hybrid quantum-classical
interaction [66,73,74] might find applications in developing
approximations in computational physics and chemistry [75],
for describing nanomechanical systems in quantum-classical
boundary [76], and in the study of quantum gravity [77–79].
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APPENDIX A: THE RECONSTRUCTION OF QUANTUM
MECHANICS WITHIN THE OPERATIONAL SCHEME
OF ESTIMATION UNDER EPISTEMIC RESTRICTION:

SINGLE AND DOUBLE SLITS EXPERIMENTS

Consider a beam of particles passing through a screen with
a single slit, one by one, followed by the detection of the
position of the particles (position measurement), e.g., by a

second screen at some time t0. Suppose that the agent can
control the width of the slit (and possibly some other macro-
scopic setting parameters such as the average kinetic energy
of the particles). Within the model, such a set of macroscopic
settings determines a random momentum field p̃(q; ξ ) which,
unlike in classical mechanics, irreducibly parameterizes the
allowed distribution of position ρp̃(q). In this preparation set-
ting, the main idea in the epistemic reconstruction of quantum
mechanics based on the estimation scheme is that the agent
wants to estimate the underlying momentum field associated
with the above macroscopic setting, given information on the
conjugate positions.

The estimation of the momentum at a given position is
carried out in a “naive classical” way as follows [60]. (See
also Sec. II of the main text.) Consider a subensemble of the
particles that are detected at the screen to be at q(t ) at time
t , where different trajectories of the particles correspond to
different fluctuations of ξ . For each of the particles in the
subensemble, we make a sufficiently weak measurement of
position at t − �t without appreciably altering the subsequent
dynamics of the particle, yielding q(t − �t ), where �t is
extremely small. The velocity along the trajectory at q(t ) is
then computed in the conventional way, i.e., by taking the
difference between q(t ) and q(t − �t ) and dividing it by �t ,
from which one also obtains the momentum p̃(q; ξ ). Note
that, because of the fluctuation of ξ , each single repetition of
such momentum measurement must give random outcome. To
overcome this uncertainty, we then define the estimator for
the momentum at q(t ) by taking the average of the above
measurement outcomes over the subensemble of trajectories
passing through q(t ), i.e., by averaging over ξ as in Eq. (2).
Based on this estimate, to have a smooth correspondence with
the classical relation of Eq. (1), we then construct a real-
valued function S(q) satisfying Eq. (3). Moreover, from the
distribution of the position ρp̃(q) obtained in measurement,
the single-shot estimation error is assumed to take the form
given by Eq. (4).

As an example, suppose that the agent’s estimate of the
momentum field along the direction perpendicular to the
direction of the beam obtained operationally by following
the above scheme is given by po independent of q. Then,
following Eq. (3), the agent associates a real-valued func-
tion S(q) satisfying ∂qS = po to give S(q) = poq. Moreover,
suppose the distribution of position of the particles is given

by a Gaussian distribution ρp̃(q) = 1√
2πσ 2

q

e
− (q−qo)2

2σ2
q with a

variance σ 2
q assumed to be determined by the width of the

slit. Then, from Eq. (4), the agent should assign a single-shot
estimation error for the estimation of momentum as εp(q; ξ ) =
ξ

2 ∂q ln ρp̃(q) = − ξ

2σ 2
q

(q − qo) so that the MS estimation er-

ror is given by E2
p

.= ∫
dqdξ (εp(q; ξ ))2χ (ξ )ρp̃(q) = h̄2/4σ 2

q ,
where we have used Eq. (5). The above agent’s estimation
(knowledge) about the momentum field p̃(q; ξ ) at time t0, i.e.,
the estimator and the estimation error, is then recast compactly
into a wave function via (S(q), ρp̃(q)) defined as in Eq. (7),

i.e., ψ0(q)
.= √

ρp̃(q)e
i
h̄ S(q) = ( 1

2πσ 2
q

)1/4e
− (q−qo)2

4σ2
q

+ i
h̄ poq

. Such a

reconstruction of wave function is in practice similar to the

012205-13



AGUNG BUDIYONO AND HERMAWAN K. DIPOJONO PHYSICAL REVIEW A 102, 012205 (2020)

reconstruction of wave function via momentum weak value
measurement discussed in Ref. [55]. Hence, by decreasing
(increasing) the width of the slit, which means decreasing
(increasing) σ 2

q , implying sharper (poorer) knowledge of the
position, then E2

p increases (decreases) so that the agent’s
estimation about the momentum becomes poorer (sharper),
and this leads to a narrower (broader) Gaussian wave function.
As a limiting case, suppose that the slit is infinitely wide, so
that σ 2

q → ∞, implying an infinitely poor knowledge of the
position. In this case, the agent’s estimate of the momentum po

is infinitely sharp with a vanishing MS error, i.e., E2
p → 0, and

the agent should assign a plane-wave function ψ0(q) ∼ eipoq/h̄

to her preparation.
Now, suppose that the agent postpones the detection of

the position of the particle at some later time t1 > t0. The
question is then, given her estimation about the system —
i.e., the estimator for the underlying momentum field and the
associated estimation error — at time t0 represented by ψ0(q),
how should she rationally update her estimation at time t1?
Suppose further that during the time t0 � t � t1, the agent
does not make any selection of trajectories so that she does not
have new information about her system. The only thing that
the agent knows is that the system evolves according to some
Hamiltonian. In this case, since she does not make a selection
of trajectories, her estimation at time t1 must be updated by
respecting the conservation of trajectories and average energy.
We have shown in the paper that in this case, the wave
function representing the agent’s estimation (i.e., the estimator
and the estimation error) has to be updated following the
Schrödinger equation, either linear or nonlinear, depending on
the assumed exact form of the estimation errors. See Sec. III B
for the detailed derivation. The linear Schrödinger equation
is regained when the estimation error takes the specific from
of Eq. (4).

Suppose instead that at some time tM , t0 < tM < t1, the
agent makes a measurement on some physical quantities. Such
a measurement in practice corresponds to a selection of a
subensemble of trajectories associated with the measurement
outcome. Namely, in general, a measurement of a physical
quantity with an outcome o corresponds to the selection of
a subensemble of trajectories leading to the unambiguous
assignment of o (see Ref. [49]). As a concrete example, con-
sider the paradigmatic which-way measurement by inserting
a screen with a double slits, in the middle between the screen
with a single slit and the detecting screen. In this case, the out-
come “upper” way (“lower” way) corresponds to the selection
of those subensembles of trajectories which pass through the
upper (lower) slit. Hence, the measurement is carried out by
selecting a particular subset of trajectories, so that the con-
servation of trajectories and average energy no longer apply.
Accordingly, the agent’s estimation, represented by the wave
function, no longer follows the Schrödinger equation; instead
it must follow a wave function collapse reflecting the Bayesian
updating in light of the new information associated with the
selected subensemble of trajectories [49]. This is the reason
why, in standard quantum mechanics, such a which-way
measurement demolishes (suppresses) the interference pattern
at the detecting screen. That is, since the linear Schrödinger
equation is no more valid, the superposition principle no
longer applies.

APPENDIX B: PROOF THAT THE ESTIMATOR OF EQ. (3)
WITH THE ESTIMATION ERROR OF EQ. (9) MINIMIZES

THE MEAN-SQUARED ERROR

First, given information on q, assume a general estimator
Tpj (q) for the momentum field p̃ j (q; ξ ), j = 1, . . . , N , and
compute the associated MS estimation error, to obtain, for
each degree of freedom j:∫

dqdξ
(
p̃ j (q; ξ ) − Tpj (q)

)2
χ (ξ )ρp̃(q)

=
∫

dqdξ p̃ j (q; ξ )2χ (ξ )ρp̃(q) +
∫

dq
(−2Tpj (q)∂q j S(q)

+ Tpj (q)2
)
ρp̃(q)

=
∫

dqdξ p̃ j (q; ξ )2χ (ξ )ρp̃(q)

+
∫

dq
([

Tpj (q) − ∂q j S(q)
]2 − ∂q j S(q)2)ρp̃(q), (B1)

where we have inserted Eq. (10) and used ξ = 0 in the first
equality to obtain the second term on the right-hand side. It is
then clear that the MS error reaches its minimum when

Tpj (q) = ∂q j S(q),

j = 1, . . . , N , as claimed in the main text. In general, one
can show that the unbiased estimator for the momentum given
information on the positions with minimum MS error is given
by the conditional average of momentum given the posi-
tions, i.e., Tpj (q)|{min.MS.error} = pj (q) = ∫

dξ p̃ j (q; ξ )χ (ξ ) =
∂q j S(q), j = 1, . . . , N .

APPENDIX C: THE DERIVATION OF EQ. (16)

Taking the total derivative of Eq. (14) with respect to time,
one first gets

d

dt
〈H〉{S,ρ p̃}

=
∫

dq

(
δ 〈H〉{S,ρ p̃}
δρp̃(q)

∂ρp̃(q)

∂t
+ δ 〈H〉{S,ρ p̃}

δS(q)

∂S(q)

∂t

)

=
N∑

j=1

∫
dq

([(
∂q j S

)2

2mj
− h̄2

2mj

∂2
q j

√
ρp̃√

ρp̃

+V (q) + δD f (ρp̃)

δρp̃

]
∂tρp̃(q) − ∂q j

(
ρp̃

∂q j S

mj

)
∂t S

)
, (C1)

where we have used the following result for functional
derivatives:

δ

δρp̃(q)

∫
dq′ 1

8

[
∂q′ρp̃(q′)
ρp̃(q′)

]2

ρp̃(q′)

= −1

8

(
∂qρp̃

ρp̃

)2

− 1

4
∂q

(
∂qρp̃

ρp̃

)

= 1

8

(
∂qρp̃

ρp̃

)2

− 1

4

∂2
q ρp̃

ρp̃
= −1

2

∂2
q
√

ρp̃√
ρp̃

, (C2)
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and

δ

δS(q)

∫
dq′ [∂qS(q′)]2

2m
ρp̃(q′) = −∂q

(
ρp̃

∂qS

m

)
. (C3)

Noting Eq. (12), the last term in the fourth line of Eq. (C1)
becomes ∂tρp̃∂t S, so that one obtains

d

dt
〈H〉{S,ρ p̃} =

N∑
j=1

∫
dq∂tρp̃(q)

[
∂t S +

(
∂q j S

)2

2mj
+ V (q)

− h̄2

2mj

∂2
q j

√
ρp̃√

ρp̃
+ δD f (ρp̃)

δρp̃

]
, (C4)

as claimed in the main text.

APPENDIX D: NONLINEAR SCHRÖDINGER EQUATION
FROM ACTION PRINCIPLE

Here we sketch the derivation of the nonlinear Schrödinger
equation using the action principle, following Hall and Regi-
natto’s approach [66]. Assume that ρp̃(q) and S(q) constitute
a pair of conjugate variables associated with a Hamiltonian
functional H[ρp̃(q), S(q)] (it is called as the Hamiltonian
ensemble in Ref. [66]). Hence, the time evolution of the above
pair of the conjugate variables satisfy the following pair of
canonical Hamilton’s equations:

∂ρp̃(q)

∂t
= δH

δS(q)
and

∂S(q)

∂t
= − δH

δρp̃(q)
. (D1)

Taking the Hamiltonian functional to be equal to the
average energy of Eq. (14) of the statistical model,

i.e., H[ρp̃(q), S(q)] = 〈H〉{S,ρ p̃}, the pair of equations in
Eq. (D1) gives respectively the following coupled differential
equations:

∂tρp̃ = −
N∑

j=1

∂q j

(
∂q j S

mj
ρp̃

)
,

∂t S = −
N∑

j=1

(
∂q j S

)2

2mj
+ h̄2

2mj

∂2
q j

√
ρp̃√

ρp̃
− V (q) − N f (ρp̃),

(D2)

where N f is defined as in Eq. (17). See Appendix C for the
detailed calculations.

The above pair of coupled equations are just Eqs. (12)
and (18) of the main text, which can be recast into the
nonlinear Schrödinger equation of Eq. (19) via the definition
of wave function given by Eq. (7). Note crucially that in the
above derivation, the pair of equations in Eq. (D2) is obtained
via objective least action principle by choosing the correct
Hamiltonian functional given by Eq. (14). By contrast, within
our epistemic reconstruction based on the estimation under
epistemic restriction, the pair of equations in Eq. (D2) are
obtained via epistemic-informational constraint of conserva-
tion of average energy and trajectories by choosing the correct
estimation error of the form in Eq. (9). In this sense, the
conservation of average energy and trajectories may provide
an epistemic and operational interpretation of the apparently
objective and realist principle of least action in terms of
estimation of momentum given information on the conjugate
positions.
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