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Quantum precision thermometry with weak measurements
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As the minituarization of electronic devices, which are sensitive to temperature, grows apace, sensing of
temperature with ever smaller probes is more important than ever. Genuinely quantum mechanical schemes
of thermometry are thus expected to be crucial to future technological progress. We propose an alternative
method to measure the temperature of a bath using the weak measurement scheme with a finite-dimensional
probe. The precision offered by the present scheme not only shows similar qualitative features as the usual
quantum-Fisher-information-based thermometric protocols, but also allows for flexibility over setting the optimal
thermometric window through the judicious choice of postselection measurements.
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I. INTRODUCTION

Quantum mechanics lends a different status to observable
quantities and parameters of a system, the second of which are
not expressible through Hermitian operators. Among physi-
cal parameters, the temperature of a system is perhaps one
of the most ubiquitously useful. Temperature drives chem-
ical reaction rates [1], controls the generation of the ther-
momelectric current in thermocouples [2], or controls the
heat flow between different baths [3]. Thus, thermometry,
or the science of measuring temperature, is of paramount
importance. This is especially relevant for modern techno-
logical applications and devices, where the thermal baths
may themselves be relatively tiny. Nanoscale probes, which
follow laws of quantum physics, are thus required to measure
the temperature of such baths without disturbing them too
much. Quantum thermometry thus aims at improving the
technique of temperature sensing using small probes [4–10].
The analysis of quantum thermometry so far has focused on
seeking to find and saturate the quantum Cramér Rao bound
for various partially and fully thermalized configurations of
systems [11,12]. In addition to ensuring noninvasiveness,
these studies show possible improvement in the precision due
to quantum effects for nonequilbrium settings. Even in the
steady-state scenario, quantum enhancement in the precision
using a quantum switch has been recently reported [13]. For
observables, another technique to experimentally determine
them quantitatively has recently come to the fore, which relies
on a so-called weak measurement scheme [14–17]. Weak
measurement is a technique of ascertaining information about

*akpati@hri.res.in
†chiranjibmukhopadhyay@hri.res.in
‡csagnik@imsc.res.in
§sibasish@imsc.res.in

an observable through a weak interaction between the system
and the measurement apparatus generated by the observable.
It is then followed by a strong postselection measurement
on the system. One of the most well-known facets of the
weak measurement scheme is the concept of the so-called
weak values of an observable, which are, in general, complex
numbers. In the last few years, weak values have been used
in the context of measuring quantities which may or may
not have quantum mechanical observables associated with
them, for example, the geometric phase [18], non-Hermitian
operators [19], density matrix corresponding to a quantum
state [20–24], or the entanglement content of a quantum state
[25,26]. The weak value amplification technique has found
recent physical application in observations of the spin Hall
effect [27], photon trajectories [28], or the time delay between
ultrafast processes [29] as well. Thus, it is reasonable to
ask whether a weak-measurement-based scheme is a viable
approach towards thermometry. In this paper, we provide
such a scheme. We mention here that there has been another
theoretical as well as experimental paper by Egan and Stone
[30] 1 in the recent past, which introduces the concept of
weak thermometry. Experiments demonstrating weak value-
enhanced metrological tasks have also ben performed in anal-
ogous contexts [31,32].

In the present work, we outline how to measure tem-
perature using weak values with finite-dimensional probes
and specifically concentrate on qubit probes. We show the
presence of an optimal temperature window for the precision
offered by this scheme, which is a feature repeated in the usual
paradigm of quantum thermometry [11,33–35]. One crucial
advantage offered by the present scheme over previously

1We thank an anonymous referee for bringing this work to our
attention.
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considered schemes is the ability to shift the optimal precision
window while keeping the probe parameters fixed, and simply
changing the postselected state. In addition, we argue that the
proposal based on the weak value is suitable for the measure-
ment of a very hot body. If the temperature of a system is
very high, then prolonged contact with a measuring apparatus
may damage the apparatus itself. On the other hand, in our
weak-measurement-based scheme, the measuring apparatus
is brought into contact with a thermalized qubit of the bath
for a very short duration of time, thus potentially saving any
damage to the apparatus. 2

The organization of the paper is as follows. Section II
briefly reviews the weak measurement scheme. The main
theme of our paper, namely the protocol for measuring tem-
perature through weak values, is described in Sec. III. This
is followed by the detailed analysis of precision offered by
the present scheme for a qubit probe in Sec. IV. Section V
contains a complementary QFI-based analysis of precision
for the weak thermometric protocol. We finally conclude
with a few observations and outline some possible future
developments.

II. WEAK MEASUREMENT

In the theory of weak measurements, a quantum system
S is chosen to be in an initial state |ψi〉S , called the prese-
lected state, and it is made to interact with a measurement
apparatus M, prepared in a state |φ〉M . The interaction is weak
in strength, and generated by a Hamiltonian Hint = gÂ ⊗ P̂x,
where Â is a system observable, P̂x is the momentum operator
of M, and g is a small positive number signifying the strength
of the interaction. This is followed by a strong measurement
on the system, called the postselection measurement. The
outcome of the postselection measurement that we focus
on is along the state |ψ f 〉. Clearly, the postselection is a
selective measurement, as we ignore the other outcomes of
the measurement.

The time-evolved state of S + M before postselection is
given by

|�〉 = e−igÂ⊗P̂x [|ψi〉 ⊗ |φ〉M]

≈ (IS ⊗ IM − igÂ ⊗ P̂x )[|ψi〉 ⊗ |φ〉M], (1)

up to first order in g. Note that the state |�̃〉SM ≡
(IS ⊗ IM − igÂ ⊗ P̂x )[ |ψi〉 ⊗ |φ〉M ] is, in general, unnormal-
ized. The reduced state of |�̃〉SM on M is

|φ̃ f 〉M ≈ (〈ψ f |ψi〉 − ig 〈ψ f | Â |ψ〉i P̂x ) |φ〉M , (2)

which on normalizing looks like

|φ f 〉M ≈ (1 − igAwP̂x ) |φ〉M ≈ e−igAw P̂x |φ〉M , (3)

2According to the formulation of the weak measurement protocol,
described in Sec. III, it is enough to consider gτ � 1, even if we
allow hot probes. Note that, for performing the postselection strong
measurement, the assumption gτ � 1 may be dropped. Nevertheless,
the issue of the measuring apparatus getting destroyed due to the
hot probe can be circumvented by considering a different measuring
apparatus.

where Aw ≡ 〈ψ f | Â |ψi〉 / 〈ψ f |ψi〉 is called as the weak value
of Â. Note that Aw can also be complex and take values beyond
the eigenvalue range of the observable.

Since the weak value Aw is, in general a complex quantity,
one must experimentally observe the real as well as imaginary
parts of the weak value. On measuring certain properties of
|φ f 〉M , the real and imaginary parts of Aw can be determined.
These properties include the shift in position and momentum
values compared to that of |φ〉M , the variance of momentum
wave function, the rate of change of position wave function,
and the strength of interaction [36]. Laguerre-Gaussian modes
of an optical beam have also been used to measure the real and
imaginary parts of a weak value [37,38]. Recently it has also
been proposed and experimentally demonstrated that the weak
value can be inferred from interference visibility and phase
shifts [39].

III. ASSESSING TEMPERATURE THROUGH
WEAK VALUES

Consider a d-dimensional quantum system S under
the action of a time-independent Hamiltonian Ĥ having
nondegenerate energy eigenvalues E1, E2, . . . , Ed and the
corresponding energy eigenstates |ψ1〉 , |ψ2〉 , . . . , |ψd〉.
Assume that S is in contact with a heat bath of temperature
T and S has reached the thermal equilibrium state ρT ≡
e−βĤ/ (Tr[e−βĤ ]) = (

∑d
n=1 e−βEn |ψn〉 〈ψn| )/(

∑d
n=1 e−βEn ).

Here β = 1/(kBT ), with kB being taken as unity. Prepare
the measuring apparatus M in a state |φ〉, having position
wave function φ(x). Note that here M is considered to be
a continuous-variable system, in general. We would like to
perform the measurement of an observable Â on the system S.

Consider now the evolution of S + M under the action of
an interaction Hamiltonian Ĥint = gÂ ⊗ P̂x for a small amount
of time τ . The interaction strength g is also considered to
be small (in the regime of weak interaction between S and
M). Here P̂x is the momentum observable of M canonically
conjugate to the position observable X̂ . We assume here that
during the time interval [0, τ ], S and M are under the action
of only the Hamiltonian Ĥint. This may be fulfilled in different
ways. (i) We may decouple the system S at time t = 0 from
the heat bath (after S achieves the thermal equilibrium state
ρT ) and thereby switch on the interaction Hamiltonian Ĥint for
the time duration [0, τ ]. (ii) On the other hand, we may think
of assuming here that the the strength g of the interaction is
much higher than that of the system Hamiltonian Ĥ , so that
due to the action of Ĥint for a small time span τ , it is enough
to consider the change in states of S under the action of Ĥint

only. A schematic of the protocol is depicted in Fig. 1. The
time span τ should be small enough so that, despite taking the
strength g of the interaction Hamiltonian Hint being greater
than the free Hamiltonian, gτ � 1. At the end of the action of
the interaction Hamiltonian, the joint state of S + M becomes

ρSM (τ ) = e−igτ Â⊗P̂x (ρT ⊗ |φ〉〈φ|)eigτ Â⊗P̂x

≈ (IS ⊗ IM − igτ Â ⊗ P̂x )(ρT ⊗ |φ〉 〈φ|)
×(IS ⊗ IM + igτ Â ⊗ P̂x )

≈ ρT ⊗ |φ〉 〈φ| − igτ [Â ⊗ P̂x, ρT ⊗ |φ〉 〈φ|]. (4)
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T
QubitApparatus

FIG. 1. Schematic of the thermometric scheme. We assume the
bath is a collection of thermalized qubits, and couple the measuring
apparatus to one of the qubits, which is called the probe qubit for a
very short time.

Now we postselect the state of S to be |ψ f 〉. Then M will get
collapsed into the following (unnormalized) state:

η̃(τ ) = 〈ψ f |ρT |ψ f 〉 |φ〉 〈φ|
− igτ (〈ψ f | ÂρT |ψ f 〉 P̂x |φ〉 〈φ|
− 〈ψ f | ρT Â |ψ f 〉 〈φ| 〈φ| P̂x )

= 〈ψ f | ρT |ψ f 〉 [|φ〉 〈φ|
− igτ (AwP̂x |φ〉 〈φ| − A∗

w |φ〉 〈φ| P̂x )]

≈ 〈ψ f | ρT |ψ f 〉 × η(τ ), (5)

with the corresponding normalized collapsed state of M being
given by

η(τ ) = e−igτAw P̂x |φ〉 〈φ| eigτAw P̂x , (6)

and the corresponding weak value is given by

Aw = 〈ψ f | ÂρT |ψ f 〉
〈ψ f | ρT |ψ f 〉 . (7)

Using the value of Aw together with a priori knowledge
of |ψ f 〉, Â, and the energy eigenspectrum of the system
Hamiltonian Ĥ , one can, in principle, find out the value of the
temperature T [with the help of Eq. (7)]. Let us note in passing
that the operator A must not commute with the relevant energy
eigenbasis or else the weak value ceases to depend on the
inverse temperature β, and thus, measuring the weak value
furnishes no thermometric advantage.

A. High temperature regime

Let us now consider the case where the bath temperature is
high, that is, β → 0. Thus, we can replace e−β ≈ 1 − β. Now,
assuming the spectral decomposition of Â with eigenvalues
a j and corresponding eigenstates |a j〉 for j = 1, 2, . . . , d , in
conjunction with Eq. (7), helps us to obtain the following
expression for the weak value:

Aw =
∑d

j,k=1 a je−βEk 〈ψ f |a j〉 〈a j |ψk〉 〈ψk|ψ f 〉∑d
l=1 e−βEl | 〈ψ f |ψl〉 |2

≈ 〈ψ f | Â |ψ f 〉 − β 〈ψ f | ÂĤ |ψ f 〉
1 − β 〈ψ f | Ĥ |ψ f 〉

≈ (〈ψ f | Â |ψ f 〉 −β 〈ψ f | ÂĤ |ψ f 〉)(1+β 〈ψ f | Ĥ |ψ f 〉) (8)

≈ 〈ψ f | Â |ψ f 〉
+β(〈ψ f | Â |ψ f 〉 × 〈ψ f | Ĥ |ψ f 〉 − 〈ψ f | ÂĤ |ψ f 〉). (9)

Inverting this expression, in the high-temperature limit, the
inverse temperature is expressible in terms of the weak value
of the observable A as

β ≈ Aw − 〈ψ f |Â|ψ f 〉
〈ψ f |Â|ψ f 〉 × 〈ψ f |Ĥ |ψ f 〉 − 〈ψ f |ÂĤ |ψ f 〉

. (10)

Let us now analyze the right-hand side of the above result
in further detail. We denote the standard deviation of an
observable O as 	O. According to Vaidman’s formula [40],
A|ψ f 〉 = 〈A〉|ψ f 〉 + 	A|ψ̄ f 〉, which implies the following ex-
pression for the weak value:

Aw = 〈A〉 + 	A
〈ψ̄ f |ρT |ψ f 〉
〈ψ f |ρT |ψ f 〉 . (11)

Here |ψ̄〉 indicates that it is a state orthogonal to |ψ〉.
This formula has been proved [40] in the following way:
We can always decompose the state |ψ〉 as |ψ〉 = α|ψ〉 +
β|ψ̄〉. Now, 〈A〉 = 〈ψ |A|ψ〉 = α, and 	A =

√
〈A2〉 − α2 =√

〈ψ |A†A|ψ〉 − α2 =
√

α2 + β2 − α2 = β. Similarly apply-
ing Vaidman’s formula for the density operator ρT yields
ρT |ψ f 〉 = 〈ρT 〉 + 	ρT | ¯̄ψ f 〉, where | ¯̄ψ f 〉 is another state per-
pendicular to |ψ f 〉. Plugging in this expression to the earlier
equation for the weak value of A yields the following expres-
sion for the inverse temperature:

β = − 	A	ρT

Cov(A, H )

〈ψ̄ f | ¯̄ψ f 〉
〈ψ f |ρT |ψ f 〉 . (12)

For a qubit state, the corresponding orthogonal state is
unique. Hence, |ψ̄ f 〉 = | ¯̄ψ f 〉, which, when plugged in, yields
the following expression:

β = − 	A	ρT

Cov(A, H )〈ψ f |ρT |ψ f 〉 . (13)

The above equation may be of independent interest.
Let us now note that the anomalous weak value δA =
|Re(Aw ) − 〈A〉|, is expressible as δA = |Cov(A, ρT )|/|〈ρT 〉|.
Now, 〈ρT 〉 = 〈exp(−βH )〉/Z � 1/(Z (1 − β〈H〉), where Z is
the corresponding canonical partition function. Combining
these results together, we obtain the following lower bound
for the temperature:

T � 〈H〉
1 − |Cov(A,ρT |

ZδA

. (14)

In the above equation, the anomalous weak value δA is a
truly quantum mechanical quantity. It is easy to note that the
achievable lower bound on the temperature is stronger, if δA
is large in magnitude.

B. Qubit case

Let us now consider the generic situation in the case of
the simplest nontrivial quantum system, which is a qubit,
for arbitrary temperature. Consider H = ∑d

i=1 Ei |ψi〉 〈ψi|.
If we take now Â = −i|ψ1〉〈ψ2| + i|ψ2〉〈ψ1| and |ψ f 〉 =
(1/

√
2)(|ψ1〉 + |ψ2〉), then the weak value Aw is given by

Aw ≡ 〈ψ f |ÂρT |ψ f 〉/〈ψ f |ρT |ψ f 〉 = i
e−βE1 − e−βE2

e−βE1 + e−βE2
. (15)
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Note that here 〈ψ f |Â|ψ f 〉 = 0, 〈ψ f |Ĥ |ψ f 〉 = (E1 + E2)/2,
〈ψ f |ÂĤ |ψ f 〉 = i(E1 − E2)/2. For the high-temperature limit,
we have the following (approximate) expression for the in-
verse temperature of the bath in the qubit case, which may be
shown to be consistent with Eq. (10):

β ≈ −2iAw

E2 − E1
. (16)

Now, based upon the existing methods of identifying or
measuring the weak value Aw [36,37], one can, in principle,
get an estimate of the (inverse) temperature β in Eq. (16). One
of the advantages of the present scheme is that the measuring
apparatus is brought into contact with the heat bath for a
very short time, hence reducing the chance of damage to the
apparatus. We add here that the rationale behind choosing the
operator A in this form is the following: If A is chosen as being
along the z axis of the Bloch sphere, there is no information
to be obtained about the temperature from the weak value.
In the case of thermalization, the azimuthal symmetry of the
state in the Bloch sphere picture means it is equally feasible
choosing any operator A along the x–y plane of the Bloch
sphere, thus we may assume the above form of A without loss
of generality. Once A is fixed, the azimuthal symmetry of the
problem is lost, and one has to choose the postselected state
carefully. Above, we assumed an example of the postselected
state, however, a more general analysis of the precision of
our scheme depending upon different postselections were
performed in the following sections.

IV. PRECISION IN MEASUREMENT OF TEMPERATURE

It is natural to wonder about the optimal temperature
window where the present scheme works best, that is, most
precisely. The usual procedure for determining the precision
of quantum thermometers is through finding the correspond-
ing quantum Cramér Rao bound. In this section, we adopt a
different approach. We restrict to qubit systems for simplicity.
However, the present analysis can be extended to higher
dimensions in a similar fashion.

A. Precision analysis for imperfect thermalization

Let us assume that the initial premeasurement state is not
exactly a thermal state, but very close to it, and written in the
following manner:

ρ
(δ)
T = (1 − δ)ρT + δ|χ (θ, φ)〉〈χ (θ, φ)|, (17)

where 0 � δ � 1, and |χ〉 is a random pure qubit state with
corresponding Bloch sphere parameters θ , and φ. Physically
this indicates imperfect thermalization, which is experimen-
tally relevant, especially in situations where the thermalization
timescale is not extremely fast compared to the time available
for sensing. The corresponding weak value is denoted by Aδ

w.
Now, an experimentalist may use the formula (15) to find the

apparent inverse temperature β̃ of the bath as

β̃ = 2

E2 − E1
arctanh

( − iA(δ)
w

)
. (18)

It is of obvious practical interest to us that the inferred
value of temperature does not change wildly if the thermal-
ization is imperfect. To quantify this, we invoke the idea of
quantifying a relative error, which is the difference between
the temperature furnished from imperfect thermalization, and
the genuine temperature of the bath, divided by the bath
temperature, and scaled by the imperfection δ. The squared
relative error introduced through imperfect thermalization
may thus be taken to be |β̃ − β|2/(δ2β2). It is this quantity
we shall concentrate upon. To remove the effect of |χ〉, which
may conceivably capture some information about the state in
which the probe was initialized, we shall finally average over
the pure states |χ〉. We will write E2 − E1 as the gap 	 from
here on. Performing a perturbation expansion for A(δ)

w around
δ = 0, and retaining terms up to first order in δ, the expression
for β̃ is given by

β̃ = 2

	
arctanh

(
c1 tanh

β	

2
− ic2

)
, (19)

where c1 = 1 − δ
|〈ψ f |χ〉|2

〈ψ f |ρT |ψ f 〉 , and c2 = δ
〈ψ f |A|χ〉〈χ |ψ f 〉

〈ψ f |ρT |ψ f 〉 . Note
that, c1 and c2 are functions of the Bloch sphere angles {θ, φ}
of the state χ . Thus, averaging over them, the resulting root
mean squared relative errorNβ for the particularly weak mea-
surement strategy adopted in the previous section, is written
as a function of inverse temperature as

N2
β = 1

4π

∫∫ |β̃ − β|2
β2δ2

sin θdθdφ

= 1

4πδ2

∫ π

θ=0

∫ 2π

φ=0

∣∣∣∣ 2

β	
arctanh

[
c1(θ, φ) tanh

β	

2

− ic2(θ, φ)

]
− 1

∣∣∣∣
2

sin θdθdφ. (20)

Now, neglecting the second- and the higher-order coefffi-
cients of δ, we note that the expression for relative root mean
squared (RMS) error is written as

N2
β = 1

4π

∫∫
4
∣∣v1 tanh β	

2 + iv2

∣∣2

	2β2
(
1 − tanh2 β	

2

)2 sin θdθdφ, (21)

where v1 = (1 − c1)/δ, and v2 = c2/δ. At this point, let
us fix the observable A = −i|ψ1〉〈ψ2| + i|ψ2〉〈ψ1|, as in
the previous section, and assume the arbitrary postselected
state |ψ f 〉 = cos(ξ/2)|ψ1〉 + eiν sin(ξ/2)|ψ2〉. We also as-
sume, without loss of generality, that the energy gap 	 = 1.
The expression for root mean squared relative error Nβ is
given by

√
(13 − cos 2ν) cosh β − 4 cos 2ξ sin2 ν cosh2

(
β

2

) − (3 + cos 2ν)

3β[cosh(β/2) + cos ξ sinh(β/2)][1 − tanh2(β/2)]
. (22)
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|ψf = √(1-ε) |ψ1  + √ε |ψ2
|ψf  = √2

1  (|ψ1  + |ψ2 )

1/Nβ

0.1

0.2

0.3

0.5

0.6

0.7

T0 1 2 4 5 6

FIG. 2. Precision of the scheme plotted against the temperature
for the specific choice of postselected states |ψ f 〉 = √

1 − ε|ψ1〉 +√
ε|ψ2〉 (green dotted curve), |ψ f 〉 = 1√

2
(|ψ1〉 + |ψ2〉) (red dashed

curve). Energy gap between ground and excited states is unity in each
case. ε = 0.01 is assumed.

For specific choices of the postselected state, the above
equation yields the expression for error, and consequently,
the inverse quantity signifies the precision of measurement.
For example, assuming |ψ f 〉 = 1√

2
(|ψ1〉 + |ψ2〉), as in the

previous section, the relative error reads as

N+
β =

√
1 + 4 cosh β + 3 cosh 2β

9β2
. (23)

Figure 2 shows that the precision, which is defined as the
inverse of the relative error, attains a relatively narrow peak
at a finite temperature, which determines the best operating
window of the scheme. While the qubit thermometric schemes
[8,11,13,33] based on the strong measurement are different in
conception than the present scheme, it is nonetheless note-
worthy that the phenomenon of a narrow peak in the precision
corresponding to an optimal temperature window is present in
both the cases. We also note that for the QFI-based analysis
of optimal qubit thermometric probes with unit energy gap,
the peak is situated at T ≈ 0.41 [11,33], which is obtained
through solving the transcendental equation [11,33] e1/T =
(1 + 2T )/(1 − 2T ). In comparison, in the present scheme,
for a specific postselected state |ψ f 〉, the location of the peak
for optimal precision is obtained by the vanishing of the first
derivative with respect to the inverse temperature β of the
expression in Eq. (22). In particular, for the specific example
|ψ〉 = 1√

2
(|ψ1〉 + |ψ2〉) discussed in the previous section, the

equation takes the form

β = 3 cosh β − 1

3 sinh β − 2 tanh β

2

, (24)

which has the solution T ≈ 0.79. The temperatures corre-
sponding to optimal precision for other choices of postse-
lected states are depicted in Fig. 3. Interestingly, for every
|ψ f 〉, the corresponding optimal temperature is significantly
higher than 0.41. This indicates the possibility that the present
scheme may be better than the strong-measurement-based one

FIG. 3. The temperature at which the optimal precision is
achieved is plotted against the parameters ξ and ν of the postselected
state |ψ f 〉.

based one for the relevant temperature range. It is natural to
wonder about the postselected state |ψ f 〉 which corresponds
to maximum precision. From Fig. 4 as well as Fig. 5, it may
be concluded that for any arbitrary temperature, |ψ f 〉 close to
|ψ1〉 maximizes the precision. Here, let us add a note of cau-
tion, from the definition, the weak value is independent of the
temperature when |ψ f 〉 is exactly |ψ1〉, hence measuring the
weak value furnishes no information about the temperature.
Thus, we must take |ψ f 〉 to be extremely close to |ψ1〉, but not
identically equal.

B. Precision analysis for unsharp postselection

Let us now consider another potential source of error in
the present scheme, that is, the postselection may be unsharp.
Let us assume the unsharp postmeasurement qubit state in the
form

ρ
(ε)
f = (1 − ε)|ψ f 〉〈ψ f | + ε

2
1. (25)

FIG. 4. The magnitude of precision at optimal temperature is
plotted against the parameters ξ and ν of the postselected state |ψ f 〉.
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FIG. 5. The magnitude of precision is plotted against the param-
eters ξ and ν of the postselected state |ψ f 〉 for (top) low temperature
T = 0.05, and (bottom) high temperature T = 100.

Thus, the corresponding perturbed weak value of the ob-
servable A is given by

Aε
w = Tr

(
ρ

(ε)
f AρT

)
Tr

(
ρ

(ε)
f ρT

) ≈ Aw

[
1+ ε

Aw

(
Tr(AρT ) − 1

〈ψ f |ρT |ψ f 〉
)]

+ O(ε2).

(26)
Now, using Eq. (15), the corresponding expression for

shifted inverse temperature is β̃ = 2
	

arctanh (−iA(ε)
w ). From

which, the formula for the squared relative error incurred is
given by

N2
β = |β̃ − β|2

ε2β2
= 4

	2β2[1 − tanh2(β	/2)]2

∣∣∣∣Tr(AρT ) − 1

〈ψ f |ρT |ψ f 〉
∣∣∣∣
2

.

(27)

FIG. 6. The magnitude of precision at optimal temperature is
plotted against the temperature T and the polar angle ξ of the
postselected state |ψ f 〉.

As in the previous section, if one chooses A =
−i|ψ1〉〈ψ2| + i|ψ2〉〈ψ1|, then, assuming 	 = 1 without loss
of generality, the corresponding expression for relative error
reads as

Nβ = 4

β
[
1 − tanh2 β

2

](
1 + cos ξ tanh β

2

) , (28)

where ξ is the polar angle of the pure postselection state
|ψ f 〉. For the specific choice |ψ f 〉 = 1√

2
(|ψ1〉 + |ψ2〉) in the

last section, this amounts to the following expression for
precision, which is defined as the inverse of the error:

1/Nβ (|+〉) = 4

β
[
1 − tanh2 β

2

] , (29)

It can be seen from Fig. 6 that the precision, defined as
the inverse of the relative error, attains a peak at some tem-
perature, which determines the corresponding optimal tem-
perature window for thermometry. Figure 7 reveals that the
optimal temperature for the scheme varies from Topt ≈ 0.54 to
Topt ≈ 1.12. The solution of the following transcendental
equation determines the location of the optimal temperature
T ∗ for any given postselected state |ψ f 〉 with the polar angle

0.0 0.2 0.4 0.6 0.8 1.0

0.6
0.7
0.8
0.9
1.0
1.1

0.0 0.2 0.4 0.6 0.8 1.0
0.10
0.15
0.20
0.25
0.30
0.35

FIG. 7. (left) Optimal temperature and (right) precision at opti-
mal temperature, as a function of the polar angle ξ of the postmea-
surement state |ψ f 〉.
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ξ :

cos ξ = sinh 1
T ∗ − T ∗(1 + cosh 1

T ∗
)

T ∗ sinh 1
T ∗ − cosh 1

T ∗ + 2
. (30)

An interesting feature we observe in Fig. 7 is that there is a
shift in the optimal temperature window towards the right,
and higher temperatures are associated with the reduction in
the optimal precision attainable through the present scheme.
This is in line with the intuition that, as a distinctly quantum
mechanical scheme, the weak measurement protocol should
work best in the low-temperature regime.

V. QUANTUM-FISHER-INFORMATION-BASED ANALYSIS
OF PRECISION OF WEAK THERMOMETRY PROTOCOL

Until now, we looked at the robustness of precision of
the weak-measurement-based thermometric protocol. In this
section, we present the complementary analysis of thermo-
metric precision in this protocol through the usual quantum
estimation theoretic methods. Let us first recall the relevant
bound on fluctuation 	u of estimation of a single parameter
u, which is known as the quantum Cramér-Rao bound (QCRB)

	u � 1√
nFu(ρu)

, (31)

where F is the quantum Fisher information for the state
ρu, and n is the number of runs. For the single parameter
estimation case, it is always possible to saturate the lower
bound. We now remember that the final state of the pointer
after the postselection in state |ψ f 〉 is given in Eq. (6), which
is a pure state. For a pure state |ψu〉 with the corresponding
parameter u, we recall that the QFI is given by [41]

Fu = 4〈ψ̇u|ψ̇u〉 − 4|〈ψu|ψ̇u〉|2, (32)

where |ψ̇u〉 denotes the first derivative of the state |ψu〉 with
respect to the parameter u. Putting this in Eq. (6), we obtain
the following expression for QFI for temperature T after a
little algebra:

FT = g2τ 2

(
dAw

dT

)2

(ξ − ξ 2). (33)

Here ξ = 〈φ|eigA∗
w P̂x P̂xe−igAw P̂x |φ〉 = |〈φ|x〉|2e2gτ Im(Aw ).

Thus, up to leading order, the square-root of QFI is
proportional to

√
FT ∝ F̃ =

∣∣∣∣dAw

dT

∣∣∣∣ =
∣∣∣∣∣ 〈ψ f |A dρT

dT |ψ f 〉
〈ψ f |ρT |ψ f 〉

− 〈ψ f | dρT

dT |ψ f 〉〈ψ f |AρT |ψ f 〉
(〈ψ f |ρT |ψ f 〉)2

∣∣∣∣∣. (34)

Once more, we assume Â = σ̂y unless otherwise men-
tioned. Expressing an arbitrary postselected state as |ψ f 〉 =
cos θ

2 |0〉 + sin θ
2 eiφ |1〉, we obtain the expression for scaled

precision F̃ as being

F̃ = 2e	/T 	 sin θ
√

cos2 φ + cos2 θ sin2 φ

T 2[1 − cos θ + e	/T (1 + cos θ )]2
. (35)

φ = 0, Δ = 1
θ = π / 4
θ = π / 2
θ = 3π / 4

Sc
al
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FIG. 8. Scaled precision F̃ plotted against temperature for vari-
ous choices of postselected-state parameter θ . The energy gap 	 is
taken to be unity, and the azimuthal angle φ of the postselected state
is assumed to be zero.

Some specific illustrations for different values of θ are
demonstrated in Fig. 8. The existence of an optimal tem-
perature window is once more observed, as is the feature of
a shift in the optimal temperature window by shifting the
choice of the postselection. As earlier, the attempt to shift
this optimal temperature window towards the right, i.e., to
higher temperatures by judiciously choosing the postselection
state, inevitably results in a loss of optimal precision. Thus,
the QFI-based analysis yields the same qualitative picture as
the analysis performed earlier.

VI. DISCUSSIONS

We present a protocol for measuring temperature of a
quantum mechanical bath through measuring weak values
on a probe which is in thermal equilibrium with the bath.
Our protocol relies on careful choice of Hamiltonian, which
generates the weak interaction, and the basis of postselection
measurement. Although our protocol is applicable to probes
of any dimension, we restrict to qubit probes and compare
our result with other thermometric schemes which employ
strong positive-operator valued measurements on the probe
and maximization of quantum Fisher information (QFI). We
find that there is a narrow operational window of temperature
values which can be optimally measured through our protocol,
a feature characteristic to other usual thermometric schemes.
Moreover, in our protocol the peak value of the optimal tem-
perature window is shifted towards higher temperature com-
pared to the usual schemes. It may be helpful to investigate, in
future works, the possible reason behind such a phenomenon.
Interestingly, we find a trade off between shifting the optimal
temperature window to higher temperatures and the optimal
precision.

We expect that the present work will turn out to be
useful in the context of improving techniques for precise
and efficient temperature estimation of nanoscale thermody-
namic systems. Several issues, however, are left for future
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investigation. A comprehensive description of the present
scheme for higher-dimensional probes, including harmonic
oscillator probes, remains to be explored. In particular, we
show in the present work that the location of the optimal
operating window depends on choice of postselection, even
for a probe with fixed energy spectrum. It is of some interest
to determine whether the location of the operating window
can be made even more tunable by changing the postse-
lection in the higher-dimensional cases. Additionally, some
other questions emerge from the idea of weak thermometry.
First, in the usual strong-measurement-based approach to
thermometry, optimizing the precision for a qudit probe leads
to the optimal energy spectrum of the probe to be a highly
unphysical one, namely, a gapped ground state and all the
other energy eigenstates are energetically degenerate [11]. It
is an open problem to figure out the form of the optimal
energy spectrum of the probe in the arbitrary dimensional
case, and check whether the corresponding Hamiltonian is
experimentally feasible. Additionally, finding the information
disturbance tradeoff [7] for thermometers working with weak
measurement schemes is an interesting avenue of future work.
Depending upon the choice of the actual physical systems for
the probe, the operating windows for the precise measurement
of temperature will have different signatures for systems
under consideration, which we would like to explore in future.
Finally, the weak-value-based thermometric scheme relies on
having an identically prepared ensemble, and hence suffers
from the drawback that single shot measurement results can-
not achieve arbitrary precision, and further improvement of
thermometric precision with a finite round of measurements
based on the weak thermometry scheme should be useful to
perform in future.
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APPENDIX

In this Appendix, we provide further details on calculations
in Sec. IV. Unless otherwise mentioned, equation numbers
will correspond to equation numbers in the main text.

1. Derivation of Eq. (21)

The integrand of Eq. (20) is given, according to the notation
in the main text, as

=
∣∣∣∣ 2

β	
arctanh

[
c1(θ, φ) tanh

β	

2
− ic2(θ, φ)

]
− 1

∣∣∣∣
2

=
∣∣∣∣ 2

β	
arctanh

[
(1 − δv1) tanh

β	

2
− iδv2)

]
− 1

∣∣∣∣
2

=
∣∣∣∣ 2

β	
arctanh

[
tanh

β	

2
− δ

(
v1 tanh

β	

2
+ iv2

)]
− 1

∣∣∣∣
2

.

(A1)

Expanding the last expression in terms of δ and retaining
only up to first order yields the following expression for the
integrand:

=
∣∣∣∣ 2

β	

(
β	

2
− δ(v1 tanh β	

2 + iv2

1 − tanh2 β	

2

)
− 1

∣∣∣∣
2

= 4δ2
∣∣v1 tanh β	

2 + iv2

∣∣2

	2β2
(
1 − tanh2 β	

2

)2 , (A2)

which is the integrand in Eq. (21) of the main text. The inte-
gration on the next step is performed on WOLFRAM MATHE-
MATICA, and the simplified result for our choice of observable
A is given out by the expression in Eq. (22).

2. Derivation of Eq. (23) from Eq. (22)

From Eq. (22), for our specific choice of postselection, the
RMS error reads

Nβ =
√

12 cosh β − 4

9β2 cosh2 β

2

(
1 − tanh2 β

2

)2

=
√

(12 cosh β − 4) cosh2 β

2

9β2

=
√

(6 cosh β − 2 + 6 coshβ −2 cosh β

9β2

=
√

3(1 + cosh 2β ) + 4 cosh β − 2

9β2

=
√

1 + 4 cosh β + 3 cosh 2β

9β2
. (A3)

3. Derivation of Eq. (24)

Optimizing the RMS error requires the derivative with
respect to temperature ∂βNβ to vanish. Hence,

9β2(6 sinh 2β + 4 sinh β ) = 18β(1 + 3 cosh 2β + 4 cosh β );

� β = 1 + 3 cosh 2β + 4 cosh β

3 sinh 2β + 2 sinh β
;

� β = 4 cosh2 β

2 (3 cosh β − 1)

6 sinh β cosh β + 2 sinh β
;

� β = 3 cosh β − 1

3 sinh β − 2 tanh β

2

. (A4)
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