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Second-order topological insulator in a coinless discrete-time quantum walk
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Higher-order topological insulators not only exhibit the exotic bulk-boundary correspondence principle but
also have an important application in quantum computing. However, it seems they have not been achieved in
the discrete-time quantum walk. In this paper we construct a two-dimensional coinless discrete-time quantum
walk to simulate the second-order topological insulator with zero-dimensional corner states. We show that both
of the corner and edge states can be observed through the probability distribution of the walker after a multistep
coinless discrete-time quantum walk. Finally, we propose a possible experimental implementation to realize this
coinless discrete-time quantum walk in a three-dimensional integrated photonic circuit and verify the robustness
of the corner states against the small disorder. Our work offers an alternative route to explore exotic higher-order

topological matters using discrete-time quantum walks.
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I. INTRODUCTION

The quantum walk, which describes the propagation of
quantum particles on a lattice [1-4], is a quantum version
of the classical random walk. Due to its simplicity and high
controllability, the quantum walk has become a powerful
tool for universal quantum computing [5,6] and quantum
simulation [7-10]. Inspired by an original theoretical paper of
Kitagawa et al. [11], the discrete-time quantum walk (DTQW)
has become an outstanding platform for simulating various
topological phenomena [12-20]. In particular, the topological
edge states and winding numbers have been detected by
both unitary [21-26] and nonunitary [27-31] one-dimensional
DTQWs. For the two-dimensional case, the one-dimensional
edge states have been observed without [32,33] and with [34]
the synthetic gauge field. Very recently, the Chern number has
been successfully probed by an anomalous displacement [35].
Note that the above topological simulations are achieved in
the coined DTQW with the intrinsic coin states, the one-
step evolution operator of which contains both the translation
and coin operators. Without introducing the coin states, the
coinless DTQW emerges [36-42]. In such cases, the cor-
responding one-step evolution operator has the translation
operator acting only in the site basis. This means that the
coinless DTQW possesses a smaller Hilbert space. Recently,
the walk dynamics on different topologies have been revealed
in the two-dimensional coinless DTQW [43].

However, current research on topological features of both
the coined and coinless DTQWs focus only on the sim-
ulation of the first-order topological insulator, which sup-
ports topological protected states in the (d — 1) -dimensional
boundaries for a d-dimension system. Recently, higher-order
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topological insulators, which have lower-dimensional gap-
less boundary states, have attracted much attention in both
theory [44-48] and experiment [49-56]. Physically, these
higher-order topological insulators exhibit an exotic bulk-
boundary correspondence principle that an nth-order topolog-
ical insulator supports gapless (d — n)-dimensional boundary
states. Moreover, these gapless boundary states can support
nontrivial fractional quasiparticles (such as parafermion or
Ising anyon, etc.), providing a new architecture for quantum
information processing and quantum computing [57,58].

In this paper we introduce the two-dimensional coin-
less DTQW to simulate a second-order topological insu-
lator which hosts zero-dimensional corner states and one-
dimensional edge states. We show that both the corner and
edge states can be observed through the probability dis-
tribution of the walker after a multistep coinless DTQW.
Finally, we propose a possible experimental implementation
in three-dimensional integrated photonic circuits and verify
the robustness of the corner states against small disorder.
Since the coupling and phase between each of the two lattice
sites at each step of the coinless DTQW can be adjusted
independently, our proposal can be extended directly to realize
other exotic higher-order topological insulators, such as the
non-Hermitian [59-64] and Floquet higher-order topological
insulators [65-69], which have not been observed in experi-
ments. Our work offers an alternative route to explore exotic
topological matters using DTQWs.

This paper is organized as follows. In Sec. II we introduce a
two-dimensional coinless DTQW. In Sec. III we demonstrate
the existence of the zero-dimensional corner states and the
one-dimensional edge states through calculating the spec-
tra and the topological invariant. In Sec. IV we show that
the corner and edge states can be observed experimentally
through the probability distributions of the walker after a
multistep coinless DTQW. In Sec. V we propose a possible
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experimental implementation in a three-dimensional inte-
grated photonic circuit. In Sec. VI we verify the robustness
of the corner states against the small disorder. Finally, we give
the summarization in Sec. VII.

II. A TWO-DIMENSIONAL COINLESS DTQW

We begin to introduce a two-dimensional Su-Schrieffer-
Heeger model with 7 flux per plaquette, which is governed
by the Hamiltonian

H = Z(Ixaiﬂ,yaxw + tye"ma;yﬂax,y) +He., ()

X,y

where a;y (ax,y) is the creation (annihilation) operator of a
spinless particle at the site (x,y), tyy) =1 + (=108t are
the two types of hopping amplitudes in the x (y) direction,
respectively, and can be defined as J, =t — d¢, J, =t + 6¢,
and H.c. is the Hermitian conjugate. The Hamiltonian (1) can
host the topologically protected corner states [44,45]. In the
following we construct a two-dimensional coinless DTQW to
simulate the second-order topological insulator based on this
Hamiltonian.
We first divide it into four parts,

H = Hy, + Hyy + Hy, + H,, 2)

where Hi, (H>,) and Hj, (H>,) are the intracellular (intercel-
lular) hoppings along the x and y directions, respectively. We
then construct the one-step operator of a coinless DTQW as

= UsUsU,U;. 3)
For simplicity, we use the units AT = i = 1 hereafter. For the
Hamiltonian (1), these four substep operators are chosen as

M/2—1

U= Y Vun®IL, (4)

x=0
M/2—1

Uy =(11):{11 + M) (M) R T+ Vo ®L,  (5)

x=1

M M/2—1
Us=) Y 0l ® Vo, 6)
x=1 y=0
Uy =T, @ (I1)y(1] + [M), (M)
M Mj2—1
+D 03 x| @ Vay, (7)
x=1 y=1

where the translation operators in the x and y directions are
defined as

T
V. = cos (Zr>[|x)(x| Flr+ D +1]]
Yz
_isin (Zr)[lx—i— D]+ Wa+11  ®)
V, = cos (Zr) 01+ ly+ Dy + 1]

—isin (%r)[eix” ly + Dy + e [y)(y + 1[]. (9)

U,

X

FIG. 1. The proposed implementation of a coinless DTQW in
a two-dimensional lattice. The links of the lattice are marked with
different colors, degrees of thickness, and line types, respectively.
The different colors represent four substep operators U; in Egs. (4)—
(7), respectively. The links with the different thicknesses represent
two types of hopping amplitudes, J; and J,, respectively. The dashed
lines in the y direction indicate the required 4w phases of the
hopping amplitudes, which can induce a 7 flux when a walker goes
through an elementary cell anticlockwise.

We have r = J; (r = J,) for the substep operators U; and
Us (U, and Uy). This coinless DTQW is implemented in the
Hilbert space |x) ® |y), withx € {1, M} and y € {1, M} (M is
even). The operator Z,(,y denotes a M x M identity matrix in
the sub-Hilbert space |x) (|y)). These four substep operators
in Egs. (4)—(7) do not commute with each other and can be
adjusted independently. It should be emphasized that in order
to generate the 7 flux per plaquette, here we have added key
phase factors of the translation operator V,. By applying the
one-step operator in Eq. (3) many times, a multistep coinless
DTQW can be realized, as shown schematically in Fig. 1, and
the topologically protected corner states can be explored, as
will be shown.

III. SPECTRA AND TOPOLOGICAL INVARIANT

In order to illustrate the topological features of this coinless
DTQW, here we discuss the quasienergy spectrum and the
topological invariant. In Fig. 2(a), we plot the quasienergy
spectrum of the effective Hamiltonian, Heg = i In Ugep, under
the open boundary condition. This figure shows clearly that
the gapless zero-energy and gapped nonzero-energy states
can occur. Moreover, the gapless zero-energy states are four-
degenerate and separated from the bulk states by a large en-
ergy gap, while these four-degenerate gapped nonzero-energy
states are separated from the bulk states only with a tiny gap,
as shown in Fig. 2(b). When we increase the parameter J;,
this tiny band gap disappears quickly. In Fig. 2(c) we plot
the collective distributions of these four-degenerate zero- and
nonzero-energy states, which are indeed localized at the four
corners and edges of the lattice, respectively.

The appearance of the zero-dimensional corner states can
be attributed to the second-order bulk topology, which is
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FIG. 2. (a) The quasienergy spectrum of the effective Hamil-
tonian, He = ilnUgep, as a function of the parameter J,. (b) The
quasienergy spectrum with J;/J, = 0.1. There are four-degenerate
zero- and nonzero-energy states, respectively denoted by the red and
blue points. (c) Left: Collective distribution of the four-degenerate
zero-energy corner-localized states. Right: Collective distribution of
the four-degenerate nonzero-energy edge-localized states with state
numbers {203, 204, 205, 206}. Here the lattice size is chosen as
20 x 20.

described by introducing the Wannier bands and the nested
Wilson loops [44,45]. Generally speaking, the complete char-
acterization of the second-order topology for a Floquet system
gives a pair of Z, invariant, which can predict the appearance
of zero- and m-corner states [65—69]. For our model, only
one Z, invariant is enough with the absence of the w-corner
states.

To construct the topological invariant, we consider
the eigenstates of the one-step operator in momentum
representation,

Ustep(K)|Ex)) = ™| Ey), (10)
where two gapped bands with the quasienergy £Ej are doubly
degenerate, respectively, and the eigenstates can be denoted

UL

6 -4 -2
Jl(umts of Jg)

FIG. 3. Numerical plot of the topological invariant v by the
nested Wilson loops. The two-dimensional Brillouin zone is dis-
cretized by using 51 k points in each direction.

as |+ E}) and |+ E?) (|— E}!) and |— E})) for upper (lower)
bands. When the lower two bands are filled, the Wilson loop
operator in the x direction is defined as

P kg akee Frxo (11)

where F.x is a 2 x2 matrix with element [F k]™ =
(—Ex are | — Ex)(m,n=1,2), e, is the unit vector in the x
direction, and Ak, = 2w /N,. The two-dimensional Brillouin
zone is discretized by using the interval (27 /Ny, 27 /Ny)
such that there are (N, + 1)(Ny + 1) k points in total. With
the periodic boundary condition, |- Eg) = | — Ey,, . ), we
diagonalize Eq. (11) as

Wik = Frkt(N—1)akee, - -

Wik VL, ) = 20|/ ), (12)

where j = £ denotes two Wannier bands. These Wannier
bands carry their own topological invariants, which can be
evaluated by calculating the nested Wilson loops.

We first construct the Wannier states as

= Y ' E). (13)

n=1,2

where [ka]” denotes the nth element of the two-component
spinor |Vik) Then, with the periodic boundary condition,

|w;'fk) |wx ke ), the nested Wilson loops along k, in the

Wannier bands v are

Fi

+
vkt ake, Frke (14)

N gt
Wik = Fy,k+(Ny71)Akyev :

+ + + . . .
where Fiy = (Wi, Akyey|wx,k), e, is the unit vector in the y

direction, and Ak, = 27 /N,. Through Eq. (14) we obtain the
nested polarization as

Py = ‘Eﬁ Zlog[ (15)

vE
Similarly, we can also obtain the nested polarization p,” from
the nest Wilson loops in the y direction. Finally, the topologi-
cal quadrupole phase is characterized by a Z, invariant [44],

Vi
v=4plpy . (16)

By choosing N, = N, = 50, we numerically calculate the
topological invariant v by using the above procedure. As
shown in Fig. 3, we find that the topological invariant v is
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FIG. 4. The probability distributions of the coinless DTQW on a 20 x 20 lattice for steps N = 5, 50, 100, 150. The walker is initialized at
one corner (x,y) = (1, 1) (a, ¢) or edge (x,y) = (1, 2) (b, d) of the lattice. In (a, b), the parameter J; /J, = 1.5, which corresponds to a trivial
phase. In (¢, d), the parameter J, /J, = 0.1, which corresponds to a quadrupole topological phase.

quantized to be 0 or 1, which corresponds to the trivial or
topological phases, respectively.

IV. OBSERVATION OF THE CORNER AND EDGE STATES

In this section we mainly show that the corner and edge
states can be observed experimentally through the proba-
bility distribution of the walker after a multistep coinless
DTQW. It is well known that the probability distributions
of the multistep DTQW exhibit the ballistic behaviors [1-4],
which are entirely different from the diffusive behaviors of
the classic version. Utilizing this feature, we can demon-
strate the existence of the corner and edge states through
the local behavior of the probability distribution of the
walker.

In the first case we tune the parameter J; /J, = 1.5, which
corresponds to a trivial phase. We initialize the walker at
one corner of the lattice (x,y) = (1, 1) or one edge of the
lattice with (x, y) = (1, 2). Since the system does not support
any localized states, the probability of the walker spreads

ballistically into the bulk with increasing the step of the
coinless DTQW; see Figs. 4(a) and 4(b). Then we tune the
parameter to J; /J, = 0.1, which corresponds to a quadrupole
topological phase supporting the localized corner and edge
states; see Fig. 2(c). In such a case, when this initial state is
prepared at one corner of the lattice (x,y) = (1, 1), since it
has a large overlap with the corner state, the most part of the
walker’s wave packet remains localized near (x,y) = (1, 1)
as increasing the step of the coinless DTQW; see Fig. 4(c).
In Fig. 4(d) we initialize the walker at one edge of the
lattice with (x, y) = (1, 2). Similarly, this initial state has a
large overlap with the edge states, and we can also observe
a large nonvanishing localization at one edge of the lattice.
Since the edge states have a vanishing distribution at the
corners of the lattice [see Fig. 2(c)], the walker only localizes
at one edge of the lattice. It should be noticed that in Fig. 4, we
only show the numerical results when the walker is initialed at
the bottom-left corner and left edge of the lattice. The results
for the other three corners or edges of the lattice are similar
and thus are not shown here.
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FIG. 5. Scheme of waveguide structure for realizing the trans-
lation operators V, and V. (a) A single-layer waveguide structure
for realizing a beam splitter (BS). (b) A double-layer waveguide
structure for realizing a phase-shifted beam splitter (PBS).

V. POSSIBLE EXPERIMENTAL IMPLEMENTATION

In this section we propose a possible scheme to realize this
coinless DTQW in Eq. (3) in a three-dimensional integrated
photonic circuit [70], where a single photon acts as a walker
and a single waveguide can indicate a two-dimensional lattice
site in the x and y directions. The waveguides are extended
in the z direction, corresponding to the time dimension of
the coinless DTQW. The key to realize this coinless DTQW
in experiments is how to achieve the specific translation
operators V, and V, in Egs. (8) and (9), which correspond to
a beam-splitter matrix and a phased-shifted beam-splitter ma-
trix, respectively. Fortunately, we can realize these translation
operators in an integrated photonic circuit with the directional
coupler geometry [71], where two waveguides are brought
close together for a certain interaction length and coupled by
an evanescent field. In the following we will show how to
implement the translation operators V, and V), with the single-
and double-layer waveguide structures, respectively.

The translation operator V, can be realized by a directional
coupler; see Fig. 5(a). The standard coupled-mode theory [72]
gives a transfer matrix as

cos(Kz)
Ti(z) = (17)

—isin(Kz)

—isin(Kz)
cos(Kz)

which can be used to realize Eq. (8). According to Eq. (17),
the parameter in V, can be adjusted through altering the
coupling coefficient K and the interaction length z.

Due to the current technology of the full phase-shift con-
trollability between two waveguides [73,74], we can introduce
an arbitrary phase in the first (or second) row of T7j(z).
However, the phases required in V, are at the off-diagonal
elements of the matrix, which indicates that we cannot realize
the translation operator V, directly by a single directional
coupler. Thus we design a double-layer waveguide structure
to overcome this limitation. As shown in Fig. 5(b), if a
single photon pulse is input from the port labeled by |y)"
(or [y 4+ 1)), it will go through the upper (or lower) layer
waveguide structure and obtain a phase @ (or —®). According
to the coupled-mode theory, the total transfer matrix governed
by this double-layer waveguide structure is

oy — cos(Kz) —isin(Kz)e'® 8
2(2) = —isin(Kz)e '® cos(Kz) |’ (18)

which is exactly the phased-shifted beam-splitter matrix in
Eq. (9). Thus the experimental implementation of Usep is
possible with the current technology of the three-dimensional
waveguide architecture [75-78]. The phase & can be chosen
arbitrarily and is here taken as ® = mm, where m is an integer.
When m is even, the transfer matrix 7>(z) reduces to T;(z).
That is, a single-layer waveguide structure is enough for
this case.

VI. ROBUSTNESS OF CORNER STATES AGAINST
SMALL DISORDER

In real experiments the noise usually exists. In the inte-
grated photonic circuits considered above, the noise can be
the static or dynamic disorder [73]. To verify the robustness of
the corner states in our system, we add the static or dynamic
disorder into the evolution processing. The one-step operator
for the disorder is introduced as

Uioral = Ustep x Ugis, (19)
with

Usis = ) _ €% [x, ) {x, yl. (20)

X,y

Here &y, is chosen randomly from the interval [-W/2, W/2],
where W is the disorder strength. For the static disorder, the
operator in Eq. (20) is unchanged during the whole evolution
processing of a multistep coinless DTQW, while it changes
with the steps for the dynamic disorder.

To analyze the robustness of the corner states, we nu-
merically calculate the quasienergy spectrum of the effective
Hamiltonian, Heg = iIn Uiy, as a function of the disorder
strength. The results are shown in Fig. 6 for 20 independent
realizations of disorder. When the disorder strength is small,
the corner states are not degenerate but still separated from the
edge and bulk states by a wide band gap. This wide band gap
indicates that the system is protected by the nontrivial topol-
ogy with the existence of the robust corner states [50,53,54].
However, when we increase the disorder strength, the band
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FIG. 6. The quasienergy spectrum of the effective Hamiltonian,
Hr = iIn Uyoral, as a function of the disorder strength W. The lattice
size is chosen as 20 x 20, and the parameter J,/J, = 0.1.

gap will close. The absence of the band gap implies that the
nontrivial topology of the system has been destroyed.

Under the small disorder, the robust corner states and the
edge states can also be observed experimentally through the
probability distributions of the walker. In Fig. 7 we show
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the probability distributions of the multistep coinless DTQWs
with disorder strength W/J, = 0.25 when the walkers are
initialized at the corner and edge of the lattice, respectively.
It is clear to see that the walkers always have stable large
localizations at the corner and edge, which strongly verifies
the existence of the corner and edge states. To show the influ-
ence of the disorder strength on the localizations at the corner
and edge more clearly, in Fig. 8 we plot the probabilities P.
at the corner (x,y) = (1,1) and P, at the left edge of the
lattice vs step N with different disorder strengths. When the
disorder strength is chosen as W/J, = 0.25 [see Figs. 8(a)
and 8(c)], we can see really large localizations at the corner
and edge of the lattice during the whole evolution processing
of the coinless DTQWs with the static and dynamic disorders,
the results of which are consistent with the probability dis-
tributions of the walker shown in Fig. 7. When we increase
the disorder strength as W/J, = 0.5, the probabilities P, and
P, are still large but with slight decreases [see Figs. 8(b)
and 8(d)]. Furthermore, in Fig. 9 we show the probabilities
P, at the corner (x,y) = (1, 1) and P, at the left edge of the
lattice vs the disorder strength. Generally, the stable large
localizations at the corner and edge can be observed when

N
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FIG. 7. The probability distributions of the coinless DTQWSs on a 20 x 20 lattice for the static (a, b) and dynamic (c, d) disorders. The steps
are chosen as N = 5, 20, 50, 100. The walker is initialized at one corner (x,y) = (1, 1) (a, ¢) or edge (x,y) = (1, 2) (b, d) of the lattice. The
disorder strength W/J, = 0.25 and the parameter J; /J, = 0.1. The results are obtained by averaging 100 independent disordered realizations.
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FIG. 8. (a, b) The probability P. at the corner (x,y) = (1,1) vs
the step N when the walker is initialized at the same corner. (c, d) The
probability P, at the left edge of the lattice vs step N when the walker
is initialized at (x, y) = (1, 2). The disorder strengths are chosen as
W/J, =0.25 (a, ¢) and W/J, = 0.5 (b, d). The dashed (dotted) lines
represent the case with the static (dynamic) disorder. The solid lines
represent the case without the disorder. The parameter J;/J, = 0.1.
The disordered results are obtained by averaging 100 independent
disordered realizations.

the step is small. When the step is large, the localizations at
the corner and edge are still large but with slight decreases
as we increase the disorder strength. Specifically, for the case
with static disorder we can always observe nearly stable large
localizations at the corner.

VII. CONCLUSIONS

In summary, we have constructed a two-dimensional
coinless discrete-time quantum walk (DTQW) to simulate
the second-order topological insulator. We have shown
that both of the corner and edge states can be observed
through the probability distribution independently. Finally,
we have proposed a possible experimental implementation in
a three-dimensional integrated photonic circuit and verified
the robustness of the corner states against the small disorder.
Since the coupling and phase between each of the two lattice

(@ 1

O N=10 % N=30 N:50\

¢,

XXX AANDEAS
XKL ARE (290AA 04
v o

(d) 1

0 0.1 0.2 0.3 0.4 0.5
W (units of J5)

FIG. 9. (a, b) The probability P, at the corner (x,y) = (1, 1) vs
the disorder strength W when the walker is initialized at the same
corner. (c, d) The probability P, at the left edge of the lattice vs
the disorder strength W when the walker is initialized at (x,y) =
(1,2). We consider the cases with the static (a, ¢) and dynamic
(b, d) disorders. The steps are chosen as N = 5, 10, 30, 50 and the
parameter J;/J, = 0.1. The results are obtained by averaging 100
independent disordered realizations.

sites at each step of the coinless DTQW can be adjusted
independently, our scheme can be generalized directly to
realize the non-Hermitian [59-64] and Floquet higher-order
topological insulators [65-69]. Our work offers an alternative
route to explore exotic higher-order topological matters using
DTQWs.
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