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Mechanical oscillations frozen on discrete levels by two optical driving fields
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We report a synchronization phenomenon which is simulated with an optomechanical system driven by two
equally strong fields with different frequencies. Once the frequencies of the driving fields are properly matched,
the amplitude and phase of the mechanical oscillator coupled to the cavity field, together with its frequency
spectrum, will be frozen on one of the determined trajectories like energy levels, and the phenomenon exists
for the drive intensity beyond a threshold. Interestingly, the mechanical motion can become highly sensitive
to its initial condition and the perturbations during the beginning period of dynamical evolution but, unlike the
aperiodicity in chaotic motion, it will nonetheless evolve to one of those fixed trajectories in the end. The scenario
may find applications in detecting tiny changes in the environment.
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Nonlinear systems under external drives or with mutual
couplings are full of interesting phenomena. One category
of them is dynamical synchronization [1–4], which has been
studied since the time of Huygens [5]. The frequencies and
phases of multiple oscillators can be synchronized under
weak mutual interaction to exhibit the behaviors such as the
coordinated flashes of fireflies [6] and the injection locking of
a laser array to increase output power [7]. Synchronization is
accompanied by mode locking. When it is synchronized by
a periodic force of constant amplitude, a nonlinear oscillator
will be locked to a number of frequencies known as the devil’s
staircase. A display of the phenomenon in real physical sys-
tem is the voltage-current relation called Shapiro steps for a
Josephson junction in an AC field [8,9]. Among the previously
studied synchronization phenomena, mode locking usually
refers to synchronizing the frequency of an oscillator with that
of an external drive or its oscillation phase with those of the
other oscillators coupled to it. One may ask a further question,
whether the amplitude of an oscillator can also be locked to
a number of fixed values at the same time. For example, by
locking the amplitude A of a mechanical oscillation Xm(t ) =
A sin(ωmt ) with the frequency ωm to a series of discrete An

(n � 1), its energy Em(t ) = 1
2 [X 2

m(t ) + P2
m(t )] determined by

its displacement Xm(t ) and momentum Pm(t ) will be located
on a number of levels as if its quantization were realized only
by means of classical physics. For a macroscopic object it is
counterintuitive to conceive of the possible existence of its
discrete energy levels.

We show that energy levels like those mentioned above
can be created for a macroscopic object through a process
illustrated in Fig. 1(a), which can be experimentally im-
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plemented by driving a cavity field pressurized on a me-
chanical oscillator with two fields with different frequencies.
Previous research on similar doubly driven or bichromatic
optomechanical systems included optomechanically induced
transparency (see, e.g., [10–12]), optomechanical chaos (see,
e.g., [13,14]), and mechanical squeezing (see, e.g., [15–17]).
In all these previous studies the intensities of the two driving
fields used must be unequal, usually with one of the driving
fields much stronger than the other. Instead, the phenomena
illustrated below should emerge under two drives with equal
intensities. A general nonlinear dynamics due to two or more
different external drives has not been fully explored thus far,
except for the stochastic resonance phenomenon involving
one noise drive [18,19]. We focus here on the phenomena
due to one red detuned coherent drive (ω1 = ωc − ωm) and
one resonant coherent drive (ω2 = ωc). If acting alone, the
former achieves the cooling effect of reducing the mechanical
fluctuation in a thermal environment [20]. The two drives
work together to bring about a type of previously unknown
synchronization to two coupled oscillators that model the
system as in Fig. 1(a). The real-time evolution of the system
toward the synchronization also exhibits previously unknown
behaviors.

In terms of the two perpendicular quadratures Xc and Pc

of the cavity field, together with the displacement Xm and
momentum Pm of the mechanical oscillator, the dynamical
equations of the system read (see [21] for the definitions of
these dimensionless variables)

Ẋc = −κXc −
√

2gXmPc + {
√

2[E1 + √
κξ1(t )] cos(�1t )

+
√

2[E2 + √
κξ2(t )] cos(�2t )},

Ṗc = −κPc +
√

2gXmXc + {
√

2[E1 + √
κξ1(t )] sin(�1t )

+
√

2[E2 + √
κξ2(t )] sin(�2t )},
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FIG. 1. (a) Setup of two drives on a cavity with a fixed mirror
and a movable mirror (the mechanical oscillator) connected by a
spring. This system exemplifies a general model of two oscillators
with the intrinsic frequencies ωc and ωm and the damping rates κ

and γm (γm � κ as in [20]), respectively. The radiation pressure of
the cavity field modifies the cavity frequency ωc with a mechanical
displacement Xm much less than the cavity length, realizing a nonlin-
ear interaction potential Veff between the cavity field and mechanical
oscillator. (b i) Stabilized Xm(t ) linear responses to the increase of
the drive amplitudes, when their frequencies do not match (�1 =
1.002ωm and �2 = 0). (b ii) Xm(t ) becomes frozen with the fixed A1

and φ1, once the condition �1 = ωm and �2 = 0 is satisfied. Here
we choose ωm = 50κ , g = 10−5κ , and γm = 10−5κ for the system,
as well as E1(2) = 2.5 × 105κ , and the existing noises are neglected.

Ẋm = ωmPm,

Ṗm = −ωmXm − γmPm + 1
2 g

(
X 2

c + P2
c

) + √
γmξm(t ) (1)

in the observation system rotating at the cavity frequency
ωc, where �1(2) = ωc − ω1(2) and the fluctuation

√
κξ1 (2)(t )

of the drive amplitude E1 (2), together with the mechanical
noise

√
γmξm(t ) from the thermal environment, can exist. Any

realistic system has a very small optomechanical coupling g.
However, for such a driven system, the small nonlinear terms
in Eq. (1) can govern the system dynamics. An example is
shown in Fig. 1(b), where, given a small deviation from �1 =
ωm and �2 = 0, the displacement Xm(t ) responds linearly to
the drive amplitude E (this notation stands for E1 = E2), but
the amplitude, frequency, and phase of the stabilized Xm(t )
become frozen (no longer change with E ) under the condition
�1 = ωm and �2 = 0.

Due to the resonance effect, only the sideband of me-
chanical frequency ωm amid the whole cavity field oscillation
spectrum contributes to the mechanical motion significantly.
Then any mechanical motion that has completely stabilized
can be approximated as

Xm(t ) = A sin(ωmt + φ) + d, (2)

where A and d are the amplitude and pure displacement,
respectively. In addition to the phenomenon illustrated in Fig.
1(b ii), where the mechanical oscillation amplitude A and
phase φ due to different external drive intensities are locked
to the same values A1 and φ1, respectively, and they are frozen
over a certain range of E , a still higher drive amplitude E
can give rise to a series of such stabilized mechanical motion
having the approximate energy

Em(t ) = 1
2 A2

n + 1
2 d2 + And sin(ωmt + φn), (3)

in which the displace d is much less than the fixed oscillation
amplitude An and the correspondingly locked phase φn can be
set equal to zero. Its time average 〈Em〉 = 1

2 (A2
n + d2) ≈ 1

2 A2
n

is distributed on the quantized levels as in Fig. 2(a). Compared
to the frozen amplitude An, the displacement d on each level
slightly increases with E , leading to a certain width for the
level.

Across the threshold drive amplitude around E ≈ 5 ×
105κ , the illustrated system has completely reached the first
level. Over a higher drive amplitude close to E ≈ 2.5 × 107κ ,
on the other hand, the second level emerges and seemingly
overlaps with the first one. With the magnified scales in
Fig. 2(b), the higher levels are found to still have a one-to-one
correspondence between 〈Em〉 and E . These discrete levels
are not the common limit cycles like those of self-sustained
oscillation (see, e.g., [24–27]), whose amplitudes can never
be locked under a varying external drive.

The uniqueness of such discrete levels also exists in their
oscillation patterns. The stabilized mechanical oscillations
beyond the approximation in Eq. (2) can be found directly
from the numerical simulations with Eq. (1) to have the stably
oscillating mechanical energy as illustrated in Fig. 2(c). These
numerically calculated patterns are dominated by the contours
with the frequency ωm and amplitudes And , being consistent
with Eq. (3). Corresponding to each mechanical energy level,
the stabilized cavity energy Ec(t ) = 1

2 [X 2
c (t ) + P2

c (t )] displays
a fixed spectrum as one of the patterns in Fig. 2(d), though the
amplitudes of the stabilized Xc(t ) and Pc(t ) are proportional
to E . The level on which the mechanical oscillator is can thus
be known from the corresponding cavity spectrum.

Under a given drive amplitude E , the mechanical oscilla-
tion matches the cavity oscillation spectrum in the form of
n:m synchronization [2,4], where m and n are integers, as seen
from the correspondence of the patterns in Figs. 2(c i)–2(c iv)
to those in Figs. 2(d i)–2(d iv). The phase dynamics [28] is
a primary concern in synchronization phenomena, including
those in chaotic systems [29–33] and systems operating in a
quantum regime [34–36]. A simultaneous phase locking on all
entrained frequency components for the two oscillators that
model the system as in Fig. 1(a), rather than on a couple of
frequency components only, exists in the scenario with which
we are currently concerned. Another fact about each discrete
level is that all mechanical oscillations due to different drive
amplitudes E , as well as their corresponding cavity oscilla-
tions, are also at the same pace.

The frozen mechanical motion must exist under one reso-
nant field together with another equally strong cooling field.
The functions of the two different driving fields can be found
by starting only one of them and gradually strengthening
the other (see [21]). A single resonant field with sufficiently
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FIG. 2. (a) Relation of the average mechanical energy 〈Em〉 = 1
2 (〈X 2

m〉 + 〈P2
m〉) to the dimensionless drive amplitude up to E/κ = 6.3 × 107

(in terms of the logarithmic scales). The “quantized” mechanical energy on the displayed levels satisfies a power law 〈Em〉(n) ∼ n2.2, as shown
in the inset. (b i) One section viewed with a scale on the order of 103. (b2) View of another range starting from E/κ = 108 with a scale of
10−4 (the logarithmic scale on the vertical axis appears uneven). (c) and (d) One-to-one correspondence between the stabilized mechanical
oscillations and cavity oscillations. The contours of Em(t ) oscillating at the frequency ωm in (c) have their amplitudes And , on the order of 10−2

of the level positions 1
2 (A2

n + d2). In (d i) we use a dash line to make a single peak distinct.

high intensity brings about the discrete levels (the mechanical
oscillation amplitude grows by discrete steps in response
to increasing E ); the cooling field lowers the mechanical
amplitude and locks the phase for all mechanical oscillations
on each level. Their joint effect is to realize the discrete levels
(the level n = 1 is the top of the continuum spectrum) in
Fig. 2(a) and the associated oscillation patterns such as those
in Figs. 2(c) and 2(d).

The transient evolution processes will become complicated
when the drive amplitude E is high enough to lead to the levels
n � 2. As seen from Fig. 2(b), the system would go to another
level whenever E is shifted to E + δE and the transition will
occur with even less δE if E is still higher. When viewed
with the scale used in Fig. 2(a), the different levels thus
appear to overlap, being distinct from the step-by-step devil’s
staircase [2,8] in other synchronization phenomena. Here the
level transition means the evolution to a different level from
the same initial condition rather than a direct jump between
them. In this regime the average energy 〈Em〉 is distributed
irregularly along the axis of E , but its values are nonetheless
fixed to those of the discrete levels.

Among the previously known phenomena, chaotic motion
is typical in that a tiny change of initial condition will lead

to a huge difference in later evolutions. This characteristic
also exists in our system when the drives are strong enough
to create the higher levels. In Fig. 3 the evolution trajectories
of Em(t ), which are determined by the corresponding Xm(t )
and Pm(t ), are compared for some different initial variations
�Em(0) = 1

2 {δX 2
m(0) + δP2

m(0)}, where δXm(0) [δPm(0)] is the
difference from the initial condition Xm(0) = 0 [Pm(0) = 0]
only possible in a zero-temperature environment. Figure 3(a)
displays the evolutions from different δXm(0) on the order
of 10−6, with one of the evolution courses being changed
to another level. The dependence of an evolution course on
its initial condition will become even more sensitive when
the external drives are stronger. Figure 3(b) compares the
evolution for the oscillator slightly touched at the beginning
[δPm(0) ∼ 10−9] with the process without initial perturbation.
Their initial difference is as small as �Em(0) = 10−18, but
they finally arrive at two different levels separated by energy
of a huge order 1014. Such sensitivity to the initial condition
has nothing to do with chaos. There would be the tendency
limt→∞ �Em(t )/�Em(0) ∼ eλt , where λ is a positive Lya-
punov exponent, were the mechanical oscillator in a chaotic
motion. Instead, due to the limited energy influx from the two
external drives, the actual tendency arising from difference
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FIG. 3. (a) Evolutions under the fixed drives with E = 3.5 ×
107κ , but with different initial conditions (Xm(0), Pm(0)) = (0, 0)
for the red curve, (Xm(0), Pm(0)) = (4

√
2 × 10−6, 0) for the black

curve, and (Xm(0), Pm(0)) = (6
√

2 × 10−6, 0) for the indigo curve.
The inset shows the period of reaching the stability. (b) Evolu-
tions of the mechanical energy under the fixed drives with E =
(108 + 6.01 × 10−4)κ , but with a tiny difference in the initial condi-
tions: (Xm(0), Pm(0)) = (0, 0) for the red curve and (Xm(0), Pm(0)) =
(0,

√
2 × 10−9) for the indigo curve. The mechanical oscillator may

evolve to the level n = 7 if its initial momentum reaches Pm(0) ∼
10−4.

initial conditions is limt→∞ �Em(t )/�Em(0) ∼ B sin(ωmt ) +
D, where the constants B and D are bounded though they can
be large. The system can have multiple attractors from varying
initial conditions. However, once the system parameters (g/κ ,
ωm/κ , and γm/κ) are fixed, the oscillator will always evolve
to one of those fixed levels as the attractors, no matter how the
initial condition is modified.

Another important issue involves the noisy perturbations.
One type of noise is the drive amplitude fluctuation

√
κξ1(2)(t )

in Eq. (1). First, we consider a small random fluctuation only
on the cooling field [see Fig. 4(a)]. This fluctuation is added
at two different moments, i.e., it carries a Heaviside function
H (κt − κtd ) with different delay time td . The evolution of
Em(t ) after adding the fluctuation is compared with the ideally
noiseless situation. It is found that a tiny random fluctuation
added before the system reaches the stability will change the
evolution course. However, if it acts when the system has
been close to its stability, the same fluctuation cannot affect
the evolution at all. In Fig. 4(b) much stronger fluctuations
are added to both fields and similar consequences manifest
as well. In an environment of high temperature, the thermal
fluctuation

√
γmξm(t ) in Eq. (1) is not negligible and can be

approximated as white noise [37]. We simulate the evolution
under such mechanical noise in Fig. 4(c). The results are also
similar to those of the drive fluctuations. The robustness of

FIG. 4. (a) and (b) Influence on the evolution courses by the
drive amplitude fluctuations in the form H (κt − κtd )ξ1(2)(t ), where
ξ1(2)(t ) is a random function generated with MATLAB, as shown in the
inset. The stochastic function changes its value for every step size of
κt = 1.5 × 10−5. The red curve due to the noisy perturbation added
close to the stability almost coincides with the blue one (the evolution
course exactly under E = 108κ without any fluctuation). The black
curve due to the perturbation added earlier evolves to another level.
(c) Effect of a random drive H (κt − κtd )ξm(t ) on the mechanical
oscillator. The noisy perturbation starting at the beginning (td = 0)
changes the evolution course (black curve), but the same noise acting
much later will not affect the evolution (red curve).

the discrete energy levels against noisy perturbation allows
their realization in a less demanding environment, though
the evolution toward a specific level can be affected by the
existing noises.

For a prepared system, the above-mentioned features mani-
fest with increased drive intensity. The drive amplitude E used
determines four different regimes as summarized in Fig. 5.
A distinct boundary between these regimes does not exist, so
the associated transitions are not like commonly known phase
transitions. In addition to what has been discussed, this doubly
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FIG. 5. Increasing drive amplitude E specifies the different dynamical regimes named after the corresponding mechanical responses. The
illustrated Xc(t ) and Xm(t ) exemplify the associated dynamical behaviors. In the quasilinearly responding regime the amplitude of Xm(t ) is
proportional to E ; in the transitional regime both the cavity field and mechanical oscillator take a much longer time to reach stability; in the
regime of mode locking (the level n = 1), Xm(t ) is frozen but Xc(t ) becomes proportional to E ; in the highly sensitive regime a slight variation
of E changes both the cavity and mechanical motion (the example shows a transition between n = 5 and n = 6, as indicated by the peak
numbers in a half period of cavity oscillation).

driven system displays an interesting behavior of a critical
slowing-down when E is just less than required for the first
level.

Our finding reveals the existence of a type of synchro-
nization processes in which, unlike previously discovered
synchronization phenomena, the three performance variables
(amplitude, frequency, and phase) of an oscillator can be
simultaneously locked. Such synchronization requires that
the frequencies of the two external drives be rigorously
matched, so it is possible to make use of this condition for
the first mechanical level to measure the related physical
quantities precisely. A transient evolution toward the higher

mechanical levels is sensitive to the initial condition and
noisy perturbations, but the stabilized state is immune to
the same perturbations. It is advantageous for the detection
of tiny environmental changes, since the finally stabilized
oscillations on the different discrete levels are distinguishable.
The illustrated phenomena are expected to be observable with
suitable optomechanical systems.
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