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We performed measurements of the photon correlation [g(2)(τ )] in driven nonlinear high-Q silicon photonic
crystal microcavities. The measured g(2)(τ ) exhibits damped oscillatory behavior when the input pump power
exceeds a critical value. From a comparison between experiments and simulations, we attribute the measured
oscillation of g(2)(τ ) to self-pulsing (a limit cycle) emerging from an interplay between the photon, carrier, and
thermal dynamics. Namely, the oscillation frequency of g(2)(τ ) corresponds to the oscillation period of the limit
cycle, while its finite coherence (damping) time originates from the stochastic nature of the limit cycle. From
the standpoint of phase reduction theory, we interpret the measured coherence time of g(2)(τ ) as the coherence
(diffusion) time of a generalized phase of the limit cycle. Furthermore, we show that an increase in laser input
power enhances the coherence time of g(2)(τ ) up to the order of microseconds, which could be a demonstration
of the stabilization of a stochastic limit cycle through pumping.
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A limit cycle is a universal natural phenomenon observed
in a variety of systems ranging from electrical circuits to
biological systems. In particular, in living systems, limit
cycles play fundamental roles as, for example, biochemical
oscillators, including cell cycles and circadian clocks [1].
Importantly, as schematically shown on the left-hand side
in Fig. 1(a), limit cycles exist only for nonlinear dissipative
systems, and they are qualitatively different from periodic
oscillations in conservative systems such as simple pendu-
lums. For example, the orbit of a pendulum is determined by
the initial condition and becomes unstable with perturbation,
whereas a limit cycle has a stable orbit, which is an attractor
independent of an initial condition but controlled by system
parameters such as pump power. At the same time, dissipative
systems are usually noisy environments. Therefore, biochem-
ical oscillators work as stochastic limit cycles, and strategies
to maintain the precision of stochastic biochemical oscillators
have been actively investigated in theoretical biophysics and
biochemistry [2–8]. In this direction, a novel strategy is to
increase the amplitude of a limit cycle [2,3], which can be
achieved by pumping [4] or by free-energy dissipation [5,7].
Furthermore, in discussing the precision of a limit cycle, a
theoretical idea called a “phase reduction” proposed by Win-
free and Kuramoto [9,10] plays a key role, which reduces the
high-dimensional limit cycle dynamics to a one-dimensional
“phase” dynamics along a limit cycle’s orbit.

In this Rapid Communication, we report experimental
investigations of stochastic limit cycles in the optical domain
and demonstrate a strategy for stabilizing a stochastic limit
cycle with pumping. Our system is based on a driven silicon
(Si) photonic crystal (PhC) high-Q microcavity. A photonic
microcavity device confines photons inside a nanoscale mode
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volume, which strongly enhances thermo-optic (TO) and
carrier-induced optical nonlinearities in a medium such as
a III-V material and Si [11–13]. Using the enhanced op-
tical nonlinearity, optical bistability has been demonstrated
with microcavities [14–19]. Furthermore, it is known that
nonlinear photonic microcavities exhibit Hopf bifurcation,
self-pulsing (a limit cycle) [20–26], and excitability [27,28].
In particular, in Refs. [27,28], not only excitability but also
limit cycle oscillations have been demonstrated in driven PhC
cavities. The advantages of using a photonic system include
controllability of pump power and dissipation and ease of
measurements, such as real-time and photon-correlation mea-
surements. Therefore, photonic limit cycles could serve as
artificial laboratories for understanding stochastic dynamical
systems including biochemical oscillators. Furthermore, since
optical limit cycles in all-Si PhC cavities operate at room
temperature, it will be easy to integrate optical clocks in future
silicon photonics circuits. In our study, we measured second-
order photon-correlation functions [g(2)(τ )] for a light output
of the driven cavity. When the laser input power exceeded a
critical value, g(2)(τ ) exhibited damped oscillation. Together
with numerical simulations, we show that the origin of the
oscillation of g(2)(τ ) is self-pulsing (a limit cycle). Next, we
argue that the finite coherence time of g(2)(τ ) originates from
the stochastic nature of the system. The coherence time of
g(2)(τ ) is interpreted as the coherence (diffusion) time of the
generalized phase of the limit cycle [9,10]. By measuring the
input power dependence of the coherence time of g(2)(τ ), we
observed an enhancement of the phase coherence time up to
the order of microseconds with an increase in input power.
Finally, we discuss the observed enhancement of the phase
coherence time as a general property of a limit cycle, namely,
as a demonstration of the stabilization of a stochastic limit
cycle through pumping [2–4,8].
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FIG. 1. (a) Illustration of a limit cycle emerging from a driven
dissipative nonlinear system (left) and a laser scanning microscope
image of the high-Q Si PhC microcavity (right). (b) Laser transmis-
sion spectrum of the cavity showing the resonance of a fundamental
mode. (c) Output intensity Iout as a function of input power Pin,
where Pc is the critical laser input power for self-pulsing. BS and
SP represent bistable and self-pulsing regions, respectively. Here, Pin

is the fiber output power of the tunable semiconductor laser.

On the right-hand side in Fig. 1(a) is an image of our
device, which is based on a two-dimensional (2D) Si PhC
slab with a cavity and two waveguides. The lattice constant,
air-hole radius, and thickness of the PhC slab are 412, 100,
and 215 nm, respectively. All the experiments were performed
at room temperature. The cavity resonance of the fundamen-
tal mode is λc = 1569.55 nm, and the Q value is around
3.5 × 105 [see Fig. 1(b)]. The corresponding cavity photon
lifetime, including losses to the waveguides, is around 1/κ =
300 ps. This very high-Q value was achieved by using the
ultrahigh-Q design proposed in Ref. [29], which omits three
air holes and employs careful modulation of the surrounding
air holes [for further details about the device, see Sec. I A in
the Supplemental Material (SM) [30]]. We drive the cavity
through the input waveguide with a tunable semiconductor
laser, while we measure light outputs through the output
waveguide. We introduce a normalized frequency detuning δ

between the cavity resonance and laser input, which is defined
as δ = (ωL − ωc)/κ with the cavity resonance frequency ωc,
the laser input frequency ωL, and a field decay rate κ . In the
measurements, we fixed the detuning as δ � −2. To mea-
sure second-order photon-correlation functions [g(2)(τ )], we
employed superconducting nanowire single-photon detectors
(SNSPDs) and a conventional start-stop Hanbury Brown–
Twiss (HBT) interferometer. For real-time measurements, we
used an avalanche photodiode (APD).

First, we discuss the bistable operation, which is shown
in Fig. 1(c). When the detuning is δ � −2, the light output
intensity Iout exhibits a hysteresis loop in terms of laser input
power Pin. We use a negative detuning (δ � −2) to induce
the transverse optical (TO) nonlinearity. The hysteresis loop
shown in Fig. 1(c) is very noisy, which is probably because
we performed a single-shot measurement by ramping the laser
input power up and down slowly enough to induce the TO
nonlinearity. The lower and upper thresholds of the bistable
hysteresis loop are about Pin = 0.08 and 0.5 mW, respectively.

Note that the laser input power Pin was measured as the fiber
output of the tunable semiconductor laser. If coupling loss
from the fiber output and to the input waveguide is assumed
to be 10 dB, the lower threshold power of bistability is 8 μW
in the input waveguide, which is as low as that reported in
our previous experiments [15,31]. Thus, the bistable operation
in Fig. 1(c) is evidence of the onset of a high-Q cavity-
enhanced optical nonlinearity induced by a very small input
power. Here, the detailed shape of the hysteresis loop is not
important, but the separation between the bistable and the
self-pulsing region is important for observing the onset of
self-pulsing, which was realized by the high-Q value of our
cavity. This point is covered in more detail in the discussion
of Fig. 3(a).

Second, for various laser input powers Pin, we measured the
delay-dependent photon correlations P2(τ ) with the start-stop
HBT interferometer, and attempted to reconstruct the nor-
malized second-order photon correlation g(2)(τ ) from P2(τ ).
P2(τ ) is a histogram of detected photon pairs in terms of
the time delay τ . The upper part of Fig. 2(a) shows P2(τ )
for four laser input powers. The overall exponential decay
of the measured P2(τ ) is a well-known artifact associated with
the start-stop measurement [32]. Namely, when τ is longer,
the probability of detecting photon pairs becomes smaller.
Now, we define g(2)(τ ) as a classical intensity correlation
g(2)(τ ) ≡ 〈I (t )I (t + τ )〉/〈I〉2, where the brackets represent
statistical averages. For reconstructing normalized second-
order photon-correlation functions g(2)(τ ), we fit the measured
P2(τ ) as

P2(τ ) � C
[
1 + Ae− |τ |

τr cos(ωr |τ |)]e− τ
τcor , (1)

where A ≡ g(2)(0) − 1, and C is another fitting parameter.
Additionally, ωr and τr are the oscillation frequency and
coherence (damping) time of g(2)(τ ), respectively. On the
other hand, τcor is the overall decay time of P2(τ ) associ-
ated with the start-stop counting method. With this fitting,
we reconstruct g(2)(τ ) as g(2)(τ ) = g(2)(0) cos(ωr |τ |)e−τ/τr .
In the lower part of Fig. 2(a), we show four reconstructed
g(2)(τ )’s corresponding to the four P2(τ )’s. When the laser
input power is below a critical value, and even when it is in
the bistable hysteresis loop, the light output has a Poissonian
fluctuation, and thus g(2)(τ ) = 1 as shown in Fig. 2(a) for
Pin = 0.6 mW. Meanwhile, when the laser input power is
above the critical value, g(2)(0) deviates from unity and g(2)(τ )
exhibits a damped oscillation [see Pin = 1.3 mW in Fig. 2(a)].
The critical laser input power of the damped oscillation of
g(2)(τ ) was measured as Pc � 0.6 mW, which is above the
hysteresis loop as shown in Fig. 1(c). In Fig. 2(b), we plot the
second-order photon correlation at a zero delay time g(2)(0)
(top), the oscillation frequency ωr (middle), and the coherence
time τr (bottom) of g(2)(τ ). Figure 2(b) clearly shows that
g(2)(0) deviates from unity when Pin = Pc. Additionally, the
oscillation frequency ωr has a maximum (ωr/2π = 14 MHz)
when Pin = Pc, and it gradually decreases with an increase
in laser input power. Meanwhile, for the coherence time
τr , above Pc, τr increases with increasing laser input power
(indicated by an arrow) and reaches a maximum value of
2.6 μs when Pin � 2.0. However, when laser input power is
increased further, the coherence time τr starts to decrease. The
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FIG. 2. (a) Examples of measured photon correlations with the
start-stop HBT interferometer P2(τ ) with a fitting curve by Eq. (1)
and reconstructed normalized second-order photon-correlation func-
tions g(2)(τ ). (b) g(2)(0) (top), the oscillation frequency ωr (middle),
and the coherence time τr (bottom) of measured g(2)(τ ). The critical
input power of self-pulsing is Pc � 0.6 mW. (c) Real-time trajectories
of the light output measured with an avalanche photodiode (APD)
for two pump powers. For measurements, the detuning was fixed as
δ � −2.

technical details of the hysteresis and g(2)(τ ) measurements
are described in Sec. I C in the SM [30].

We attribute the origin of the oscillation of g(2)(τ ) to
self-pulsation (a limit cycle) originating from Hopf bifurca-
tion [20–22,24,27,28]. To confirm this, we performed real-
time measurements of the light output. Figure 2(c) shows
real-time trajectories of light outputs measured with the
APD for two input powers above Pc, which clearly indi-
cates real-time self-pulsation. Thus, here the origin of photon
bunching [g(2)(0) > 1] is the real-time modulation of light
intensity [33], which is different from the photon bunching
mechanism of chaotic light. Although we performed real-
time measurements just to confirm limit cycle oscillation, in
principle, we can calculate a classical g(2)(τ ) from the evolu-
tion of the light output. This alternative g(2)(τ ) measurement
technique is discussed in Sec. I C in the SM [30].

Now, a new question arises: What is the origin of the finite
coherence time of the observed g(2)(τ )? The answer is the
stochastic (noisy) nature of our limit cycle. In fact, without

any noise, g(2)(τ ) will never decay and should have an infinite
coherence time. For a deeper understanding of these exper-
imental results, we performed numerical simulations based
on the coupled-mode equations proposed in Refs. [19,34,35].
With the Kerr effects neglected, the normalized coupled-mode
equations for an electric field α, normalized carrier density n,
and thermal effect θ are given by

α̇ = κ{i(−δ − θ + n) − (1 + f n)}α + κ
√

Pin, (2)

ṅ = γn{−n + ξ |α|4}, (3)

θ̇ = γθ {−θ + β|α|2 + η|α|2n}. (4)

Here, θ is proportional to the temperature difference between
the cavity and the surrounding region [34]. Both n and θ are
normalized to make constants of nonlinear energy shifts in
Eq. (2) unity. The κ , γn, and γθ are decay rates of the electric
field, carrier, and thermal effect, respectively. The field decay
rate κ includes losses to the waveguides. Pin represents a
normalized laser input power. The coefficients f , ξ , β, and
η represent nonlinear effects associated with free-carrier ab-
sorption (FCA), two-photon absorption (TPA), heating with
linear photon absorption, and FCA-induced heating, respec-
tively. For these nonlinear coefficients, we use the same values
as in Ref. [35]: f = 0.0244, ξ = 8.2κ/γn, β = 0.0296κ/γθ ,
and η = 0.0036κ/γθ , where the value of κ was estimated
from the measured Q value. These nonlinear coefficients and
their definitions are summarized on Tables S1 and S2 in
the SM [30]. For the photon, carrier, and thermal lifetimes,
we use 1/2κ = 300 ps, 1/γn = 200 ps, and 1/γθ = 100 ns,
respectively. The fast carrier lifetime (1/γn = 200 ps) results
from fast carrier diffusion associated with the small cavity of
the PhC structure [14,36].

Before showing the simulations of stochastic dynamics,
we briefly investigate the static properties of the deterministic
coupled-mode equations (2)–(4). First, we attempt to obtain
steady state values of α, n, and θ , which are denoted as
αs, ns, and θs, respectively. By putting α̇ = 0, ṅ = 0, and
θ̇ = 0 into Eqs. (2)–(4), we obtain an algebraic equation for
Is = |αs|2 (see Sec. II B in the SM [30] for the explicit form
of the algebraic equation). The system has two equilibria
when the algebraic equation has two solutions for Is. Second,
at the steady state values of αs, ns, and θs, we calculate a
Jacobian matrix and its eigenvalues to find self-pulsing (see
Sec. II B in the SM [30] for the explicit form of the Jacobian
and their eigenvalues). When a pair of the eigenvalues have
positive real parts, the dynamical system becomes unstable,
and Hopf bifurcation (self-pulsing) occurs [9,37]. Our system
has the following three regions: a self-pulsing (SP) region
where a single unstable equilibrium exists, a bistable (BS)
region where there are two stable equilibria, and an SP +
BS region where one equilibrium is stable and the other
is not. The diagram of our dynamical system is shown in
Fig. 3(a). We also found that bistability is induced solely
by TO nonlinearity, while self-pulsing requires both carrier
and TO nonlinearities (see Sec. II C in the SM [30]). The
horizontal dashed line in Fig. 3(a) indicates that, for δ = −2,
with an increase in pump power, self-pulsing occurs when
the input power reaches a critical power Pc, which is larger
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FIG. 3. (a) Simulated self-pulsing (SP) and bistable (BS) regions
as a map of detuning δ and laser input power Pin, where the solid red
circle represents the onset of SP for δ = −2. (b) Simulated g(2)(τ )
and real-time evolution of carrier n(t ), thermal effect θ (t ), and the
light output I (t ) = |α(t )|2 for Pin = 1.3. (c) g(2)(0) (top), oscillation
frequencies ωr (middle), and the coherence time τr (bottom) of the
simulated g(2)(τ ). For simulations, the detuning δ = −2 was used.
The critical input power of self-pulsing is Pc = 0.6. While (a) is the
result with the deterministic coupled-mode equations, (b) and (c) are
the results with stochastic coupled-mode equations with noise terms.

than the upper threshold of the bistable hysteresis loop. This
is consistent with our measurement shown in Fig. 1(c). We
comment on the importance of the separation between the SP
and BS regions shown in Fig. 1(c). In our experiment, we were
able to observe the onset (bifurcation point) of self-pulsing
outside the hysteresis loop with moderate negative detuning
(δ � −2) and low input power (Pc � 0.6 mW). We found
that as the photon lifetime increases (a Q value increases),
the SP region separates from the BS region, and self-pulsing
occurs with a near-zero detuning and low input power. Thus,
a high-Q value is technically very important for the obser-
vation of the onset of self-pulsing. A further discussion on
the impact of Q on self-pulsing is given in Sec. III in the
SM [30], where simulations for a moderate Q = 2.0 × 104

value are shown. Even in the moderate Q cavity, nontrivial
regions are only the SP, BS, and SP + BS regions in the same
way as in Fig. 3(a). However, the shapes of these regions
as functions of δ and P are very different from those in
Fig. 3(a).

Now, we investigate the dynamical properties of coupled-
mode equations (2)–(4). Since we are interested in a fluc-
tuating system, we add additive Langevin noises fx and fy

only to Eq. (4), where we assume that field and laser input
noises are dominant over other noises. Actually, we find
that the inclusion of carrier and thermal noises does not

qualitatively modify the results. The noise terms satisfy the
correlations 〈 fi(t ) f j (t ′)〉 = 2Dαδi, jδ(t − t ′) and 〈 fi(t )〉 = 0,
where i( j) = x, y and the coefficient Dα is the strength of the
noise. For numerical simulations of the stochastic equations,
we employed the Euler-Maruyama method. The value of
the noise strength was set as

√
2Dα = 0.05

√
κ , which was

chosen to reproduce the observed maximum coherence time
of g(2)(τ ) [38]. Figure 3(b) shows simulated g(2)(τ ), n(t ),
θ (t ), and I (t ) = |α(t )|2 for input power Pin = 1.3, which
clearly reproduce the damped oscillatory behavior of g(2)(τ )
and the real-time self-pulsing when the input power is above
the critical input power Pc = 0.6. Additionally, in Fig. 3(c),
we plot g(2)(0) (top), the oscillation frequency ωr (middle),
and the coherence time τr (bottom) of g(2)(τ ) as a function
of Pin, which also qualitatively reproduce the measurements
shown in Fig. 2(b). Namely, the simulation reproduces the
monotonic decrease of ωr and the enhancement and reduction
of the coherence time τr with an increase in pump power.
Here, we briefly comment on the reduction of the coherence
time τr in the high input power region (Pin > 2.0 mW in
the experiment). We found that field and carrier noises give
rise to the coherence reduction, while thermal noise does not.
Simulations with carrier and thermal noises are shown in Sec.
IV in the SM [30], which indicates that the thermal noise may
be negligible.

In the rest of this Rapid Communication, we focus on the
region around the critical input power of self-pulsing and
attempt to interpret the enhancement of the coherence time
τr , which is indicated by an arrow in the bottom graphs of
Fig. 2(b) (experiment) and Fig. 3(c) (simulation). For this
purpose, we employ the phase reduction theory, which starts
from defining a generalized phase φ along a limit cycle orbit.
Importantly, in phase reduction, noises in a limit cycle are
reduced to a frequency drift and a phase noise as φ̇ = ω +
v + fφ , where ω, v, and fφ represent the original frequency
of a limit cycle, the frequency drift, and the phase noise,
respectively [9,10]. The phase noise fφ satisfies correlations
〈 fφ (t ) fφ (t ′)〉 = 2Dφδ(t − t ′) and 〈 fφ (t )〉 = 0, where Dφ is the
phase diffusion rate. Therefore, for a limit cycle, noises are
interpreted as diffusion of the generalized phase. Furthermore,
the coherence time of a correlation function such as g(2)(τ )
corresponds to the coherence (diffusion) time of the general-
ized phase: τr � 1/Dφ [5,7].

To be more concrete, let us recall that for the stochastic
Stuart-Landau model without phase-amplitude coupling, the
phase diffusion rate well above Hopf bifurcation is approxi-
mated as [5,7,39–41]

Dφ ∝ D0/Pin, (5)

where D0 is the strength of noises, while Pin represents
the pump or input power to the system. If D0 is constant,
Eq. (5) represents the suppression of phase diffusion by
pumping [42]. Additionally, Ref. [5] shows that Eq. (5) can
also be written with a free-energy dissipation rate �W as
Dφ ∝ �W −1, which means the suppression of phase diffu-
sion through free-energy dissipation. Furthermore, Eq. (5)
is intuitively understood as a one-dimensional diffusion pro-
cess along an orbit of a limit cycle [43]. Thus, if the noise
strength D0 is constant, the longer the orbit’s circumference,
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the longer is the time required for the phase to diffuse over 2π .
Additionally, the amplitude and the circumference length
generally increase with pumping Pin in the vicinity of Hopf bi-
furcation. Thus, the essence of Eq. (5) lies in the fixed strength
of noises and the increase in the amplitude by pumping. In
particular, the latter is possible only for limit cycles. Thus, in
the vicinity of a critical point of self-pulsing, an enhancement
of phase coherence will generally occur for any limit cycle,
including ours.

In summary, we performed photon-correlation measure-
ments of stochastic limit cycles using a driven high-Q silicon

photonic crystal cavity. We observed the damped oscillation of
photon correlation associated with self-pulsing (a limit cycle).
Furthermore, by increasing the input power, the coherence
time of the photon-correlation function was enhanced up to
the order of microseconds, which could be interpreted as a
coherence time enhancement of a generalized phase through
pumping.

Note added. Recently, we became aware of Ref. [44],
which discusses similar topics to ours.

We thank K. Nozaki for helpful discussions.
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