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Vortex patterns of atomic Bose-Einstein condensates in a density-dependent gauge potential
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We theoretically examine the vortex states of a gas of trapped quasi-two-dimensional ultracold bosons subject
to a density-dependent gauge potential, realizing an effective nonlinear rotation of the atomic condensate,
which we also show is within the reach of current experimental techniques with ultracold atom experiments.
The nonlinear rotation has a twofold effect; as well as distorting the shape of the condensate it also leads to
an inhomogeneous vorticity resulting in unique morphological and topological states, including ring vortex
arrangements that do not follow the standard Abrikosov result. The dynamics of trapped vortices are also
explored, which differ from the case of rigid-body rotation due to the absence of a global laboratory reference
frame.
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Introduction. Quantum vortices represent the fundamental
excitations of superfluid systems, appearing in response to
the rotation of atomic condensates. Unlike their classical
counterparts, a quantum vortex’s rotational properties are
more restricted, as their velocity field is quantized. The first
generation of experiments used a laser to induce rotation by
stirring the atomic cloud [1–3]. Vortices and in particular
their interaction dynamics play a central role in condensed
matter systems. A single vortex constitutes a core region
where the density vanishes around which there is a circulation
of the quantum fluid, consequentially there is a defect in the
phase of the order parameter. Dimensionality plays a central
role in the physics of vortices—for two-dimensional quantum
fluids experiments have demonstrated different topological
phase transitions, with prominent examples being the quan-
tum spin Hall effect and the Berezinskii-Kosterlitz-Thouless
transition, both of which have been realized with ultracold
atoms [4,5]. In the three-dimensional context, more elaborate
topological configurations are available, such as knots [6–8],
skyrmions [9,10], and the related problem of engineering
analogies of the magnetic monopole [11,12].

Ultracold atomic gases constitute exemplar physical sys-
tems for examining quantum mechanical phenomena, since
experiments afford high controllability. Complementary to
this, quantum gases represent dilute systems, which facilitates
their accurate theoretical modeling via the celebrated Gross-
Pitaevskii model and its numerous extensions [13–16]. The
central role of vortices in superfluidity continues to attract
theoretical and experimental interest in the macroscopic dy-
namics of these excitations. Early work focused on studying
the fundamental properties of the rotating system [17–19],
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while more recent work has centered on understanding the
effect of anisotropic trapping [20], vortex lattice [21,22], and
chaotic [23] dynamics. Focus has also been on the structure
and dynamics of vortices in condensates at finite temperature
including nonequilibrium effects [24,25], multicomponent
systems which have been shown to possess a rich vortex
physics [26–31], and the ongoing quest to understand quan-
tum turbulence [32,33]. For a detailed description of the basic
properties of rotating gases, the interested reader is directed to
the review of Fetter [34].

The last decade has seen the experimental realization
of artificial electromagnetism in quantum gases [35,36].
This provides an important new tool for accessing some of
the paradigmatic effects associated with condensed matter
physics, including simulating orbital magnetism [37–40]. Ul-
tracold atomic gases provide a platform for implementing
not only these traditional manifestations of magnetism, but
also for realizing forms of magnetism that are not natu-
rally occurring, such as spin-orbit [41,42] and spin-angular
momentum coupling [43–45] with bosons, synthetic dimen-
sions [46], “knotted” gauge theories [47], density-dependent
magnetism [48], and topological gauge theories [49]. The
realization of spin-orbit coupled bosons in particular yields
a new route to investigate the interplay of synthetic electro-
magnetism and rotation [50–52]. Induced electromagnetism
in atomic gases typically produces a static gauge potential,
where there is no feedback between the light and the matter
wave. To address this, several proposals have been put for-
ward [53–55] to instead simulate dynamical gauge potentials.
Very recently the first generation of experiments to realize
density-dependent magnetism have appeared, for bosons [56]
and fermions [57] trapped in two-dimensional optical lattices,
as well in a system of Rydberg atoms [58].

In this Rapid Communication we examine the physics of
a gas of confined two-dimensional bosons experiencing a
density-dependent gauge potential that constitutes an effective
nonlinear rotation of the atomic system, which we further
illustrate is within the reach of the current generation of
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experiments. Our work builds on existing phenomenology
while exploring a qualitatively unique form of synthetic mag-
netism that is presently under active experimental investiga-
tion [56–58]. We reveal the unusual phenomenology of this
system, including vortex ring arrangements that violate the
famous Abrikosov result and unusual dynamics associated
with the time-dependent nature of the underlying synthetic
gauge potential.

Theoretical model. We consider a system comprising N
two-level atoms coupled via a coherent light-matter interac-
tion, forming a Bose-Einstein condensate. The Hamiltonian
describing our setup can be written in the rotating-wave
approximation as [35]

Ĥ =
(

p̂2

2m
+ Vext (r)

)
⊗ 1 + Ĥint (r) + ÛMF, (1)

where the light-matter interaction is defined as [36]

ÛMF = h̄�r

2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
. (2)

The other quantities appearing in Eq. (1) are the exter-
nal trapping potential Vext (r), and the mean-field interac-
tions Ĥint = (1/2)diag[�1,�2], where � j = g j jn j + g jknk

and g jk = 4π h̄2a jk/m defines the scattering parameter be-
tween atoms in the internal states j and k, while nj = |ψ j (r)|2
defines the population density of state j. Meanwhile the
harmonic trapping potential is given by Vext (r) = m(ω2

x x2 +
ω2

y y2 + ω2
z z2)/2, where ω j defines the strength of the trapping

potential in each coordinate direction. To build an interacting
gauge theory, we construct interacting dressed states using
perturbation theory which is valid when the mean-field in-
teractions are weak compared to the strength of the light-
matter coupling. Denoting the (unperturbed) eigenstates of
ÛMF [Eq. (2)] as |±〉, the interacting dressed state basis can
be written as [48]

|ψ±〉 = |±〉 ± �d

h̄�r
|∓〉. (3)

The dressed mean-field detuning is �d = sin θ
2 cos θ

2 (�1 −
�2)/2 and in what follows we use the adiabatic condition
which assumes that only one of the dressed states |±〉 is
occupied, such that h̄�r � ER, where ER = p2

R/2m and pR =
h̄k define the recoil energy and momentum, respectively [59].
Using physical parameters appropriate for Sr, one obtains
ER/h̄ � 58 kHz, while the current generation of experiments
can achieve coupling strengths of �r � 2π × 100 kHz [45],
giving h̄�R/ER � 11. To build the interacting gauge theory,
we construct a state vector from the two perturbed dressed
states defined by Eq. (3). The qualitative features do not
depend on this choice, and here we project the atom’s motion
into the + state. Then, the effective Hamiltonian becomes

Ĥ+ = (p − A+)2

2m
+ W+ + h̄�r

2
+ �+ + Vext (r), (4)

where the two geometric potentials that arise due to
the adiabatic motion of the atoms are given by A+ =
ih̄〈ψ+|∇ψ+〉 and W+ = h̄2|〈ψ+|∇ψ−〉|2/2m, respectively,
while the dressed mean-field interactions are defined by �+ =
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FIG. 1. Rotating Thomas-Fermi solutions. (a) shows the solu-
tions to Eq. (11) for different fixed values of the rigid-body rotation
frequency �/ωx . (b) compares the different density distributions that
are obtained with �/ωx = 0.6 from varying C, while (c) shows a
heat map of the radial density. (d) displays the boundaries between
regions where vortices are energetically favorable (blue region, blue
solid line), unfavorable (green and red regions, green dashed and red
dotted dashed), as well as where the Thomas-Fermi approximation,
Eq. (11), breaks down (red dotted dashed). Throughout we have used
maxgeff N/

√
2πσz h̄

2 = 300.

(�1 cos2 θ
2 + �2 sin2 θ

2 )/2. These individual terms can be
shown to be defined as

A+ = − h̄

2
(1 − cos θ )∇φ + �d

�r
∇φ sin θ, (5a)

W+ = h̄2

8m
(∇θ )2 + h̄

8m
sin2 θ (∇φ)2

+ h̄

2m

�d

�r
sin θ cos θ (∇φ)2 − h̄∇θ · ∇ �d

�r
. (5b)

To obtain a mean-field equation of motion for the atoms,
we extremize the energy functional E = 〈ψ+|Ĥ+|ψ+〉, leading
to the following generalized Gross-Pitaevskii equation (valid
specifically at T = 0) [60–62],

ih̄
∂ψ+
∂t

=
[

(p − A+)2

2m
+ W++a1 · j+ h̄�r

2
+2�++V (r)

]
ψ+

+
[

n+

(
∂W+
∂ψ∗+

− ∇ · ∂W+
∂∇ψ∗+

)
− ∂W+

∂∇ψ∗+
· ∇n+

]
,

(6)
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where the coupling to the gauge field is defined as a1 =
∇φ�d sin θ/n+�r . Then, the density-dependent dressed ba-
sis, Eq. (3), gives rise to additional terms in the generalized
Gross-Pitaevskii equation for atoms in the ψ+ state, including
the current nonlinearity j which appears as

j = h̄

2mi

[
ψ+

(
∇ + i

h̄
A+

)
ψ∗

+ − ψ∗
+

(
∇ − i

h̄
A+

)
ψ+

]
. (7)

The current nonlinearity Eq. (7) gives rise to unique topologi-
cal states, in particular, proposals to simulate exotic spacetime
geometries [63] in the three-dimensional context. In the one-
dimensional limit the theory violates Kohn’s theorem [64,65],
and exact chiral soliton solutions [66] can also be constructed
in this limit, which have recently been shown to constitute
quantum time crystals [67]. Complementary to the continuum
method, we also note the lattice-based approaches, where the
density-dependent gauge potential enters via the appropriate
Peierls phase [68–70]. We identify two small parameters:
θ = �r/�, the ratio of the Rabi frequency to the detuning,
and ε = n(g11 − g12)/4h̄� that encompasses the collisional
and coherent interactions. After expanding Eqs. (5a) and (5b)
to linear order in ε and θ , we obtain simplified expressions for
the vector potential A+ = −h̄θ2∇φ[1 − 4ε]/4, and W+, the
scalar potential,

W+ = h̄2

2

[
(∇θ )2[1 − 4ε] + θ2(∇φ)2[1 + 4ε]

4m
− ∇θ2 · ∇ε

]
.

(8)

To build the interacting gauge theory, we choose a laser beam
carrying � = +1 units of angular momentum such that the
phase φ = �ϕ, where ϕ is the polar angle [71]. The spatial
profile meanwhile satisfies θ = θ0r, where r is the radial
distance. Our choice here is an experimentally motivated one,
since Laguerre-Gaussian laser light carrying � = +1 units
of angular momentum with a cylindrically varying intensity
profile has recently been used in the experimental demonstra-
tion of spin-angular-momentum-coupled Bose-Einstein con-
densates [43,44]. Then, using Eqs. (6) and (7) along with the
simplified expressions for A+ and W+ [Eq. (8)], the equation
of motion for the condensate becomes

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2+Vext (r)−�(r, t )L̂z+geffn(r)

]
ψ, (9)

where the angular momentum operator is defined as L̂z =
−ih̄∂/∂ϕ. Then we define the density-dependent rotation
frequency as �(r, t ) = � + Cn(r, t ), where the strength of
the nonlinear rotation term is C = θ2

0 (g11 − g12)/(2m�r ),
while the effective scattering parameter is given by geff =
g11 + θ2

0 h̄(g11 − g12)/m�r . As we are interested in the
quasi-two-dimensional situation, we assume a pancake ge-
ometry for the atomic cloud (ωz � ωx,y), which allows
us to factorize the atomic wave function as ψ (r, t ) =
ψ (x, y, t )e−z2/2σ 2

z /( 4
√

πσ 2
z ), which has the effect of rescaling

the two nonlinear terms geff and C by 1/
√

2πσz.
To realize the model of Eq. (9) we require that the motion

of the atoms be adiabatic in one of the dressed states, as
well as satisfying the perturbative requirement that underpins
Eq. (3). For these purposes the alkali-earth atoms represent a
promising candidate, since the excited states of these atoms
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FIG. 2. Vortex ground states. (a) shows the number of vortices as
a function of C̃, while (b) presents the energy and angular momen-
tum. The corresponding ground-state densities and phase profiles are
shown in (c)–(j).

possess lifetimes of the order of seconds, such as the tran-
sition 3S0 ↔ 1P1 in Sr, which could be used in a future
experiment [72]. Accompanying this one also needs to be
in a regime where the perturbative assumption underlying
Eq. (3) is valid. This can be achieved with the aid of optical
Feshbach resonances for alkali-earth atoms [73]. Again using
physical parameters for Sr, a difference of scattering lengths
a11 − a12 = 10 nm with an atomic density n = 1015 cm−3

and �r = 2π × 100 kHz, one finds ε � 4 × 10−2, which is
small enough to justify perturbation theory but large enough
to potentially observe the effects described in this work.

Ground states and vorticity. To gain an understanding of
the basic physics associated with a trapped condensate under
nonlinear rotation, we begin with the energy functional asso-
ciated with Eq. (9) which can be written in the hydrodynamic
prescription using the Madelung transformation ψ = √

neiφ ,
where n ≡ n(ρ, t ) is the quasi-two-dimensional density while
φ ≡ φ(ρ, t ) is the corresponding phase, then after dropping
the quantum pressure term (valid for maxgeff/

√
2πσz h̄2 � 1)

we obtain

E =
∫

d2rn

[
mv2

2
+ ih̄

2mn
∇n · A− A2

2m
+ geff n

2
+V2D

]
, (10)

where v = (h̄∇φ − A)/m defines the kinetic velocity
with A = m� × ρ, � = êz(� + Cn/2), and V2D(x, y) =
m(ω2

x x2 + ω2
y y2)/2. The energy defined by Eq. (10) can

be minimized to obtain the superfluid velocity vsf = � × ρ

which couples to both the rigid-body rotation strength � and
the density n(ρ) of the gas. Using Eq. (10) and the expression
for the superfluid velocity, we obtain a generalized Thomas-
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Fermi distribution in the rotating frame as

V2D(x, y) − m

2
ρ2

(
�2 + 2�Cn + 3

4
C2n2

)
+ geff n = μ′,

(11)
where ρ2 = x2 + y2 and μ′ is the chemical potential in the
rotating frame, and the radius of the cloud is defined as
R2

x,y = 2μ′/m(ω2
x,y − �2), while n(ρ) is subject to the nor-

malization
∫

d2ρ n(ρ) = N . Figures 1(a) and 1(b) compute
the chemical potential μ′ and density n(ρ). Figure 1(a) shows
that the solutions for μ′ exist on finite regions, between a
minimum and a maximum C. The maximum value of C in each
case corresponds to the point where the gas locally exceeds
the trapping frequency, while the minimum C corresponds
instead to the point when the approximations leading to
Eq. (11) break down. The solid blue curve in Fig. 1(b) shows
an example for large positive C, where the density profile
exhibits a large plateau region, reminiscent of a quantum
droplet [74]. For large negative C, the tails of the distribution
appear to decay as they approach the edge of the cloud,
with a small central plateau region. The radial density n(ρ)
is plotted as a function of C in Fig. 1(c), for �/ωx = 0.6.
Figure 1(d) computes the boundaries that the solutions occupy
in the (�, C) parameter space. Accompanying this is the
critical rotation frequency �c at which it is energetically
favorable for a vortex to enter the cloud [61,75], calculated
from �c = (〈Ev〉 − C〈nL̂z〉/2)/〈L̂z〉 (green dashed line) using
the nonrotating [�(r, t ) = 0] Thomas-Fermi solution n =
(μ′ − V2D(x, y))/g2D, with μ′ = h̄ωx(g2DNmωy/(π h̄2ωx ))1/2.
We define the average vorticity as ωv = ∇ × v, which can be
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FIG. 3. Elliptical trap ground states. (a)–(f) show ground-state
density and phase profiles for ωy/ωx = 1.5. Each row corresponds to
C̃ = 10, −30, −60. The vortices are highlighted by black circles in
the phase, right column. (g) and (h) show cuts of the density along
the coordinate axis (x, y = 0) corresponding to the three nonlinear
rotation strengths.

calculated from v = �(r, t )êz × ρ giving

ωv (ρ, t ) = êz

[
2�(ρ, t ) + ρ

∂�(ρ, t )

∂ρ

]
, (12)

and the synthetic magnetic field is related to Eq. (12) since
B(ρ, t ) = mωv (ρ, t ). Here, it is worth considering a broader
picture of the physical consequences of the density-dependent
rotation. Rigid-body rotation constitutes a global gauge sym-
metry, leading to the manifestation of phase defects, vortices
in atomic Bose-Einstein condensates [1–3]. In contrast, spa-
tially varying synthetic magnetic fields possess a local gauge
symmetry, which can lead to the generation of more elaborate
topological excitations, such as knots, skyrmions, and also
monopoles. It is also worth noting that the study of synthetic
gauge theories is also being pursued in other fields, such as
the growing field of emergent electromagnetism in condensed
matter systems [76,77].

Numerical simulations. Figure 2 presents calculations of
the ground states of Eq. (9) as a function of the strength
of the nonlinear rotation C. Throughout we take the van
der Waals strength as maxgeffN/(

√
2πσz h̄2) = 300 and we

define the dimensionless nonlinear rotation strength as C̃ =
CNmax/(

√
2π h̄σz ), while the rigid-body rotation strength

�/ωx = 0.6, and the trap anisotropy is ωy/ωx = 1.01.
Figure 2(a) shows the number of vortices as the strength of C
is changed. The labels correspond to Figs. 2(c)–2(j) showing
the atomic density n(ρ) and phase φ(ρ) of the ground state in
each case. For large positive C, an unusual cylindrical density
is observed [Fig. 2(f)], corroborating the analytical prediction
[Fig. 1(b)] which in the presence of vortices resembles a
Renkon lotus root. For negative C, the triangular lattice is no
longer observed. Instead, the vortices arrange into rings with
increasing radius as C is decreased (for larger �, concentric
vortex ring arrangements are observed when C̃ � 0). The
localization of the vortices can be interpreted from Eq. (12)
due to the vorticity being maximum in the center of the cloud
when C̃ > 0, while for C̃ < 0 it is maximal at the edges of the
cloud, leading to ring arrangements. Figure 2(b) shows the
energy E (gray triangles) and angular momentum 〈L̂z〉 (solid
blue circles) along with a linear fit for the angular momentum
(see also Ref. [78] concerning vortex patterns in a related
anyonic model).

Next, we explore the effect of a general elliptical trap-
ping potential (ωy � ωx) on the ground state in Fig. 3. The
parameters are chosen such that ωy/ωx = 1.5 and �/ωx =
0.8. Figures 3(a)–3(f) show the density and phase for three
individual values of the strength of the nonlinear rotation.
Figures 3(g) and 3(h) show cuts of the atomic density along
the coordinate axes x, y ≡ 0, respectively. The positions of
the vortices have been highlighted with black circles in each
corresponding phase distribution. For large positive C, the
shape of the cloud is again distorted, and regions of high
density form near the edges of the trap along the x axis,
which can clearly be seen in Fig. 3(g). As the strength of the
gauge field is decreased, the vortices arrange themselves in an
ellipse, per Figs. 3(c) and 3(d). The final row of ground states
in Fig. 3 [Figs. 3(e) and 3(f)] correspond to a situation where
there are two fewer vortices, such that the ring arrangement
of Figs. 3(c) and 3(d) is broken, and instead the remaining
vortices are located at either edges of the cloud.
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FIG. 4. Asymmetric vortex dynamics. (a)–(f) show snapshots of
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0, 10, 15. (g) shows the time evolution of each pairs’ trajectory in x, y
as a function of ωxt . The anticlockwise rotation direction is indicated
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The nonlinear rotation gives rise to unusual vortex
dynamics. For the case of rigid-body rotation, it is
always possible to define and move between a laboratory
(LB) and comoving (CM) frame via the transformation
|ψCM〉 = Û (t )|ψLB〉, yielding the Hamiltonian ĤCM =
Û (t )ĤLBÛ (t )† + ih̄∂tÛ (t )Û (t )†, where Û (t ) = exp[−it�
(r, t )L̂z/h̄]. Since the density-dependent gauge theory
facilitates a time-dependent rotation frequency, this simple
transformation gives rise to richer physics in the comoving
frame. Using the superfluid hydrodynamics equations
associated with Eq. (9), the transformed Hamiltonian can
be shown to be

ĤCM = Ĥ2D + Ct

[
i

h̄
�(r, t )L̂zn − ∇ · (nvφ )

]
L̂z, (13)

where the superfluid velocity is vφ = h̄∇φ/m and Ĥ2D =
p2/2m + V (r) + geffn defines the mean-field contribution to
ĤCM. Equation (13) demonstrates that this nonlinear system
does not possess a global laboratory frame of reference.
While rigid-body rotation corresponds to a global gauge
symmetry of the condensate, the additional density-dependent
rotation contributes a local gauge symmetry instead. Situa-
tions concerning a spatially varying synthetic magnetic field
have not been so widely studied in the literature [79,80],
however, these systems would also lack a global laboratory
frame of reference, due to the absence of global gauge
symmetry. A simple illustration of the consequence of this
is presented in Fig. 4. Here, the dynamics of two vortices
are prepared such that initially they are in a nonsymmetric
arrangement such that (xv1, yv1) = (0, ax ) and (xv2, yv2) =
(0,−2ax ) [Figs. 4(a) and 4(d)]. Then one can see that the time
evolution [Figs. 4(b), 4(c) 4(e), and 4(f)] causes the dynamics
with � = 0 to differ depending on the value of C. Figure 4(g)
presents the spacetime trajectories of both situations.

Conclusions. We have calculated the ground-state config-
urations of a trapped atomic Bose-Einstein condensate in a
density-dependent gauge theory. Depending on the sign and
magnitude of the corresponding nonlinear rotation, different
vortex configurations were obtained. When the strength of the
nonlinear rotation is large and positive, almost flattopped vor-
tex distributions were found, whereas for large negative non-
linear rotation strengths the vortices instead arrange into ring
structures. For condensates experiencing a highly anisotropic
confining potential, the vortices found at large negative rota-
tion frequencies separate into two regions at opposing edges
of the trap, breaking the ring configuration. We also examined
the dynamics of the vortices in this system, which are unusual
due to the lack of a global laboratory reference frame. It
would be interesting in the future to study nonlinear rotation
in the three-dimensional situation as well as turbulent vortex
dynamics.
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