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Machine learning for achieving Bose-Einstein condensation of thulium atoms
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Bose-Einstein condensation (BEC) is a powerful tool for a wide range of research activities, a large fraction of
which is related to quantum simulations. Various problems may benefit from different atomic species, but cooling
down novel species interesting for quantum simulations to BEC temperatures requires a substantial amount of
optimization and is usually considered to be a difficult experimental task. In this work, we implemented the
Bayesian machine learning technique to optimize the evaporative cooling of thulium atoms and achieved BEC
in an optical dipole trap operating near 532 nm. The developed approach could be used to cool down other novel
atomic species to quantum degeneracy without additional studies of their properties.

DOI: 10.1103/PhysRevA.102.011302

For a number of problems in quantum simulations [1],
long-range interactions are of great interest [2]. To address
this demand, lanthanide atoms such as erbium and dysprosium
were cooled down to quantum degeneracy and successfully
used for quantum simulations [3–5]. Thulium also belongs to
the lanthanide series of chemical elements, but compared to
previously cooled Er and Dy, it has only one hole in the f
shell. This leads to a slightly smaller dipole moment in the
ground state of 4μB, but thulium has a simpler level struc-
ture and a less dense Fano-Feshbach resonances spectrum,
thus simplifying the control of the interactions for this atom
[6]. The lower dipole moment could be overcome by using
thulium atoms in a 532-nm optical lattice, thus increasing the
interaction strength via shorter interwell distance or lattice
spacing.

Reaching Bose-Einstein condensation (BEC) is usually
done via evaporative cooling [7]. The evaporative sequence
needs to be carefully optimized to minimize the loss of atoms
while maximizing the phase space density growth. Many
studies have been devoted to the elaboration of a better recipe
for the evaporation sequence optimization process [8–10].
Most of these techniques require accurate characterization of
the trap geometry and loss mechanisms. They also use several
simplifications, such as a high and fixed truncation parameter
η (i.e., assuming that atoms with energy larger than ηkBT
are immediately evaporated [11] and η is constant over the
evaporation process) or adiabaticity; these simplifications are
not always satisfied. Furthermore, these recipes usually do not
consider difficulties and/or opportunities that arise in specific
cases such as dynamically shaped traps and the existence of
dipolar interactions. Hence, most groups use a simple time-
consuming stepwise optimization procedure, with a proposed
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sequential adjustment of parameters controlling the trapping
potential at each time step [12–18].

The initial cooling of thulium atoms was realized in a
magneto-optical trap (MOT) operating on a narrow-line tran-
sition with a wavelength of approximately 530.7 nm and
Zeeman slowing at a strong 410-nm transition [19]. An optical
dipole trap (ODT) is realized using a 532-nm laser [20]. The
narrow transition of approximately 530.7 nm that is only
345 kHz wide could cause some minor resonance scattering
and additionally complicate the evaporative cooling [21]. The
following difficulties complicate the search for a good evapo-
rative sequence. (1) Thulium has a short lifetime in the dipole
trap [21] (2.8 s at the ODT at temperatures just below the
MOT) compared to other lanthanide species (>7 s for Er [12],
>21 s for Dy [13], and >140 s Cr [14]), but there is not a com-
plete understanding of the loss mechanisms at the moment.
(2) The maximum depth of the dipole trap ∼110 μK is only
4.5–5.5 times higher than the temperature of the cloud (15 for
Dy [13] and 13 for Er [12]). (3) There are imperfections in
trap characterization especially due to scanning of the trap
beam [9,20–22], which is changing during the evaporation
sequence and the complex dependence of atom polarizability
on the ODT beam geometry and light polarization [21]. (4)
There are generally no models that are able to capture the
process of transferring atoms from a single-beam ODT to a
crossed-beam ODT, and this process strongly influences the
evaporation efficiency. (5) In addition, the intermediate stages
of the cooling transition from a single ODT to a crossed ODT
(which is needed due to finite available power for the dipole
trap) create additional ambiguity in the measured number of
atoms due to the presence of hot atoms inside one of the traps
which are not captured in the crossed ODT region.

This list makes the building of an evaporative pro-
cess model almost impossible and demands a substantial
amount of additional work to characterize the trap and atom
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FIG. 1. (a) Idea of the optimization. The parameters to regulate are the parameters of evaporation cooling—the power of the beams and
the amplitude of beam scanning. (b) Example of the optimization algorithm result. In this run, the γ parameter was optimized. The blue dots
are generated randomly (the first 30 points seed the GP model, and each additional five sample unbiased data). The orange dots are iterations
of the algorithm. The gray area is the confidence interval (σconf wide) for the points minimizing the GP model μn(x) at certain iterations. (c)
Final evaporation sequence. The yellow dots are the parameters learned by the algorithm. The horizontal beam intensity and the scanning and
vertical beam intensity are linearly interpolated.

properties. The experimental optimization of many mutually
related parameters is quite difficult on its own.

We note that while some of these problems (1, 5, and partly
3) could be resolved through additional efforts—including
experimentally determining the reason for the high loss rate
and eliminating it, developing a better imaging system al-
lowing more precise control of atomic number during the
whole evaporation process, fully characterizing the trap in
all possible scenarios of trap loading, etc.—there is generally
no need for those efforts from the viewpoint of evaporative
sequence optimization as long as there is a sequence that
provides efficient BEC formation. Instead, to overcome these
difficulties, we use an adaptive experimental design based on
a Bayesian machine learning technique. Adaptive Bayesian
optimization is a well-known statistical approach for opti-
mization of expensive-to-evaluate functions [23]. It is widely
used to tune model hyperparameters in machine learning algo-
rithms [24] and to solve some difficult optimization problems
in physics [25–29]. The idea of this approach is to avoid
the direct optimization of the real system and instead build
a surrogate model of the system at each step and utilize it to
wisely choose the next point to sample from the real system
[30].

In more detail, we use the most common class of surrogate
models, the Gaussian process (GP) models [31]. The GP
model outcome for experiment f (�x) (the evaporation effi-
ciency γ in our case; see below) started with the vector of the
controlling parameters �x as a random variable. At any given

vector �x, this model assumes that the distribution p[ f (�x)] is a
normal distribution N[μ(�x), σ (�x)] with a mean μ(�x) [see the
inset in Fig. 1(a) for the case with one-dimensional (1D) �x]
and a standard deviation σ (�x) [Fig. 1(a)]. These parameters
are calculated at each step (see the Supplemental Material
[32]) using already observed experimental results. With the
GP model, one can choose a new vector of parameters �x∗,
which is chosen such that it minimizes the function a(�x∗) =
μ(�x∗) + ασ (�x∗) [Fig. 1(a)]. The a(�x∗) is usually called the up-
per confidence bound (UCB) [33] acquisition function, which
has some scalar fixed parameter α (see the Supplemental
Material [32]). Finally, the optimization process implemented
using software packages mentioned in [27,34] can be repre-
sented as follows:

(1) The algorithm measures n outcomes of the exper-
iment [ f (�x1), . . . , f (�xn)] at some randomly chosen points
[�x1, . . . , �xn] and uses them to build (seed) the initial GP model
[see Fig. 1(b), blue points].

(2) The GP model algorithm calculates the acquisition
function a(�x) and searches for the �x∗ that minimizes its value
�x∗ = arg min[a(�x)] [see Fig. 1(c)].

(3) The experiment starts at the new value of the con-
trol parameters �x∗, f (�x∗) is measured [see Fig. 1(b), orange
points], and the GP model is rebuilt (see the Supplemental
Material [32]).

(4) Steps 2 and 3 repeat until the desired number of
iterations is reached. Typically, the number of iterations was
chosen large (one million) in our experiments, and the code
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was stopped when no improvement could be seen in the
optimization criteria.

To perform optimization, one needs to choose the opti-
mization criteria f (�x) and define the optimization parame-
ters �x. The larger the number of controlled parameters, the
closer the algorithm can converge to the global minimum of
the problem. The convergence time also increases with the
number of parameters, thus forcing the researcher to limit
possible “knobs.” In our case, after the precooling stages in the
MOT and the atoms are spin polarized, they are loaded into the
horizontal dipole trap, the aspect ratio of which is dynamically
shaped by an acousto-optical modulator (AOM) to increase
the efficiency of loading atoms from the MOT to the ODT
[20]. In other words the beam forming the ODT is scanned
spatially in one direction so that the beam waist sweeps the
distance exceeding the beam waist by several times. The
scanning is done with speed, exceeding atomic motion, so
that atoms effectively see a wider but somewhat shallow trap
[9,20–22] (see the Appendix). After the MOT is switched
off, one needs to first efficiently turn off the beam scanning
to increase the atomic density; then, during the evaporative
cooling, the second beam (the vertical beam in our case) must
be turned on to provide a better localization of atoms and
a higher density in the trap. Finally, evaporation cooling is
performed until BEC is achieved. For the entire procedure,
the possible degrees of freedom are the shape of the ramp for
the amplitude of the beam scanning, the shape of the ramp for

the intensity of the horizontal trap beam, and the shape of the
ramp for the intensity of the vertical trap beam. Each initial
and final time point for the ramps are the parameters and the
actual shapes.

The optimization goal f (�x) was set to be the efficiency of
evaporation cooling γ :

γ = − ln
DPS

DPS0

/
ln

N

N0
, (1)

where DPS0 is the initial phase space density, DPS is the final
phase space density, N0 is the initial number of particles in the
ODT, and N is the final number of particles in the ODT.

To approximate the ramp shapes, the entire sequence was
split into linear fragments. The algorithm was able to optimize
the end points of each segment. Thus, we picked several
specific times at which the parameters could be changed by
the optimization algorithm. The end and start times of each
segment were not varied, but the power of the beams and the
horizontal beam waist were varied [see Fig. 1(c)].

The performance of the optimization algorithm for a mag-
netic field of 4.04 G in step 1 is demonstrated in Fig 1(b).
The algorithm clearly converges, although there is a rather
high level of noise, which is mainly due to the fit error in
the estimation of the temperature and the number of atoms
(see the Supplemental Material [32] for more details). By
performing a search in the parameter space, the algorithm
converges to a γ value of approximately 1.6 ± 0.1 via the
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FIG. 2. (a) Typical photos of the atomic cloud with BEC inside and the corresponding bimodal density distribution at different
temperatures. The photos were taken at 14.5 ms of expansion. The orange solid line represents the fit by bimodal distribution (see the
Supplemental Material [32] for details); the black dashed line shows the contribution of the thermal cloud. (b) Measured scattering length
in atomic units versus magnetic field (dots) and the fit of the scattering length (blue dash-dot line), taking into account only broad Feshbach
resonances at 1.34, 5.68, and 9.53 G. The orange solid line represents the loss spectrum in arbitrary units [6]. The vertical black dashed line
indicates the magnetic fields in which the formation of BEC failed, and the vertical green solid lines indicate the points in which the formation
of BEC was successful.
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FIG. 3. (a) Aspect ratio for the BECs and the visible sizes of the thermal cloud versus the time of flight after releasing atoms from the ODT.
The lines represent theoretical simulations (see the Appendix), and the dots represent experimental data. The red horizontal line indicates the
asymptotic behavior of the thermal cloud. (b) Number of condensed atoms N0 normalized by the total number of atoms N versus the ratio
between the thermal part temperature T and the critical temperature T ∗

c of the cloud, including interaction corrections [38]. The dots are
measured values, and the solid line is the theoretical dependence, including the dipole-dipole interaction between the atoms and the finite
number of atom corrections. The dashed line represents the simulations without accounting for interactions for the range of identified critical
temperatures to the solid line plot (see the Supplemental Material [32] for more details).

evaporation sequence, as demonstrated in Fig. 1(c). The best
stepwise optimization that was achieved manually was γ ≈
0.78, which was not enough for BEC formation. The sequence
found by the algorithm finally led to a bimodal distribution
of the atomic densities, which is characteristic for the Bose-
Einstein condensation [Fig. 2(a)]. Although the value of γ

achieved by the algorithm is still slightly smaller than that
found for the Er and Dy experiments [12,13], it is enough to
achieve BEC.

We note that while this optimization does not require any
prior knowledge of the collisional properties of thulium, the
optimization results will obviously depend on them. Figure
2(b) demonstrates the availability of BEC with the cooling
sequence, as found by the algorithm at a fixed magnetic field
B = 4.04 G and at different magnetic fields, along with the
measured scattering length (see the Appendix). One can see
that outside of the sharp resonances, the scattering length
continuously changes due to the presence of broad Feshbach
resonances. Although the variation in the scattering length
strongly affects the formation of BEC, there are rather wide
ranges of positive scattering lengths in which the sequence
found does lead to BEC formation. Thus, the identified se-
quence is quite stable with respect to changes in the strength
of the interatomic interactions and potentially some associated
losses.

The bimodal distribution [35] depicted in Fig 2(a) shows a
striking manifestation of BEC formation. To demonstrate the
coherence properties of our atomic cloud, we performed addi-
tional experiments. One of the manifestations of coherence in
the atomic cloud is its asymmetric expansion, which is even
more asymmetric in the presence of dipole-dipole interactions
[36]. As a coherent state, BEC should “diffract”; i.e., the
more constrained direction of the cloud should expand more
rapidly. Indeed, this behavior could be observed in our cloud,
as demonstrated in Fig. 3(a). At small expansion times, our
imaging system is unfortunately not able to correctly measure
the cloud size due to diffraction on the atomic cloud and
resolution limitations, but as the cloud expands, the image
starts to follow the predicted behavior (see the Supplemental
Material [32]). In contrast, the thermal cloud tends to expand

more and more symmetrically with time, with the aspect ratio
of the cloud sizes asymptotically approaching 1 because wave
interference does not take place in this case. Indeed, just above
the critical temperature, we observe uniform expansion of the
atomic cloud [see Fig. 3(a)].

Nevertheless, a similar distribution and an asymmetric
expansion could appear in the hydrodynamic regime [37].
This regime may occur if the Knudsen criterion, Kn � 1,
is satisfied (see the Appendix). The Knudsen number Kn is
basically the ratio of the time between collisions to the period
of one oscillation in the trap. If this number is above 1, the
atoms manage to do several oscillations in the trap before they
collide. As the trap gets released the velocities of the atoms
are the same as those that were in the trap, and therefore
if the Knudsen number is high, the atoms are not likely to
collide during the expansion. However, if this number is low,
collisions dominate the dynamics in the trap and therefore
during expansion collisions are very probable. We found that
Kn > 1 for each axis in all stages of the thermal cloud till the
formation of BEC (see the Supplemental Material [32]). In
addition, at the hydrodynamic limit, the velocity distribution
of the cloud along the tight axis should have a peak over the
thermal distribution while having velocities reduced beneath
the thermal distribution along the weak axis. In contrast, in
our experiment, velocity distributions along both the weak
and tight directions have peaks (see the Supplemental Material
[32]).

The bimodal distribution obtained by evaporative cooling
with the slightly different initial number of atoms provides
the experimental dependence of the condensate fraction on
the temperature [see Fig. 3(b)]. This result is in agreement
with the well-known result for the number of atoms in the
condensate depending on temperature:

NBEC

N
= 1 −

(
T

TC

)3

, (2)

where NBEC is the number of condensed particles, N is the
whole number of particles, and TC is the critical temperature
(see the Supplemental Material [32] for more details).
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In conclusion, we have demonstrated the Bose-Einstein
condensation of thulium atoms using a statistically justified
method (namely, GP-based Bayesian optimization) to choose
the evaporative sequence. We found that while there is no
complete characterization of the experimental setup, the GP
model is able to optimize the evaporative cooling to achieve
BEC without much knowledge of the atomic system. Al-
though it is less descriptive, this approach is goal oriented and
far more universal and can thus be used in a wide range of
experimental tasks. More specifically, we demonstrated the
formation of BEC of thulium atoms, confirmed the results
with a bimodal distribution, demonstrated the dependence
of the condensate fraction on the temperature, and showed
the coherent behavior of the cloud. We also explored BEC
formation for a wide range of background scattering lengths,
demonstrating the robustness of the evaporative sequence to
variations in the scattering length.

This research was supported by the Russian Science Foun-
dation Grant No. 18-12-00266.

APPENDIX

After reloading polarized atoms from the MOT into the
one-dimensional horizontal ODT in the scanning regime,
we typically have approximately 6 × 106 atoms with a tem-
perature of 20 μK, which corresponds to a phase space
density of approximately 2.3 × 10−5. The trap frequencies

were measured by the standard technique of trap-frequency
measurements [21] to be in the scanning trap νx; νy; νz =
5.8 ± 0.1; 160 ± 2; 1538 ± 20 Hz. The scanning of the ODT
beam is realized using an acousto-optical modulator, which
was fed by a calibrated voltage control oscillator [22]. Our
evaporative cycle took place in the presence of a small mag-
netic field of 4.04 G, which is not very far from Feshbach
resonance. We also measured the scattering length in this
magnetic field, a0 = 90 ± 11 abohr, where abohr = h̄

mecα is the
atomic unit for the scattering length. The typical frequencies
in the BEC regime were measured to be νz = (197 ± 1) Hz,
νx = (23 ± 1) Hz, and νy = (137 ± 6) Hz.

To calculate the theoretical curve in Fig. 3(a), we used
equations from [36] but changed the sign before the terms
containing derivatives of the function f , as there appeared to
be a typo in the original paper.

The main uncertainties in the measurements of the atomic
numbers and temperatures are as follows: an uncertainty in
the number of atoms of 10% (see the Supplemental Material
[32]); errors in the temperature of approximately 6% and 10%
in the z and x directions, respectively; and errors in the trap
frequencies estimated [21] as 1% and 4% for the z and x
directions, respectively.

The Knudsen number is defined as Kn = ωiτc. Here, ωi

with (i ∈ {x, y, z}) is the trap frequency, and τc = √
2n0vthσ

is the average time between atomic collisions in the trap with
a peak density n0, a thermal velocity vth, and an elastic-
scattering cross section σ .
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