
PHYSICAL REVIEW A 102, 011301(R) (2020)
Rapid Communications

Many-body echo

Yang-Yang Chen,1,2 Pengfei Zhang,3 Wei Zheng ,4 Zhigang Wu ,1,* and Hui Zhai 3,5,†

1Shenzhen Institute for Quantum Science and Engineering, and Department of Physics,
Southern University of Science and Technology, Shenzhen 518055, China

2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
3Institute for Advanced Study, Tsinghua University, Beijing, 100084, China

4Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei 230026, China

5Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China

(Received 9 October 2019; accepted 16 June 2020; published 8 July 2020)

In this Rapid Communication, we propose a protocol to reverse a quantum many-body dynamic process.
We name it “many-body echo” because the underlying physics is closely related to the spin echo effect in
nuclear magnetic resonance systems. We consider a periodical modulation of the interaction strength in a
weakly interacting Bose condensate, which resonantly excites quasiparticles from the condensate. A dramatic
phenomenon is that, after pausing the interaction modulation for half a period and then continuing on with
the same modulation, nearly all the excited quasiparticles in the resonance modes will be absorbed back into
the condensate. During the intermediate half-period, the free evolution introduces a π phase, which plays a role
reminiscent of that played by the π pulse in the spin echo. Comparing our protocol with another one implemented
by the Chicago group in a recent experiment, we find that ours is more effective at reversing the many-body
process. The difference between these two schemes manifests the physical effect of the micromotion in the
Floquet theory.
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How to reverse a quantum many-body dynamic process
is a question of great interest, especially in recent discus-
sions of quantum many-body chaos and quantum information
scrambling [1–3]. Ultracold atomic gases provide a unique
platform to address these kinds of questions because of the
following two reasons. First, unlike other artificial quantum
systems such as nuclear magnetic resonance (NMR) and
trapped ions, where the number of qubits is currently limited
to below a few hundreds, ultracold atomic gases are many-
body systems containing a macroscopically large number of
quantum particles. Second, in contrast to electronic systems
in condensed matter materials where phonons are inevitably
present and will cause decoherence and dissipation, ultracold
atomic gases are isolated systems whose coherence times can
be much longer than typical timescales of condensed matter
systems.

One type of dynamics that has been widely explored
in ultracold atoms is that under periodical driving [4]. For
instance, the periodical modulation of optical lattices has
been employed to to create artificial magnetic fields [5–13]
and topological bands [14–23] and to realize gauge field
with dynamics [24–26]. Recently, the Chicago group has
explored the periodical modulation of the interacting strength
between atoms in a weakly interacting Bose-Einstein conden-
sate confined in a cylindrical box potential [27,28]. Such a
modulation induces a parametric resonance and leads to an
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exponential growth of quasiparticles with energy close to half
the modulation frequency [29]. To show that this many-body
dynamics is indeed coherent, in a recent experiment they also
attempted to reverse it by inverting the time dependence of the
interaction modulation [30]. To be more precise, the following
time-dependent interaction strength g(t ) was considered:

g(t ) =
{

g0 sin(ωt ) 0 � t � nT
g0 sin(ωt − π ) nT � t � 2nT,

(1)

where g0 is the oscillation amplitude, ω is the oscillation
frequency, T = 2π/ω is the period, and n is an integer. This
oscillation scheme is denoted by protocol (a) and shown in
Fig. 1(a). During the first n periods of oscillations 0 � t �
nT , atoms are resonantly excited to states whose energy are
in the vicinity of h̄ω/2. In the second n periods of oscillations
nT � t � 2nT , however, a significant portion of those exci-
tations are found to return to the condensate mode. This is a
strong evidence that a coherent many-body dynamic process
can indeed be reversed.

In this Rapid Communication, we present a different os-
cillation scheme, denoted as the protocol (b) and shown in
Fig. 1(b), which we show can reverse the many-body dynam-
ics to a greater degree than the protocol (a). This scheme is
mathematically described by

g(t ) =
⎧⎨
⎩

g0 sin(ωt ) 0 � t � nT
0 nT � t � (n + 1

2 )T
g0 sin(ωt − π ) (n + 1

2 )T � t � (2n + 1
2 )T .

(2)
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FIG. 1. The time dependence of the interaction strength. (a) Pro-
tocol used in the Chicago experiment and (b) protocol proposed in
this Rapid Communication.

In this scheme, the driving takes a half-period break after the
first n periods of oscillation, whereby the system undergoes
free evolution governed by the noninteracting Hamiltonian.
The second n period of oscillation is a repetition of the first,
which can be seen by letting t ′ = t − T/2 and writing g(t ′) =
g0 sin(ωt ′) for nT � t ′ � 2nT . Without the half period pause
inserted in between, we would simply have a single oscillation
throughout the entire process and the quasiparticles will be
continuously excited. Thus, the fact that our scheme can
reverse the quasiparticle excitation process is quite counter-
intuitive at first glance.

As we will explain in detail later, the underlying principle
by which the protocol (b) reverses the dynamics is reminiscent
of the spin echo [31,32]. Spin echo in a NMR system is a
scheme to refocus the magnetization against the dephasing
due to the inhomogeneous magnetic field. There, the magnetic
field under which the spins precess does not change, similar
to the fact that our protocol (b) involves exactly the same
modulation g(t ) in the first and second n periods of driving.
The key of the spin echo effect is a π pulse during the spin
precession that inverts the spin orientation. In our protocol
(b), the analogy of the π pulse is the free evolution that
introduces a phase to the wave function. Because of this close
analogy with the spin echo and the many-body nature of our
problem, we refer to the dynamics under our protocol as the
“many-body echo.”

Bogoliubov theory. We consider a Bose gas with a periodi-
cally modulated interaction, described by the Hamiltonian

Ĥ =
∫

drψ̂†(r)

[
− h̄2∇2

2m
+ Vtr (r)

]
ψ̂ (r)

+ g(t )

2

∫
drψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r), (3)

where ψ̂ (r) is the bosonic field, Vtr (r) is the trapping potential,
m is the atom mass, and g(t ) is the interaction strength. At
t = 0, the system is noninteracting and all the particles are

condensed in the ground state ϕ0(r) of the single-particle
Hamiltonian ĥ(r) = −h̄2∇2/(2m) + Vtr (r). After the interac-
tion modulation is turned on, we monitor the dynamics by
calculating the population on the single particle excited state
ϕ j (r), where ĥ(r)ϕ j (r) = ε jϕ j (r). We focus on a regime
where the dynamics can be well captured by the following
time-dependent Bogliubov–de Gennes (BdG) equations [33]:

ih̄∂t u j (r, t ) = L(r, t )uj (r, t ) − g(t )�2
0v j (r, t ), (4)

ih̄∂tv j (r, t ) = −L(r, t )v j (r, t ) + g(t )�∗2
0 u j (r, t ), (5)

where the Bogoliubov amplitudes satisfy the orthonormal-
ity relations

∫
dr[ui(r, t )u∗

j (r, t ) − vi(r, t )v∗
j (r, t )] = δi j with

the initial conditions ui(r, 0) = ϕi(r) and vi(r, 0) = 0. Here
L(r, t ) ≡ ĥ(r) + 2g(t )|�0(r, t )|2 − μ, where μ is the initial
chemical potential and �0(r, t ) = √

N0(t )ϕ0(r) is the time-
dependent condensate wave function. The number of particles
excited to the state ϕ j (r) is given by Nj (t ) = ∫

dr|v j (r, t )|2.
Equations (4) and (5) are solved together with number conser-
vation condition N = N0(t ) + ∑

j Nj (t ). The validity of the
BdG theory requires that the number of excitations should be
relatively small, which is satisfied by all the calculations in
our study.

To illustrate the essential physics involved, we first con-
sider a uniform condensate and, for simplicity, take the con-
densate density |�0(r, t )|2 to be a constant n0 independent of
time. This approximation is not necessary for the numerical
calculation but will simplify our later analysis without com-
promising the main results. As mentioned earlier, a periodical
modulation of the interaction with frequency ω mostly excites
the atoms to states with energy εk ≡ h̄2k2/(2m) ∼ h̄ω/2, be-
cause two atoms with opposite momentum collide and absorb
one quanta of energy h̄ω. Shown in Fig. 2 are the population
of atoms excited to the resonant energy εk = h̄ω/2 and to
a slightly modified resonant energy εk = (1/2 + 3γ 2/8)h̄ω

(the significance of this modification will be explained later),
calculated for the interaction modulations depicted in both
protocols (a) and (b). Here γ = g0n0/(h̄ω) is a relatively
small, dimensionless parameter that characterizes the strength
of the modulation. As we can see, for both schemes, the atoms
are excited during the first stage of interaction modulation,
but most of them are absorbed back to condensate after the
second stage. It is also clear that the protocol (b) reverses
the many-body process much better than the protocol (a),
particularly for larger modulation strengths.

Floquet Hamiltonian. We first present our understanding of
the above phenomenon in terms of the Floquet Hamiltonian,
which governs the stroboscopic evolution of the system. We
begin with the Bogoliubov Hamiltonian for the uniform con-
densate ĤBg(t ) = g(t )N2/(2V ) + ∑

k Ĥk
Bg(t ), where V is the

volume and

Ĥk
Bg(t ) = [εk + g(t )n0]â†

kâk + n0g(t )

2
(â†

kâ†
−k + H.c.). (6)

To derive the Floquet Hamiltonian using the high-frequency
expansion, it is necessary to first apply the rotating frame
transformation

R̂(t ) = exp

⎛
⎝ iωt

2

∑
k �=0

â†
kâk

⎞
⎠ (7)
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FIG. 2. Normalized population of resonant excitations as a func-
tion of time from both protocol (a) (red, solid, and dashed) and
protocol (b) (blue, dash-dotted and dotted) depicted in Fig. 1. The
dashed and dotted lines are the populations at εk = h̄ω/2 and the
the solid and dash-dotted lines are those at εk = (1/2 + 3γ 2/8)h̄ω.
Calculations are done for two values of modulation strength, i.e.,
γ = 0.06 in the upper panel and γ = 0.04 in the lower panel.

to eliminate the resonance energy term. In doing so,
the Hamiltonian in the rotating frame is given by
ĤR(t ) = R̂(t )[ĤBg(t ) − ih̄∂t ]R̂†(t ), which yields ĤR(t ) =
g(t )N2/(2V ) + ∑

k Ĥk
R (t ) with

Ĥk
R (t ) =

[
εk − h̄ω

2
+ g(t )n0

]
â†

kâk

+ g(t )n0

2
(eiωt â†

kâ†
−k + e−iωt âkâ−k ). (8)

For an interaction strength g(t ) periodical in T , an effective
Floquet Hamiltonian Ĥeff capturing the evolution at integer
periods of oscillation can be introduced by

T exp

(
− i

h̄

∫ αT +T

αT
ĤR(t )dt

)
= exp

(
− i

h̄
Ĥeff T

)
, (9)

where T is the time-ordering operator and α specifies
the initial reference time. By Fourier transforming ĤR(t ) =∑

p Ĥpeipωt and using the 1/ω expansion, we obtain [34]

Ĥeff ≈ Ĥ0

+
∑
p>0

(
[Ĥp, Ĥ−p]

ph̄ω
− [Ĥp, Ĥ0]

ph̄ωe−i2pαπ
+ [Ĥ−p, Ĥ0]

ph̄ωei2pαπ

)
. (10)

The effective Floquet Hamiltonian we define here is different
from the conventional one [35,36], in which the information
of the initial state is absorbed in the kick operator.

For 0 � t � nT , the time dependence of g(t ) is the same
for protocols (a) and (b). Writing Ĥeff = ∑

k Ĥk
eff and follow-

ing Eq. (10), we obtain for this duration

Ĥk
eff

h̄ω
= −1

2
γ Âk

y − γ 2Âk
x + �k

(
Âk

z − 1/2
)
, (11)

where �k ≡ εk/h̄ω − 1/2 − 3γ 2/8 and

Âk
x ≡ 1

2
(â†

kâ†
−k + âkâ−k ),

Âk
y ≡ 1

2i
(â†

kâ†
−k − âkâ−k ),

Âk
z ≡ 1

2
(â†

kâk + â−kâ†
−k ).

These three operators form the group of pseudorotations,
SU(1,1), obeying the commutation relations [Âk

x , Âk
y ] = −iÂk

z ,
[Âk

y , Âk
z ] = iÂk

x , and [Âk
z , Âk

x ] = iÂk
y .

The second n periods of oscillation in the protocols (a)
and (b) are governed by different Floquet Hamiltonians. For
protocol (a), we find the following effective Hamiltonian,

Ĥk
eff,a

h̄ω
= 1

2
γ Âk

y − γ 2Âk
x + �k

(
Âk

z − 1/2
)
, (12)

for nT � t � 2nT . If we consider the resonant modes εk ∼
h̄ω/2 such that �k ∼ 3γ 2/8, it is clear that Ĥk

eff,a inverts Ĥk
eff

up to the leading order of γ , but not to the second order of γ 2.
Now consider the protocol (b). During the half period

of free evolution nT � t � (n + 1/2)T , the Hamiltonian in
the rotating frame vanishes for the resonant modes with
εk ∼ h̄ω/2. For nT + T/2 � t � 2nT + T/2, even though
the functional form of g(t ) is the same as that in the second
stage of protocol (a), the initial reference time characterized
by parameter α in Eq. (9) is different. More specifically, we
have α = 0 for the protocol (a) and α = 1/2 for the protocol
(b). In the Floquet theory, this results in a difference in the
so-called micromotion term in the effective Hamiltonian [35].
Thus, we find the effective Hamiltonian of the protocol (b) as

Ĥk
eff,b

h̄ω
= 1

2
γ Âk

y + γ 2Âk
x + �k

(
Âk

z − 1/2
)

(13)

for nT + T/2 � t � 2nT + T/2. Now we can see that both
the first and second terms in Ĥk

eff,b are opposite to those in Ĥk
eff .

If we further consider the resonance modes specified by �k =
0, i.e., εk = (1/2 + 3γ 2/8)h̄ω, Ĥk

eff,b completely inverts Ĥk
eff

for all contributions up to the order of γ 2. This explains
why the protocol (b) reverses the many-body dynamic process
better than the protocol (a). Since the difference between
the two protocols lies in the second-order terms of γ in the
effective Hamiltonian, it also explains why the difference is
more significant for larger γ , as shown in Fig. 2. Finally, it
can be shown that all the excitations with �k 
 γ will be
well reversed by our protocol.

Many-body echo. Now we discuss the connection between
the underlying physics of the protocol (b) and the spin echo.
For this purpose, we introduce an alternative approach to
understand the reversal of dynamics. As mentioned earlier,
the first and second n periods of oscillation in the protocol (b)
are identical, which can be seen by writing t ′ = t − T/2, such
that g(t ′) = g0 sin(ωt ′) for nT � t ′ � 2nT . However, they
become inequivalent when viewed from the single rotating
frame of reference introduced, leading to different Floquet
Hamiltonians obtained earlier. Such an equivalence can be
restored if we apply the unitary rotation R̂(t ) for 0 � t �
nT and another R̂(t ′) for nT � t ′ � 2nT (i.e. nT + T/2 �
t � 2nT + T/2). In this approach, the free evolution for the
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intermediate half period nT � t � nT + T/2 is according to
the original Bogoliubov Hamiltonian in Eq. (6), but the system
will be governed by the same effective Hamiltonian Ĥeff in
Eq. (11) during both sections of the driving. Hence, the total
evolution operator from t = 0 to t = 2nT + T/2 is given by

Û = R̂†(2nT )e− i
h̄ ĤeffnT R̂(nT )

×e−i T
2h̄

∑
k εk â†

k âk R̂†(nT )e− i
h̄ ĤeffnT R̂(0). (14)

Restricting ourselves to resonance modes with εk ∼ h̄ω/2 and
using R̂(nT ) = (−1)n, we obtain Û = ∏′

k Ûk, where

Ûk = e− 2i
h̄ Ĥk

effnT e−iπ Âk
z e− 2i

h̄ Ĥk
effnT . (15)

Here
∏′

k restricts the product over k to half momentum space.
The operator e−iπ Âk

z is reminiscent of the π pulse inserted in
the spin echo experiment. More precisely, this operator acts
on the Bogoliubov-type many-body state as

e−iπ Âk
z e(χk â†

k â†
−k−χ∗

k âk â−k )|0〉 = e−(χk â†
k â†

−k−χ∗
k âk â−k )|0〉.

We note that this operator adds a π phase shift to the wave
function of excitations, which plays a key role in reversing the
many-body dynamics.

Harmonically trapped case. For the uniform system, the
resonance of excitations due to the interaction modulation
has a typical width of the order of γ h̄ω, while our protocol
only reverses those satisfying |εk − h̄ω/2| 
 γ h̄ω. In order
to achieve a complete reversal of all excitations, we turn to a
Bose condensate confined in a harmonic trap. The advantage
of this setup is that the mode energy of the harmonic trap
is discrete; thus only pairs of particles whose total energy
is resonant with h̄ω can be excited, provided that the mode
level separation is large than the amplitude of interaction
modulation. In such scenarios, almost all the excitations can
be reversed by our protocol.

Without loss of generality, we consider an elongated
condensate with transverse and axial trapping frequencies
as ω⊥ = 2π × 430 Hz and ωz = 2π × 200 Hz respectively.
Here we specifically choose two incommensurate values for
ω⊥ and ωz. In this way, when the interaction modulation
frequency is chosen to be commensurate with ωz, only the
axial modes ε j = ( j + 1/2)h̄ωz meeting the resonance con-
dition (i + j)ωz = ω will be excited. Thus, as far as the
dynamics is concerned, the Hamiltonian of the system can be
reduced to a one-dimensional one with an effective interaction
modulation amplitude g̃0 = g0/(2π l2

⊥), where l⊥ = √
h̄/mω⊥

[37]. We numerically solve the number-conserving BdG equa-
tions described earlier for this system with a total atom
number N = 1800 and a modulation frequency ω = 20ωz. For
these parameters, the modulation strength is γ̃ = g̃0 ñ0

h̄ω
= 0.12,

where ñ0 = N/lz with lz = √
h̄/mωz. Shown in Fig. 3 are the

total number of excitations Ntot(t ) = ∑
j Nj (t ). We see that

our protocol, again much more effective than the protocol
(a), achieves an almost perfect reversal of all the excitations.
Lastly, we have verified that the many-body echo phenomenon
is rather robust against variations of system parameters as long
as the resonance condition is satisfied [37].

Outlook. In summary, we have developed an analogy of
the spin echo in a Floquet quantum many-body system,
which we refer to as the many-body echo. Although here

FIG. 3. Upper panel: the total number of excitations as a function
of time in a trapped condensate with total number of atoms N =
1800. The dashed (blue) line and the solid (red) line correspond
to the protocol (a) and protocol (b) respectively. Lower panel: the
occupation of different single-particle modes at different times for
protocol (b).

we demonstrate many-body echo using a weakly interacting
Bose condensate as an example, the idea can be applied
universally to scenarios of resonant excitation in Floquet
systems. Consider a driving with frequency ω that resonantly
excites the system to many-body states with energy �E = ω.
By pausing the driving for half a period, a phase difference
ei�E×T/2 = eiω×T/2 = eiπ accumulates between these states
and the ground state. Such a phase is reminiscent of the π rota-
tion in spin echo and is ultimately responsible for the reversal
of dynamics. Thus, we believe that this physical picture can
find broad applications in future research of Floquet quantum
matter. One application, for instance, could be facilitating the
experimental measurement of the out-of-time-ordered correla-
tion function by reversing the many-body dynamics [38–40].
Another application draws inspiration from the spin-echo
effect, where the imperfect refocusing can be used to detect
decoherence time due to spin-spin interactions. Similarly, in a
many-body system with significant quasiparticle interactions,
the degree to which our protocol does not reverse the dy-
namics can then be attributed to the quasiparticle interactions,
the treatment of which requires more sophisticated theoretical
methods [41–43].
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