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Quantum simulation promises to address many challenges in fields ranging from quantum chemistry to
material science and high-energy physics, and could be implemented in noisy intermediate-scale quantum
devices. A challenge in building good digital quantum simulators is the fidelity of the engineered dynamics given
a finite set of elementary operations. Here we present a framework for optimizing the order of operations based on
a geometric picture, thus abstracting from the operation details and achieving computational efficiency. Based on
this geometric framework, we provide two alternative second-order Trotter expansions: one with optimal fidelity
at a short timescale, and the second robust at a long timescale. Thanks to the improved fidelity at different
timescales, the two expansions we introduce can form the basis for experimental-constrained digital quantum

simulation.
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Introduction. Simulation has been at the core of quantum
information processing right from its inception, starting from
Feynman’s vision of simulating physics using a quantum sys-
tem [1]. Quantum simulators are poised to be one of the first
quantum devices to show task-specific quantum supremacy
[2]. Quantum simulation has great potential impact on quan-
tum chemistry [3-5], material science [6], condensed matter
[7-10], and high-energy physics [11,12]. The most flexible
strategy to achieve quantum simulation is via digital quantum
simulation [13], where a target time-evolution operator is rep-
resented by a sequence of elementary quantum gates, usually
involving one or two qubits. The strategy of approximating
the continuous evolution with discrete gates is also known
as Trotter expansion [14]. Finding a sequence of elementary
operations that approximates a desired simulated Hamiltonian
with high fidelity is crucial to practical implementations of
digital quantum simulation. First- and second-order Trotter
expansions with simple alternating patterns are most com-
monly used on experimental platforms, including supercon-
ducting qubits [3,8,9,15,16], trapped ions [7,17], atomic sys-
tems [18], and spin systems [10,19], although there has been a
recent interest also in randomized Trotter expansions [20,21].

While the fidelity of digital quantum simulation can be
increased by decreasing Trotter-step size, on all experimental
platforms, the smallest Trotter step will eventually hit some
practical limitations. In Hamiltonian simulation, the rotation
angle under a specific Hamiltonian cannot be made arbitrarily
small due to experimental constraints. For example, in a recent
implementation of digital quantum simulation with trapped
ions [7], the smallest flip angle of the unitary evolution block
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was Jt = /16, and similar numbers can be obtained in other
experimental platforms [8,16]. Then, even the second-order
Trotter sequence might not yield good enough fidelity. Higher-
order expansions are usually hard to implement experimen-
tally due to negative [22] coefficients, resulting in longer total
evolution time. In many cases, it is desirable to engineer the
simulated evolution from a finite set of elementary operations
(gates). For example, in fault-tolerant quantum computation,
the circuit is built up from a set of universal gates that can be
implemented fault tolerantly [23,24].

In this Rapid Communication, we focus on finding second-
order Trotter expansions that yield a better fidelity than the
conventional second-order Trotter (2T) expansion [25,26],
given the set of implementable gates. Finding the optimal
sequence that yields the best fidelity requires integer opti-
mization over the product of large operators describing the
exact form of each gate, which can be computationally ex-
pensive. Here we present a geometric framework to optimize
the sequence without calculating the quantum-mechanical
propagators. Using this picture, we present two expansions:
one minimizes the third-order Trotter error, and we call it
2-optimal (20); the second one has better performance at
a longer timescale, and we name it 2-diagonal (2D). Both
methods have better fidelity than the 2T expansion and even
third-order Trotter when the time step is larger.

Geometric method to calculate the Trotter error. We con-
sider the problem of engineering a target operator ¢~ 2 V1HL
which encapsulates a general quantum simulation task, using
implementable gates e~/ For illustration purposes let us
first consider L = 2 and the target is ePAtaB where A = —iH ¢
and B = —iH,t. Here we assume p and ¢ to be integers and
that the implementable gates are /" and e?/" (where n > 0

©2020 American Physical Society
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is also an integer). Under the constraints mentioned above, we
can generally write any expansion as

epalA/neqblB/n . epaMA/nequB/n ~ epAJrqB’ (1)

where 224:1 ag =22/1=1bk =n and pay, gby are integers Vk. The
unitary fidelity Fy; of expansion (1) up to O(¢?) is

Fy = e*(PA+qB)(ePalA/"eqblB/" . ePaMA/"equB/")

=1+ &[A, BI+E 4lA,[A, B1+E; 5(B,[A, BII+0(*)
2

with

k=2 m=1 m=1
and
1 M k k
2
g@B 3_ Pq 5;171((’;‘1"1) (2;&% _bk>

M k-1 2
- gy a (Z bm) : (5)

k=2 m=1

For example, the first-order Trotter expansion (ePA/"eB/my
gives Fy =1+ ﬁpq[A, Bl + O@?). If p (or g) is even, we
can engineer the 2T expansion,

(ePA/ (@n) ,4B/n ,pA/ (2n))n , with

Fy=1- 412Pq(p[A [A, BI1 + 24[B, [A, BI) + O(*) (6)
to achieve a better approximation (a similar expression holds
for g even). There are complementary works [27-29] on
optimizing expansion (1) to different orders for fixed M
without the constraint that pay, gb; are integers. However, the
optimal expansions are not always implementable under the
experimental limitations we are considering.

In general, finding the coefficients {pay, gby} is a hard
problem since it requires an integer optimization search per-
formed by calculating Fyy based on the exact form of the
Hamiltonians H; », which might be prohibitive when consid-
ering large quantum systems. Here we present a geometric
method to approach this algebraic problem, which enables us
to optimize the ordering without considering the exact forms
of the Hamiltonians.

Any expansion in the form of Eq. (1), can be represented
as a path on a grid picture, as shown in Fig. 1(a), giving the
second-order and third-order Trotter errors geometric inter-
pretation. The ideal operator e” 4% can be represented on the
grid as a vector (np, ng). One elementary gate is represented
by a unit vector: ¢A/" is the unit vector (1,0) and €5/" is
the unit vector (0,1). Starting from the origin (0,0), at each

(3,4) N
@ /yi (b) — /9
X dx,dx,|
....! N

X2 :
1% /

‘ ») -
(0,0) X >y >
density: -1 -->20
density: +1 e ) 2D
— 2T

FIG. 1. Geometric method to calculate the Trotter error. (a) Ge-
ometric picture for Trotter expansion of ¢***3¥ [vector (4,3)] by
products of e*’s and e?’s. Unit vector (1,0) represents e* and unit
vector (0,1) represents 5. Any path starting from (0,0) that ends at
(4,3) is accurate to first order. The second-order error is the total
area enclosed by the diagonal and the path, where any region below
(above) the diagonal has an area density +1 (—1). The third-order
error is given by the moments, where, e.g., the infinitesimal moment
about x, axis is the area of the dark-brown square times the distance
to the x, axis. (b) Examples of three different second-order paths.
The brown line is the conventional 2T expansion (e*e*2¢*4). The
dark-blue dashed path has a global minimum third-order error (20,
eBete?Bet). The light-blue path has a minimal total distance from
each node to the diagonal (2D, e*ePe?eBe?), represented by the sum
of absolute areas. All three paths enclose zero total area.

step we can move right (evolving under /") or up (evolving
under ¢8/"). A given ordering is then represented as a directed
path on the grid. Figure 1(b) shows three different orderings
for p=4, g=3, and n = 1. This grid representation can
be regarded as a “projection” of the Trotterized process on
the unitary group. More rigorously, the Trotterized unitary
operators live in a fiber bundle, for which the grid is the base
space (see Sec. I in [30] for details). On this grid picture,
any path that ends at (np, nq) is accurate to first order. The
second-order error of the path is given by [30]

%[A,B] <‘¢x1dx2 —X2d)€1) [A B] // dxldxz, 7)
1

where loop [ is the Trotter path followed by vector
(—np, —nq), and D is the region enclosed by /. The coefficient
of [A, B] can be interpreted as the total area defined by the
path and the diagonal: [/, p dx1dxy, where the areas below
(above) the diagonal have density 41 (—1). Then, to cancel
the second-order error, the area should sum up to zero. If
we replace the discrete sum in Eq. (3) with an integral,
we find & = % §,(x1dxs — xpdxy), indicating that the brute-
force calculation is consistent with the differential geometry
calculation. The third-order error is [30]

1
g[A, [A, B]] %xl(xldJQ — Xxadxy)
!
+ 518,14, B] fxz(xldxz — xady)
I

=[A, [A, B]] // xidxidx, + [B, [A, B]] ff Xodxidx;.
D D
(®)
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In the third-order error, the coefficient of [A,[A, B]]
(IB, [A, B])) is the total moment about the x, axis (x; axis)
defined by the path [see Fig. 1(a)]. Again, Egs. (4) and (5)
are discrete forms of the coefficients in Eq. (8). If all steps
are restricted to be directional, that is, either along (0,1) or
(1,0), the total moment is always nonzero, which is consistent
with the nonexistence theorem of positive decomposition in
[22]. In principle, a third-order expansion, which has zero
total moments about both axes, can also be represented by
this picture, by allowing walking left (—1,0) (e~*/") and
down (0, —1) (e~2/"). This indeed leads, e.g., to the known
third-order Trotter expansion known as Ruth’s formula [31].
Given experimental constraints that typically do not allow
simple inversion of the Hamiltonian arrow of time, we do not
consider this scenario.

Using this geometric framework, we can now discuss
two second-order sequences optimizing over different cost
functions. The first sequence (20) has a global minimum
third-order error. The other sequence (2D) stays as close to
the diagonal as possible and minimizes the distance from each
node on the path to the diagonal. 2D has a better performance
at a longer timescale, even if it is not optimal in terms of
the third-order error. The algorithms used to find the two
sequences have different computational complexities.

2-optimal sequence. In order to minimize the third-order
error, we start by assigning each edge on the grid a triplet
of weights given by Eq. (7) and the first line of Eq. (8).
Using dynamic programming, we can find a path that puts
the second-order error to zero and minimizes the third-order
error. The main idea is that at each step, we keep track of
the accumulated weights for each node, and finally select
the path corresponding to the smallest absolute value weight.
The details of the algorithm can be found in Sec. II in [30].
In general, the optimization should be done over all Trotter
steps, thus on a grid pn x gn. When the expansions become
deep and optimizing over all Trotter steps is too expensive to
calculate, one can optimize within a coprime (p, ¢) and repeat,
or mirror symmetrize the smallest unit [32].

2-diagonal sequence. This algorithm is not based on the
exact expression of the Trotter error, but rather on the intuition
that being as close to the diagonal as possible should give
a good approximation. There are different metrics to quan-
tify “being close”; the 2D algorithm minimizes the distance
from each node to the diagonal, thus minimizing the total
distance, which can be shown to minimize the total unsigned
area enclosed by the diagonal and the path as well. What
is interesting is that the global distance optimal path can
be found in a computationally efficient way by a greedy
optimization (see Sec. III in [30] for the proof): at each step,
we choose the move that ends closer to the diagonal. It can
be shown that when p, g are mutually prime, and when at
least one of them is even, 2D always finds a unique path,
and the 2D path guarantees the second-order error to be
zero. When both p and ¢ are odd, 2D finds two opposite-
order paths with opposite second-order error. We can then
symmetrize the sequence to cancel the second-order error.
That is, 2D can be made into a second-order expansion by op-
timizing and symmetrizing on the smallest unit grid [2(p + ¢q)
steps], and the whole sequence is generated by repeating the
smallest unit.

For some (p, q)’s, 2D and 20 share the same ordering, but
in general, 2D does not have a global minimum third-order
error. Still, we can prove that 2D still has smaller third-order
error compared with the 2T expansion. The details of the proof
can be found in Sec. IV of [30].

Both 20 and 2D can be easily generalized to higher dimen-
sion (see Fig. 2 in [30]), that is, to the scenario where we want
to combine a larger number of propagators, e/, e8/", /",
etc. Figure 1(b) shows 20, 2D, and 2T paths for p = 4, g = 3,
and n =1 on the grid picture. Figure 2(a) illustrates paths
for p =12, g = 8. Especially when higher dimensions are
involved, the simpler greedy optimization of 2D is beneficial
to reduce the computational complexity.

Numerical evaluations. When the Trotter-step size is small,
20 is optimal and 2D is better than 2T, regardless of the exact
form of the Hamiltonian. Numerical calculation verifies both
facts. Additionally, we found in numerical calculations over
a variety of test Hamiltonians that 2D is better than 2T at
longer times. In the following numerical calculations, we only
compare expansions up to p + g = 20. Though the dynamic
programming time and space complexities are polynomial
in the grid dimension, the computation for 20 quickly be-
comes both time-consuming and space-consuming as p and g
become larger.

The metric we use to quantify the performance is the
average fidelity of a quantum gate [33], which reads

F = |Tr(U, Us)|/Te(U[ Uy), 9)

where U is the ideal operator and U, is the approximated
one. To further highlight differences in fidelity, we plot the log
fidelity F; = —log,o(1 — F'). We also considered ||U; — Ua ||,
where | - || is Frobenius norm, as a metric of error, and the
results are qualitatively the same.

The orderings of the three second-order Trotter expansions
for p=12, g=8 are shown in Fig. 2(a). Figure 2(b) shows
the numerical results for a two-spin transverse-field Ising
Hamiltonian, H = 12H; + 8H,, where H; = %(UZ1 + Uzz) and
H, = 0l0?. ThenA = —iH,t, B = —iH,t. For different (p, q)
pairs (here with p 4+ g = 20) the results look qualitatively the
same. We also verified that the same qualitative results apply
for different Hamiltonians and different system sizes, such
as a transverse-field Ising model with next-nearest-neighbor
coupling for two to ten spins, and an alternating dipolar model
with three to eight spins (see Sec. V in [30]).

We can first verify that all three expansions are second-
order expansions with respect to ¢ by fitting the data to F; =
—alog;,t + b and extract the slope a at small ¢ [see the solid
lines in Fig. 2(b)]. From the Taylor expansion we expecta = 6
and the fitted values for 20, 2D, and 2T are 6.07, 5.99, and
5.99, respectively. In the short ¢ regime, 20 shows the best
fidelity, as expected since it minimizes the third-order error.
2D also provides a higher fidelity than the conventional 2T
expansion for all 7. At some #, 2D even starts to outper-
form 20, the crossover point being around ¢||H,| = 0.14.
Figure 2(c) shows a histogram of crossover point positions
over 1000 pairs of random Hermitian matrices H;,. The
center of the Gaussian depends highly on specific (p, ¢), but it
is always on the order of 0.1. For typical experimental values,
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FIG. 2. Fidelity comparison for the three Trotter sequences. (a) Geometric illustration of three different second-order approximations to
e!?A+38 In (a) and (b) dark-blue lines are for the 20 path, light-blue for 2D, and brown for 2T. (b) Numerical evaluation of log fidelity. Here
A = —iHt/n, B= —iHt/n, where H, = (0! + 0?), H, = 007, and n = 1. At short ¢, 20 shows the best fidelity since it has the smallest
third-order error. At very small ¢t we fit the simulated data to /; = —log,,(1 — F) = —alog,,t + b, and the slopes of 20, 2D, and 2T are 6.07,
5.99, and 5.99, respectively, close to the expected result, 6, for second-order expansions. 2D starts to outperform 20 around ¢ = 0.13/||H,||,
where || - || is the Frobenius norm. Going beyond the time of the simulation, it is possible that 20 outperforms 2D again. However, at these
long times the fidelity is low and not useful for quantum simulations. (c) Histogram of crossover point (where 20 and 2D intersect) for 1000
pairs of random 4 x 4 Hermitian matrices H, ». The black solid curve is the smoothed histogram and the orange curve is a Gaussian fit to the

histogram. The mean and variance of the Gaussian distribution are 0.14 and 0.02, respectively.

such as Jt = /16 [7] and U At/2 =5/16 [16], 2D is then to achieve higher fidelity in digital quantum simulation, by ex-
the best sequence. We can explain this result by noting, as  ploiting a geometric framework to estimate the Trotterization
described in detail in [30], that the error of an arbitrary path is error. By optimization of the fidelity on a simple grid picture,
always bounded by the total unsigned area. Since this is a non- our 20 and 2D sequences outperform the widely used 2T
perturbative result, it suggests that a path with minimal total sequence in complementary Trotter-step regimes. In addition,
unsigned area, which is equivalent to 2D, will typically have the 2D solution is based on an intuitive ordering that can be
better fidelity when the small-step expansion breaks down. found with an efficient, greedy optimization algorithm. Com-

Conversely, these results imply that 2D does not need as pared to 2T, less Trotter steps are required to reach the same
small a Trotter step to reach the same fidelity. Then, the fidelity with our sequences, thus also providing an advantage
number of elementary gates needed to reach a given fidelity when the Trotter-steps number is a performance metric.
is smaller, a practical advantage for digital simulation [21], We note that while we mostly presented numerical results
especially when fault-tolerant gates are required. We further for two qubits, we numerically obtain similar performances
evaluated the 2D performance with respect not only to the for larger systems, and indeed the scalings found are ex-
time step but also to the number of “switching” operations pected to apply to many-qubit systems. As the minimization
needed, finding that 2D performs well even under this metric algorithm is very efficient, since it does not require one to
(see Sec. VIl in [30]). We also compared 2D and 2T assuming evaluate quantum propagators, and it can be easily extended
that the time-step resolution in 2T is not limited, and found  to deal with multiple building block operators, 20 and 2D can
that the performance of 2D is still comparable to 2T even become versatile and powerful tools to improve the fidelity of
though this condition is in favor of 2T (see Sec. VIII in [30]). digital quantum simulation for many-qubit systems. It could
We further find that 2D can outperform the third-order Trotter ~ be interesting to further investigate applying our 2D and
expansion, and the simplest sequence achieved by building an 20 sequences to other quantum algorithms beyond quantum
approximated 2T form with the smallest possible step, and simulation, such as quantum phase estimation [21,34] or to
then adding a naive alternation to reach the desired p, g (see find a good ansatz for the quantum approximate optimization
Sec. IX in [30]). algorithm [35].

Conclusions and outlook. Finding the exact global optimal Acknowledgments. We thank Chao Yin (FFi#) for helpful
Trotter sequence or even just the sequence minimizing the discussions. This work was supported in part by DARPA
minimal third-order error can be expensive to calculate. In this D18AC00024, NSF Grants No. EECS1702716 and No.
Rapid Communication, we introduced two Trotter sequences PHY1734011.
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