
PHYSICAL REVIEW A 101, 063844 (2020)

Quantum thermometry based on a cavity-QED setup
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We present a quantum thermometry scheme based on a cavity-QED setup, which attains a sensitivity with
Heisenberg scaling. A stream of identical two-level systems passes through a thermal bath to be tested. Each
system partially thermalizes, carrying information on the temperature of the thermal bath, and it then interacts
with a dissipative single-mode cavity. The Heisenberg scaling is attained from the initial coherence of each
system. The systems cannot be fully thermalized by the thermal bath. The optimal interaction time between
the system and the thermal bath is derived. Direct photon detection is proved to be an optimal measurement
when there is no extra thermal bath in the cavity. In the case where there is an extra thermal bath in the cavity
independent of the thermal bath to be tested, homodyne detection is the optimal measurement. Moreover, we
show that direct photon detection obtains less information in the case where the extra thermal bath in the cavity
is in thermal equilibrium with the thermal bath. However, the optimal measurement can utilize the information
from the extra thermal bath to improve the estimation precision of the temperature.
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I. INTRODUCTION

Quantum metrology plays a crucial role in the development
of basic science and technology [1–6]. In particular, improv-
ing the precision of temperature metrology is becoming more
and more important. There is a growing interest in obtain-
ing accurate temperature measurements [7–13]. In classical
physics, the best metrology precision, known as the quantum
shot-noise limit (SNL), scales as 1/

√
N , with N being the

number of resources employed in the measurements. Quan-
tum effects can help us to beat the SNL, such as squeezing
[14–18] and entanglement [19,20].

Although quantum effects can improve the measurement
accuracy, they are actually quite fragile. The main reason is
the inevitable environmental decoherence. A realistic physical
system inevitably interacts with the surrounding environment,
leading to a loss in the coherence and entanglement. For a
unitary parameter, such as phase and frequency, one can place
the probe system in a cryogenic environment to reduce the
decoherence. However, for a nonunitary parameter (tempera-
ture), the probe system must make contact with the thermal
bath to obtain temperature information. Hence, decoherence
is difficult to suppress. Correa et al. [21] investigated the
fundamental limitations on temperature estimation with an
individual quantum probe and found that initial coherence
may not be directly linked to the overall maximization of
the precision. Thomas [22] demonstrated that thermometry
may be mapped onto the problem of phase estimation to ob-
tain Heisenberg scaling. However, there are some constraints
which are difficult to relax.
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In a recent experiment, Kim et al. [23] implemented
the cavity-QED scheme where a series of two-level atoms
randomly passes through a single-mode cavity and showed
the single-atom superradiance effect [24,25] by the initial
atomical coherence. It means that the steady-state average
photon number of the cavity is proportional to the square
of the number of the effective coupling atoms. Cheng et al.
[26] further showed that the Heisenberg scaling for the unitary
parameter (the atom-cavity coupling strength) can be obtained
with the assistance of superradiance. The advantage of the
scheme is that the preparation (maintaining) of the atomic
entanglement before (after) they interact with the cavity field
is not required.

In this article, without preparing atomic entanglement in
advance, we want to obtain the Heisenberg scaling in esti-
mating the nonunitary parameter (temperature) with the assis-
tance of superradiance. We propose a quantum thermometry
scheme based on the cavity-QED setup. A series of injected
two-level systems (TLSs) passes through the thermal bath
to be tested. Then they pass through a single-mode cavity
one by one. Our results show that the Heisenberg scaling
for the temperature of the thermal bath can be obtained. And
the initial coherence of each system and partly thermalization
are necessary. The optimal thermalized time has been derived.
What is more, direct photon detection is proved to be an
optimal measurement when there is no extra thermal bath
in the cavity. In case there is an extra thermal bath in the
cavity independent of the thermal bath to be tested, homodyne
detection is the optimal measurement. Moreover, we show that
direct photon detection obtains less information if the extra
thermal bath in the cavity is in thermal equilibrium with the
thermal bath. By using the Fisher information, we find that
the optimal measurement can utilize the information from the
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FIG. 1. Schematic diagram of the proposed quantum thermom-
etry sequence. The TLSs pass through the thermal bath with the
temperature T to be tested. Then the TLSs traverse a cavity
with the decay rate κ . There is an additional thermal bath with
temperature Tc in the cavity. By measuring the steady state of the
cavity, the temperature T of the thermal bath can be obtained.

extra thermal bath to improve the estimation precision of the
temperature.

This article is organized as follows: In Sec. II, we
introduce the physical model of quantum thermometry
and the corresponding master equation. In Sec. III, we
utilize the partly thermalized TLS with initial coherence to
obtain the Heisenberg scaling. In Sec. IV, maximal Quantum
Fisher information is obtained to show whether direct photon
detection and homodyne detection are the optimal measure-
ment. We make a brief conclusion in Sec. IV.

II. QUANTUM THERMOMETRY MODEL

We consider a quantum thermometry model as shown in
Fig. 1. A stream of two-level systems (TLSs) passes through
the thermal bath with the temperature T to be tested. Each
TLS is coupled to the thermal bath for same time duration
τ1. During this time, information about the temperature T
is encoded into the TLSs. We then consider using a cavity-
QED setup to estimate the value of the temperature T . After
passing through the thermal bath, the TLSs pass through a
single-mode cavity one by one [23,26,27]. The interaction
time between each system and the cavity model is assumed
to be τ2.

The Hamiltonian of a single TLS is given by Hs = ω
2 σz,

where ω denotes the energy separation and Pauli operator
σz = |e〉〈e| − |g〉〈g|, where |e〉 is the excited state and |g〉 the
ground state. We assume that the strength of coupling between
TLS and the thermal bath is weak. The Born, Markov, and
rotating-wave approximations can then be applied. The master
equation describing the interaction can be written as [28]
(h̄ = 1, κB = 1 throughout this article)

ρ̇s(t ) = − i[Hs, ρ(t )] + γ (1 − e−ω/T )−1D[σ−]ρ(t )

+ γ (eω/T − 1)−1D[σ+]ρ(t ), (1)

where D[σ ]ρ = σρσ † − 1
2 (σ †σρ + ρσσ †), σ− = |g〉〈e|,

σ+ = |e〉〈g|, and γ is a temperature-independent coupling

constant. All TLSs are initially prepared in the same state
(written in the basis {|e〉, |g〉})

ρs(t = 0) =
(

pe λ

λ∗ pg

)
,

where |λ|2 � pe pg, λ is the coherence of a single TLS, and
all TLSs have the same value of λ. By computing Eq. (1)
analytically, we can get the density matrix of a TLS after
passing through the thermal bath

ρs(t =τ1)=
((

pe − 	
	+1

)
ξ 2 + 	

	+1 λτ

λ∗
τ

(
	

	+1 − pe
)
ξ 2 + 1

	+1

)
,

where 	 = e−ω/T , ξ = exp[− 1
2γ τ1( 1+	

1−	
)], and λτ =

λξe−iωτ1 . Hence, the information of temperature T has
been encoded into the TLSs.

Then, the TLSs traverse the cavity one at a time. The
atomic injection rate is denoted r, which represents the av-
erage number of TLSs injected into the cavity per unit time.
Simply, we consider that TLSs are resonant with the cavity
mode; that is, the frequency cavity field is equal to ω. The
Jaynes-Cummings Hamiltonian can describe the interaction
between a single TLS and the cavity mode:

H = ω

2
σz + ωa†a + g(aσ+ + σ−a†), (2)

where a (a†) denotes the annihilation (creation) operators
of the cavity field and the bosonic communication relation
[a, a†] = 1. We consider that the cavity also suffers from a
Markovian environment with temperature Tc, the decay of the
cavity can be described by [28]

Lρc = κ (n̄th + 1)D[a]ρc + κ n̄thD[a†]ρc, (3)

where κ is the decay rate of the cavity field and n̄th is the
thermal average photon number, which is described by

n̄th = 1

eω/Tc − 1
, (4)

where Tc denotes the temperature of the extra thermal bath in
the cavity.

By tracing over the degrees of freedom of the TLS, in the
interaction representation, the master equation of the single-
mode cavity field can be obtained in the short-interaction-time
τ2 limit (gτ2 � 1 and rτ2 � 1) [23,26,27,29–32]:

ρ̇c(t ) ≈ i[ρc(t ), βa† + β∗a] + γ1D[a]ρc(t )+γ2D[a†]ρc(t ),

(5)

where β = λτ rgτ2, the decay rate γ1 = r(gτ2)2[(pe −
	

	+1 )ξ 2 + 	
	+1 ] + κ n̄th, and the excitation rate γ2 =

r(gτ2)2[( 	
	+1 − pe)ξ 2 + 1

	+1 ] + κ (n̄th + 1). The free
evolution of cavity mode has been included in Eq. (5).

III. PARTLY THERMALIZED TWO-LEVEL SYSTEMS FOR
OBTAINING HEISENBERG SCALING

The steady state of the single-mode cavity carries infor-
mation about the temperature T . Hence, measuring the steady
cavity field can be used to estimate the value of T .

063844-2



QUANTUM THERMOMETRY BASED ON A CAVITY-QED … PHYSICAL REVIEW A 101, 063844 (2020)

From Eq. (5), we can obtain the equation of motion of the
average value of the annihilation operator,

d

dt
〈a(t )〉 = −1

2
(γ2 − γ1)〈a(t )〉 − iβ, (6)

where 〈a(t )〉 = Tr[ρ(t )a].
We can derive that

〈a(t )〉 = e− 1
2 (γ2−γ1 )t

[
〈a(t = 0)〉 + 2iβ

γ2 − γ1

]
− 2iβ

γ2 − γ1
. (7)

We can see that the characteristic time to reach the steady state
should be 1

γ2−γ1
. The effective TLS number which can interact

with the photon during the characteristic time can be defined
as

Nc = r

γ2 − γ1
. (8)

In the short-time τ2 limit, we consider the parameter regime
of

r(gτ2)2 � κ. (9)

Then, the effective TLS number can be defined as

Nc ≈ r

κ
. (10)

To estimate the temperature, the expectations of {(a†a)2, a†2,
a2, a†a, a, a†} need to be derived. From Eq. (5), we can ob-
tain the complete dynamical equations of {〈(a†a)2〉, 〈a†aa†〉,
〈a†a〉, 〈a†2〉, 〈a2〉, 〈a†a〉, 〈a〉, 〈a†〉}. Then, the expectations
values for the steady state can be obtained [26]:

〈a〉 = 〈a†〉∗ = 2iβ

γ1 − γ2
, (11)

〈a2〉 = 〈
a†2〉∗ = −4β2

(γ1 − γ2)2 , (12)

〈a†a〉 = γ1

γ2 − γ1
+ 4|β|2

(γ2 − γ1)2 , (13)

〈(a†a)2〉 = γ1(γ1 + γ2)

(γ1 − γ2)2
− (12γ1 + 4γ2)|β|2

(γ1 − γ2)3
+ 16|β|4

(γ2 − γ1)4
.

(14)

From the above equations, we can see that direct photon
detection (with the measurement operator a†a) can be used
to estimate the value of the temperature T of the sample to
be tested. According to the error propagation formula, the
uncertainty of T can be derived as

δ2T = 〈(a†a)2〉 − 〈(a†a)〉2

(∂〈a†a〉/∂T )2
. (15)

First, we consider that there is no extra thermal fluctuations
around the cavity; that is, n̄th = 0 (Tc = 0). When the TLS
is initially prepared with no coherence (λ = 0), the standard
quantum limit δ2T ∼ 1/Nc can be obtained. For obtaining the
Heisenberg scaling, the following prerequisites must be met:

4Nc|λξ |2 	
(

pe − 	

	 + 1

)
ξ 2 + 	

	 + 1
. (16)

It means that the initial coherence (λ 
= 0) is necessary. Be-
sides, the TLSs cannot be fully thermalized; that is, ξ 
= 0.

Namely, the thermalization time τ1 is short. The optimal
thermalization time can be derived as

τ1opt ≈ 2(1 − 	)

γ (1 + 	)
. (17)

The corresponding optimal estimation precision with the di-
rect detection can be read as

δ2Topt ≈ e2T 4

(4Ncgτ2ωλ)2csch2 ω
T

. (18)

It shows that the Heisenberg scaling is achieved, δ2T ∼
1/(Nc)2. Initial coherence and partly thermalization can help
to improve the estimation precision of temperature in the
cavity set-up. This is attributed to the fact that the initial
coherence induces entanglement between TLSs by interacting
with the common cavity. Comparing with the full thermal-
ization, partial thermalization can encode the information
of temperature into TLSs without completely destroying the
initial coherence.

Then, we consider that there is an extra thermal bath in the
cavity (ETBC); that is, Tc 
= 0. Let us think about two different
cases: One case is that ETBC is independent with the thermal
bath to be tested; that is, Tc and T are independent parameters.
For Tc → ∞, the optimal thermalization time

τ1opt ≈ (1 − 	)

γ (1 + 	)
. (19)

This means the optimal thermalization time (1−	)
γ (1+	) < τ1opt <

2(1−	)
γ (1+	) for general values of Tc. For the sake of discussion, in
what follows we still use the value of τ1 given by Eq. (17). By
direct photon detection, under the condition in Eq. (16) and
the interaction time given by Eq. (17), the estimation precision
of T is expressed as

δ2Tind ≈ e2T 4(1 + 2n̄th)

(4Ncgτ2ωλ)2csch2 ω
T

+ e4T 4(1 + n̄th)n̄th

64(Ncgτ2λ)4ω2csch2 ω
T

,

(20)

where n̄th = 1
eω/Tc −1 .

In the other case, ETBC also has the information of the
temperature T to be tested in the thermal bath. We assume
that they have the same temperature (Tc = T ). For example,
ETBC and the thermal bath are in thermal equilibrium with
each other. The corresponding estimation precision of T is
expressed as

δ2Tequ ≈ T 4[(1 + 2n̄′
th)(2eNcgτ2λ)2 + (1 + n̄′

th)n̄′
the4]

ω2

[
8csch

ω

T
(Ncgτ2λ)2 − e2	

(	 − 1)2

]2 ,

(21)

where n̄′
th = 1

eω/T −1 . From Eqs. (20) and (21), we find that
δ2Tind is less than δ2Tequ|T →Tc , as shown in Fig. 2. This shows
that direct photon detection does not obtain more information
about the temperature T when ETBC also carries the infor-
mation of temperature T . In contrast, the information from
ETBC destroys the ability of direct photon detection to access
the information of T .
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FIG. 2. Diagram of estimation temperature T with direct photon
detection. In this diagram, “ind” denotes the case where ETBC is
independent of the thermal bath and “equ” denotes the case where
ETBC is thermalized with the thermal bath. In the case of “ind,” the
high temperature of ETBC will reduce the measurement precision of
T . For the same value of ETBC, the uncertainty of T in the case of
“equ” is larger than that in the case of “ind.” Here, the parameters are
given by ω = 1, gτ2 = 0.3, Nc = 10, λ = 0.5, in arbitrary units.

IV. MAXIMAL QUANTUM FISHER INFORMATION

Due to that the effective Hamiltonian in Eq. (5) is a
quadratic form, the final steady state will be a Gaussian
state. Then the quantum Fisher information (QFI) about the
temperature T can be calculated by [33]

F = Tr(GT ∂T C) + (∂T 〈 �R〉T )C−1∂T 〈 �R〉, (22)

where the first moment is expressed as �R = ( a+a†√
2

, a−a†

i
√

2
) and

the entries of the covariance matrix C is expressed as Ci j =
1
2 〈RiRj + RjRi〉 − 〈Ri〉〈Rj〉. For a single-mode Gaussian state,
GT is written as

GT = 4c2 − 1

4c2 + 1
�(∂T J )�, (23)

where c = √
detC is the symplectic eigenvalue of C, J =

1
4c2+1C, and � is the symplectic matrix defined as iσy.

With the above equations, the QFI can be obtained. When
the temperature of ETBC is independent of the temperature of
the thermal bath, for the interaction time given by Eq. (17),
the maximal QFI is

Find = (4Ncgτ2ωλ)2csch2 ω
T

e2T 4(1 + 2n̄th)
, (24)

where n̄th = 1
eω/Tc −1 . When the temperature of ETBC is always

equal to the temperature of the sample (Tc = T ), the maximal
QFI is

Fequ = (4Ncgτ2ωλ)2csch2 ω
T

e2T 4(1 + 2n̄′
th)

+ w2n̄′
th(1 + n̄′

th)

2T 4
, (25)

where n̄′
th = 1

eω/T −1 .

FIG. 3. Diagram of estimation temperature T with optimal de-
tection. In this diagram, “ind” denotes the case of that ETBC is
independent with the thermal bath and “equ” denotes the case where
ETBC is thermalized with the thermal bath. For the same value of
Tc, the uncertainty in T in the case of “equ” is less than that in the
case of “ind.” Here, the parameters are given by ω = 1, gτ2 = 0.3,
Nc = 10, λ = 0.5 in arbitrary units.

According to the quantum Cramér-Rao bound [3], we
can get the uncertainty of temperature T with the optimal
measurement in two conditions:

δ2Tind � 1

Find
= e2T 4(1 + 2n̄th)

(4Ncgτ2ωλ)2csch2 ω
T

, (26)

δ2Tequ � 1

Fequ
= 1

(4Ncgτ2ωλ)2csch2 ω
T

e2T 4(1+2n̄′
th ) + ω2 n̄′

th(1+n̄′
th )

2T 4

. (27)

Comparing Eq. (26) with Eq. (27), we find that δ2Tequ|T =Tc <

δ2Tind|T =Tc for Tc 
= 0, as shown in Fig. 3. This shows that,
when ETBC also has the information of the temperature T to
be tested, the optimal measurement can utilize the information
from ETBC to further improve the measurement precision of
T , contrary with the results from direct photon detection in
the section above. This means that direct photon detection is
not the optimal measurement strategy.

When there is no ETBC (Tc = 0), we can find that the
estimation uncertainty in Eq. (26) is equal to the result in
Eq. (18). It shows that direct photon detection is the optimal
measurement for the case of Tc = 0. When Tc 
= 0, direct
photon detection is not optimal by comparing Eqs. (20), (21),
(26), and (27).

By a rigorous derivation, we achieved that the balanced
homodyne detection [34] with the quadrature operator a−a†

i
√

2
is the optimal measurement in the case where ETBC is inde-
pendent of the thermal bath. With the optimal thermalization
time given by Eq. (17), the estimation precision of T can be
obtained with the homodyne detection

δ2Tind = e2T 4(1 + 2n̄th)

(4Ncgτ2ωλ)2csch2 ω
T

, (28)

δ2Tequ = e2T 4(1 + 2n̄′
th)

(4Ncgτ2ωλ)2csch2 ω
T

. (29)
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FIG. 4. Diagram of estimation temperature T with three ways
of measurements in the case where ETBC is in thermal equilibrium
with the thermal sample. This figure shows that homodyne detection
performs better than direct detection. However, homodyne detection
does not perform as well as the optimal measurement. Here, the
parameters are the same as in the previous figures.

From Eqs. (20), (26), and (28), we can see that, for Tc = 0
(n̄th = 0), homodyne detection and direct detection are both
optimal measurements; for Tc 
= 0 homodyne detection is
the optimal measurement, which performs better than direct
photon detection.

However, if ETBC is in thermal equilibrium with the
thermal sample (see Fig. 4), homodyne detection either is
not the optimal measurement. In this case, we find that the
symmetric logarithmic derivative (SLD) for the temperature
T depends on T itself. Adaptive measurement is needed
to obtain the optimal estimation precision of T . Finding a
realizable and simple optimal measurement is definitely worth
further investigation.

V. CONCLUSION

We have used a cavity-QED setup to measure the temper-
ature of a thermal bath. Our result shows that the Heisenberg
scaling for estimating the nonunitary parameter T can be
achieved. The two-level systems pass through the thermal
bath, then carry the information of the temperature of the ther-
mal bath. Following that, the encoded two-level systems are
injected into a single-mode cavity one by one. By measuring
the steady-state of the cavity, information of the temperature

can be obtained. Preparing the atomic entanglement before
they interact with the cavity field is unnecessary for measur-
ing the temperature in our scheme. The initial coherence of
the two-level systems induce the effective coherent driving
to the cavity field, leading to obtain the Heisenberg scaling.
The need for the two-level systems are not thermalized fully
by the thermal bath. The optimal interaction time between
each two-level system and the thermal bath has been derived.
By calculating the maximal quantum Fisher information, we
find that direct photon detection and homodyne detection are
both optimal measurements when there is no extra thermal
bath in the cavity (Tc = 0). When there is an extra thermal
bath in the cavity independent of the thermal bath to be tested,
homodyne detection is the optimal measurement. Moreover,
direct photon detection obtains less information of the tem-
perature in the case where the extra thermal bath in the cavity
is in thermal equilibrium with the thermal bath. This means
that more ways of encoding information of the temperature
destroy the ability to access information for direct photon
detection. The optimal measurement shows that more ways of
encoding information can improve the estimation precision.

Our scheme is feasible, which should be realized in recent
experiments with a nanohole-array aperture [23], the Rydberg
atom plus microwave cavity system [35], and a supercon-
ducting circuit QED system of a transmission line resonator
coupled with a charge qubit [36,37]. In superconducting
circuit QED system, the coupling between the transmission
line resonator and the charge qubit can be switched on or
off by tuning the magnetic flux [38]. For instance, taking
the following parameters: the resonator frequency ω = 2π ×
20 GHz, the coupling strength g = 2π × 290 kHz, the cavity
decay rate κ = 2π × 75 kHz, the atomic injection rate r =
2π × 2 MHz, the interaction time (τ1, τ2) ∼ (103, 10) ns, the
temperature T = 200 mK, and pe = λ = 1/2, simple calcu-
lations show that the restricted conditions in Eqs. (9) and
(16) can be satisfied. It will promote the development of the
quantum thermometry and measurement methods based on
the QED setup.
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