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We study the hardness of classically simulating boson sampling with superposition and Gaussian input states
at nonzero photon indistinguishability. We find that, similar to regular boson sampling, distinguishability causes
exponential attenuation of the many-photon interference terms in both these boson sampling variants. For
superposition sampling, we find that it is not simulable with out method at zero indistinguishability, which is
evidence for the computational hardness of this problem, and we find that it is simulable at any level of particle
distinguishability, similar to regular boson sampling. If an efficient classical algorithm to approximate a given
sum over permanents is found, this approach also leads to an efficient classical algorithm to simulate Gaussian

boson sampling in the presence of distinguishability.
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The next milestone in experimental photonic quantum
information processing is the demonstration of a quantum
advantage: a well-defined computational task at which a
quantum device outperforms a classical computer [1-4]. A
photonic implementation of this concept is boson sampling
[5], which consists of sending single photons through a linear
optical network followed by photodetection, a task which is
strongly believed to be hard for a classical computer to simu-
late. The best known algorithm to classically simulate a boson
sampler is that of Clifford and Clifford [6], which generates
a sample in m2™ steps, where m is the number of photons.
Given this scaling and the speed of modern supercomputers,
it is believed that a boson sampler will outperform a classical
simulation on a supercomputer around m = 50 photons [7,8].
Experimentally demonstrating boson sampling is the subject
of experimental efforts worldwide [9-17].

A major problem in boson sampling theory is understand-
ing the degree to which quantum photonic interference is
susceptible to imperfections [18-26]. These imperfections can
take the form of any experimental noise which degrades the
quantum nature of the observed interference pattern. The two
imperfections most strongly present in experiments are photon
loss and distinguishability. Distinguishability is the imperfect
overlap of the wave functions of the photons in the other
degrees of freedom besides their position (e.g., polarization,
frequency, time). Loss is when not all photons produced by the
sources are ultimately detected. Other imperfections include
dark counts (detection events not associated with the arrival of
a photon) and fluctuations in the settings of the interferometer.

In a series of recent works [27-32], it was shown that boson
samplers that have any of these imperfections at a sufficiently
strong level can be efficiently classically simulated, i.e., in
polynomial time, thereby negating any potential quantum
advantage. The strategy behind these simulations is to split
the interference pattern into a series of j-photon interference
terms, where j runs from 0 to the number of photons m. Im-
perfections degrade the higher order interference terms more
strongly than the lower orders, which means that for suffi-
ciently strong imperfections, the series over j can be truncated
at some value k. The resulting algorithm is polynomial in m.
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The strength of the imperfections determines the maximum
level of interference k, thereby functioning as a criterion for
simulability of k-photon interference. The physical picture
arising from these results is that imperfect boson sampling can
be thought of as interference between all possible groups of k
photons and classical (i.e., single-particle) transmission of the
remaining m — k photons.

However, these simulability criteria do not automatically
extend to boson sampling variants. Variants on boson sam-
pling exist as workarounds for the fact that high-efficiency,
deterministic single-photon sources are not available exper-
imentally. The two main kinds of photon sources currently
available are those based on single-photon emission from
quantum dots, where a 7 Rabi flip is used to excite a two-level
system [33-35], which then spontaneously emits a photon,
and those based on spontaneous parametric down-conversion
(PDC) in nonlinear optical media such as B-barium borate and
potassium titanyl phosphate [36].

While quantum dot sources have seen rapid progress in
recent years [37], PDC sources still hold the record for pho-
ton collection efficiency (which is the relevant quantity for
complexity analysis) and indistinguishability. However, their
main weakness is that they do not emit single photons but
two-mode squeezed states, which are nonclassical states con-
sisting of a thermal distribution of pairs of photons, including
zero pairs. The presence of a zero-photon component in the
state means that these sources cannot be made to function
deterministically. To circumvent the fact that these sources are
nondeterministic, the usual strategy is heralding: By detecting
one photon, the existence of the other can be inferred, and it
can then be used for experiments [38]. Such heralded non-
deterministic sources can be used to sample over a classical
probability distribution of input states by recording which
sources produced a photon in any given run of the experiment.
This problem, known as scattershot boson sampling, directly
derives its hardness from the original boson sampling problem
[39.,40].

A further step in this line of thought is to dispense with
the heralds altogether, and feed both photons into the linear
network [41]. This protocol is known as Gaussian boson
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sampling (GBS), after the fact that a squeezed state is a
Gaussian state. For this situation, the reduction to a known
hardness argument is via the case of very weak squeezing (so
that multiphoton contributions can be neglected), and where
the linear optical transformation effected by the interferometer
is separable into one acting on the signal modes and one acting
on the herald modes [42], or equivalently where the action
on the herald modes is the identity. In that case, the problem
reduces to scattershot boson sampling [39,40].

It is largely unknown how imperfections affect Gaussian
boson sampling in a complexity-theoretical sense [43]. How-
ever, it is evident that Gaussian boson sampling suffers from
many of the same types of experimental imperfections as
regular boson sampling, including photon loss in the sources,
interferometers, and detectors, as well as partial distinguisha-
bility induced by spectral correlations in the parametric down-
conversion sources which are typically used.

In this work, we will investigate the simulability of Gaus-
sian boson sampling (GBS) and an auxilliary model, which we
call superposition boson sampling (SBS), which is inspired
by recent work on emission of coherent superposition states
from quantum dots [44]. We will consider these two systems
both with and without noise. We will show that without
noise, both systems are not simulable by the method outlined
above. For superposition sampling, this is evidence (although
circumstantial) of computational hardness for this system.
When we introduce noise, we see that the same physical
picture arises for both systems as for regular boson sampling:
The interference pattern falls apart into smaller interference
processes of size k < m, where k depends only on the strength
of the imperfections. For SBS, we are able to give an explicit
algorithm to efficiently classically simulate imperfect boson
sampling. For GBS, we reduce the problem of finding such
an algorithm to an open problem in the theory of matrix
permanents.

We restrict ourselves to studying the effect of one particu-
lar imperfection, namely photon distinguishability. We note,
however, that for regular (i.e., Fock-state) boson sampling,
all imperfections considered in the literature so far can be
analyzed using the strategy which we will use. This restriction
is therefore not as strong as it might at first appear. We hope
to study the effect of other imperfections on Gaussian boson
sampling in later work.

The paper is organized into six sections as follows: In
Sec. I, we will begin by recalling a method to compute the
output of a boson sampler fed with arbitrary input states. Then
in Sec. II, we will rederive the simulability criteria for regular
boson sampling. Our results begin in Sec. III, where we will
show how to combine these two into a criterion for simulabil-
ity of boson sampling with arbitrary input states. Next, we will
apply these results to the special case of superposition boson
sampling in Sec. I'V. Finally, we will show in Sec. V that under
weak pumping conditions, Gaussian boson sampling reduces
to superposition sampling. The paper ends with concluding
remarks in Sec. VI.

I. BOSON SAMPLING WITH ARBITRARY INPUT STATES

The theory for boson sampling with arbitrary input states
was derived in Ref. [45]. Here, we provide a derivation of the

expressions for a detection probability at the output of a linear
optical network with arbitrary states at the input and finite
distinguishability for reasons of exposition and to establish
the framework used in the present work.

Consider an arbitrary multimode photonic quantum state
|v) impinging on a linear optical network U with detectors
in the Fock basis at the output of the network. We wish to
compute the probability of an arbitrary pattern of detection
events |¢,¢) and to study the hardness of computing that
outcome. The probability is given by

P(pa) = [(W|Uppa) . (D
We can then insert a resolution of the identity in the Fock
basis: Ity = Zp 1€,) (&1, where |§) = ]\, |m;) is a product of
Fock states (and the index p runs over all such possible Fock
state products), and m; are the mode occupation numbers:
2

P(@pa) = | D (W 1E) (U |pa) 2)

14

Since the interferometer U is photon number preserv-
ing, all terms in the sum over & which do not contain the
same number of photon numbers as |¢,;) drop out, i.e.,
(EplU |¢pa) = O unless |(6,IN1,)1* = [(@palN|dpa) |, where
N is the multimode photon number operator. Hence we relabel
the sum over p to contain only those terms which meet this
condition. Expanding, we have

P(@pa) = Y D (WIENVIE) (EpU16pa) (€4 IU pa)

P g

= Z Z cpcyPerm(M,,)Perm(M,)". 3)
Poa

Here we have used the fact that since & is a product
of Fock states, we can apply the identity (£,|U|¢pps) =
Perm(M;,¢)// 1(§p)it(Ppa), where Perm is the permanent
function Perm(M) =Y [[;M;.,. and M is the submatrix
connecting &, and ¢, [46]. Since we are concerned only
with a single output ¢,;, we will suppress this dependence,
as well as the subscript & and denote the matrix as M,. The
coefficients are given by ¢, = (V[&,)/y/1E)L(bpa). 1(E)
is the multiplicity of a particular Fock state configuration:
w(&) = [[;(m;!). Furthermore, in what follows, we will as-
sume u(¢,q) =1, a condition which can be enforced with
high probability by making the linear interferometer large
enough [5].

Note that Eq. (3) is a natural way to consider interference
from a quantum state with an indeterminate photon number
in each mode: This equation simply tallies all the ways in
which the set of sources could have produced a given number
of photons, interfering with all the other ways those sources
could produce that number of photons. These interference
terms have been observed in experiments [47].

Anticipating our complexity analysis, we reorder terms in
Eq. (3):

P(¢pa) =Y Y cpch Y Perm(M,o M) ). (4)
P q o

where o (q) denotes a permutation of the matrix elements of
M,, and o denotes the elementwise product.
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Next, we look for cases where the combination of &,, &,,
and o causes a product between the ith row of M and its
complex conjugate to appear in the permanent. Such a row
of modulus-squared terms implies classical interference of
the corresponding photon. We will later see that these terms
also correspond to the fixed points j of the partial permuta-
tion &£, — o(&,). We can split off these positive rows using
Laplace expansion along those rows:

P(ppa) = Z Z cpc; Z Z Perm(M), o My(y))
P q J ool
= Z Z cpc; Z Z Z Perm(M,,, o M;,,(q),p)
14 q J ol 14

x Perm(|M,, 5 |*), (3)

where o), stands for the part of o not corresponding to fixed
points, p is a j partition of the number of detected photons m,
the sum runs over all j partitions, and the overbar denotes the
complement of p on the set &),.

We now determine the effect of distinguishability on this
optical system. From Eq. (4), it is clear that for fixed p
and g, we are considering all the ways in which photons
from configurations &, and &, can give rise to a given detec-
tion event. Therefore, when considering distinguishability, we
must consider the overlap of the internal degrees of freedom
at the output side of a double-sided Feynman diagram [25].
The prefactor to adjust for distinguishability is given by
[T (¥p: 1 ¥oiq))» Where [¥7,,) denotes the internal state (degrees
of freedom unaffected by U) for the ith photon in ¢, and o;(g)
denotes the ith element of the permutation o acting on gq.
Hence, we obtain

o =L e T ([[ <xzzpi|¢a,<q>>)

x Y Perm(M,, , 0 Mq,(g).,)Perm([M,, ;%) (6)
P

To simplify the analysis without losing any of the essential
features, we will assume throughout this paper that all dis-
tinguishabile inner products between the pth and gth photons
are equal to a constant value x for p # ¢. In that case, the
distinguishability factor [;(1/,,|Ys,()) reduces to x’. The case
of unequal indistinguishability is treated elsewhere [28].

II. NOISE THEORY FOR A FOCK STATE INPUT

To introduce our techniques for complexity analysis, we
review the derivation of the simulability criterion for the case
where the input state |W) is a product of Fock states. This
section is a summary of Refs. [28,29], and the supplemental
material included therein.

For the case of a product-of-Fock-states input, the double
sum over & in Eq. (6) drops out since there is only a single
& = |V¥), and we are left with

P(¢pa) =) 'Y > Perm(M, , 0 M} Perm(|M, 5|*).
Jj=0 ol P
(N

We wish to construct an algorithm to approximate P by
some efficiently computable quasiprobability P’. The strategy
which we will follow is to truncate the outer sum of Eq. (7)
at some value k < m. The intuition for this is that for all
x < 1, the terms in Eq. (7) are exponentially suppressed by
the effect of partial distinguishability. We will show that,
averaged over M, the sum over permanents in Eq. (7) is of
equal magnitude for all j. This means that P(¢,;) can be
interpreted as a polynomial in x with coefficients of order
1, where the higher power terms can be neglected when the
polynomial is evaluated at sufficiently small values of x.

The natural way to evaluate the quality of such an
approximation is to compute the variational distance d =
%Z¢ |P(¢p) — P'(¢p)|, where the sum runs over all possible
output configurations ¢ of a boson sampler. The first thing to
note is that d is a function of the matrix U associated with a
given boson sampler, which is highly inconvenient. Therefore,
we look instead at the average Ey(d), where the average is
taken over the Haar measure of unitary matrices. Such an
average can be related to the value of d of any arbitrary
matrix U by a Markov inequality: The probability that a given
matrix U has a value d(U) > cEy(d) (where c is a positive
constant) is at most 1/c. If we are willing to accept some small
probability é of failure in our algorithm, it therefore suffices
to compute the average of d over all unitaries.

In order to compute Ey(d), we make the assumption that
the dimension N of our matrix U is much larger than the
number of photons m. In this limit, the correlations between
elements of U due to the unitary constraint can be neglected;
the elements approach independent complex Gaussians with
mean =0 and standard deviation o = 1/+/2N in both
real and imaginary parts. This limit is the situation which
which the hardness of boson sampling is believed to hold.
Furthermore, in this situation, all output configurations are
equivalent, the average probability of each individual outcome
of the sampler is given by m!/N™, and the probability of
collision events (with two or more bosons emerging from
the same output port) can be neglected. For these reasons, it
suffices to compute the error E(AP) = E(|P(¢) — P'(¢)|) of
a single outcome, and show that it is of the form E(AP) =
Cm!/N™, with C some constant [29]. In that case, the average
variational distance is given by Ey (d) = C.

To compute the error AP on a approximating a sin-
gle output probability, we define ¢; =), R,, with R, =
Re[zp Perm(M, , oM;Lp’p)Perrn(|M1,;,|2)], where Re de-
notes the real part. Hence, we can rewrite Eq. (7) as

P(¢pa) = chxj = ij ZRg. (8)
J J ol

The first thing to note is that in our definition of R, it
suffices to consider only the real parts of the terms in Eq. (7).
This is due to the fact that R, = R;_, , meaning that imaginary
contributions to Eq. (8) cancel pairwise. Therefore, we may
concern ourselves only with the real parts of the terms.

Next, we compute the variance of c;:

var(c;) = Zvar(R(,j) + Z cov(R,i, R.j). 9)

ol ol,ti
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Since E(R,) =0, cov(R,,R;) = E(RsR;). This is only
nonzero if the parts of o and t which carry phase are each
other’s inverse. The part of o and t which carries phase is the
entire permutation apart from the fixed points. We will denote
the nonfixed part of a (partial) permutation o as o), so that
the requirement can be stated as o, = z,"'. The reason for this
is that when averaging over the Haar measure, each matrix
element has an independent, uniformly distributed phase,
which means that that matrix element averages out to zero.
This is also true for products of matrix elements, unless each
phase is canceled pairwise by its conjugate phase, as happens
when o), = 7,7 I [28]. Note that while the fixed points may in
principle be different, in the specific scenario which we are
considering now, where there is only one &, (i.e., product of
Fock states input), the condition o, = T, I enforces 0 = 771,
Importantly, this will not be true in the general case which we
will treat later on.

Continuing our computation of var(c;), it turns out that
if o, = rp’l, then 1/e < cov(R,, R;)/+/var(R,)var(R;) < 1.
Therefore, the problem of estimating var(c;) consists essen-
tially of estimating var(R, ), and of counting the number of
matches between all possible permutations o and t [28].
var(R,) is a function of j, which by definition is the size of
op. For u(§) =1, it is given by

var(R,) = e(’;’) (m — j)12j1 /2N, (10)
Since for the case of asingle &, 0, = rp’l implies 0 = 1,
in this case we have

var(c;) < 2var(R,))R(m, m — j). (11D

where R(m, m — j) is the rencontres number, which counts
the number of permutations of size m with m — j fixed

points. In the limit of large m, R(m,m — j)= (Z?)j!/e;

hence, var(c;) < m!?/N>" . Applying the inequality E(|x|) <
J/var(x), which holds for any variable x with E(x) = 0, we
upper bound the deviations of c¢; from zero as E(|c;|) <
m!/N™. Substituting this back into the truncated version of
Eq. (7) and summing the error terms, we find that for a
single outcome, the expected error Ey(AP) = Ey(|P — P'|)
is given by AP = m!/N™/x2*+D /(1 — x2), which is of the
required form. This implies that for a disinguishability level
x, a boson sampler is classically simulable on average with
error Ey(d) at an approximation level k given by Ey(d) =
x2&+D /(1 — x2). Crucially, in the limit of large m, the level
of truncation £ does not depend on the number of photons m
(apart from the trivial point that kK must be smaller than m), but
only on the level of distinguishability x. The case of finite k
and m is dealt with in Ref. [28], but does not alter the picture
substantially.

The next step is to observe that by truncating the sum over
j in Eq. (7) at a fixed k, we have produced an approximation
which can be computed efficiently. Approximating perma-
nents of matrices of positive numbers can be done efficiently
[48], whereas the best known algorithm for computing per-
manents of arbitrary matrices scales as n2"” with the matrix
size n [49,50]. By truncating Eq. (7) at some level k, we have
therefore achieved polynomial scaling of our approximate
distribtion P" with the number of photons m [28].

Having found a distribution of which individual elements
can be computed efficiently, and which is close in variational
distance to the output distribution of an imperfect boson sam-
pler, the next task is to convert this into a sampling algorithm.
We do this by running a Markov chain Monte Carlo sampler
on our approximate distribution [7].

II1. NOISE THEORY FOR ARBITRARY INPUT STATE

In Sec. I, we recalled the theory for computing the prob-
ability of an outcome of a boson sampler fed with arbitrary
quantum states. We observed that for a fixed detection out-
come, this results in a double sum over all possible ways in
which that quantum state could have given rise to the observed
number of photons.

In Sec. II, we observed that the way to compute the effect of
noise on a boson sampler is to count all pairs of permutations
o and 7 of the photons which match a given pattern, namely
op =71, I

It will not come as a surprise, then, that the way to compute
the effect of noise on a boson sampler fed with arbitrary input
states is to compute the number of ways in which a double
sum over input states can give rise to permutations satisfying
this same rule.

More formally, if we consider applying the scheme de-

scribed in Sec. II to Eq. (6), we have
var(c;) = Z cpc:;var(R(gp, o(&)))

P90

+oe Y cpeleclcov(REy, o ()R T (X)),

p.q,1,8,0,T

12)

where R(§,,0(§,)) = Re(Perm(M), o M;(q))), and where
&p, &4, xr» and x, are all elements of the set of &, and o
and 7t are permutations. The sextuple sum is over all valid
assignments of these variables where at least one variable
from {§,, &,, o} differs from its counterpart. Following the
phase cancellation argument presented above, the condition
for nonzero covariance can now be given as an elementwise
set of conditions on the six variables, which we call the
pairing rules:

Vie{l..m}: ((§pi = 0(E)) A (Xrp; = T(Xs)p)
v((SP,i = T(X:)pi) A (Xr.p, = O'(Eq)i))’ (13)

where p is some freely chosen permutation of the indices of x,
and o (xy), and &, ; denotes the ith element of the permutation
&, (and similarly for the other variables). Equation (13) is
just an elementwise restatement of the requirement that the
unfixed points of the permutation must match up, while the
fixed points are free. In other words, for each pair of elements
of &, and o (&,) [i.e., for each pair of £, ; and o (§,);] we must
either have that §,; = o (&,);, (fixed point) or if this is not the
case, we must have that we can uniquely match up this pair to
a counterpart, i.e., £,; = t(x,), and x,,,, = o(&,). Note that
the requirement that this pairing is unique (no two elements
of & can be matched to the same x), combined with the fact
that the pairing rules are symmetric in & and x automatically
enforces that o, and 7, are the same size.
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Furthermore, it should be noted that unlike the case of
a single product-of-Fock-states input, we are now dealing
with partial permutations instead of complete permutations.
A partial permutation is a bijection between two subsets of a
given set, whereas a permutation is a bijection on the entire
set. The reason we obtain partial permutations is because &,
and &, (and equivalently x, and x,) do not necessarily contain
the same elements. This corresponds to the fact that we are
considering interference between histories where different
sources produced photons.

To illustrate the pairing rules, and to illustrate how the
introduction of arbitrary input states changes things compared
to Fock state inputs, an example is in order. For our example,
will drill down to a single term in the sextuple sum of
Eq. (12). In this example, we consider five sources labeled
1 through 5 collectively emitting three photons. The set of
allowed £ is given by {£} = {(1,2,3), (1,2,4), (1,2,5),
(1,3,5), (1,4,5), (2,3,4), ...} where the numbers indicate
the presence of a photon in a given mode. We now consider
an example of two choices of R have covariance with each
other. For illustration, we pick a term where &, # §,, i.e.,
a cross term in Eq. (5). An example of a cross term is
&, =01,2,4), § =(2,3,4), 0 =(231), meaning o(§,) =
(4,2, 3) and giving rise to the partial permutation (given in
two-line notation for clarity) (£,, o (&,)) = (i ; g) In this
case, the partial permutation neglecting fixed points is o, =

1 4
4 3)

When considering which other partial permutations this
permutation will have covariance with, we must find one

with matching 7,,. For example, taking x, = (3,4,5), x; =
(1,4,5), and t = (213) gives (z T 2) and hence 7, =

3 4 . . .
(; 1), which satisfies the covariance rule.

This example illustrates two important points regarding
the process of computing the covariance. First, in the case
of a coherent superposition of input states, there is more
freedom in chosing pairs of R which have covariance, since
the two permutations may have different fixed points and still
contribute covariance. Second, the pairing rules in Eq. (13) do
not split into pairwise requirements on either &, , and x,, or
on o and 7. Indeed, in the example we have given above, all
of &,, &, x, and x, are distinct, and o # 1 yet we can
construct a situation where o, = 7, ! holds. The reason the
covariance criterion [Eq. (13)] does not split into a criterion on
&p.q and x,.; or on o and 7 is that for each entry, the criterion
can either be satisfied by a relation between &, and o (§,) or
by a relation between &, and t(x,) (and the corresponding
variables).

In contrast, since the size of o, and 7, are equal, the
pairing rules do split into a criterion on the permuted and
unpermuted parts of the permutation. We will use this fact
later on in computing the number of possible covariance terms
for specific input states.

A few facts from the Fock state case do carry over. In
particular, the fact that o, and 7, have the same size means
that when we group terms by number of fixed points, we au-
tomatically group the R by their potential covariance partners.
This implies that c¢; have zero covariance with each other, and

hence that the strategy of computing var(c;) by considering
each j separately is still sound, as it was for Fock states.

Finally, we note that unlike the case of a Fock state input,
for arbitrary input states, it does not suffice to show that the
coefficients c; are bounded in variance (and hence that the
sum over j can be truncated). The reason for this is that for
arbitrary inputs, the truncation does not immediately produce
an efficient approximation algorithm. This is because the sum
over &, and &,, which arises in the arbitrary state case, can
contain exponentially many terms. It is not possible to sample
over &, and &,, since the sum is not convex (not all terms are
positive). This means that in order to approximate an outcome,
we must evaluate not just the sum over j, but also the sum over
p and g; we cannot sample over those terms. However, we will
see that it is sometimes possible to gather terms in such a way
that the overall expression can be efficiently sampled from.

In summary, when encountering a new input state for a
boson sampling experiment, our tasks are twofold:

(1) Enumerate the set of &, and corresponding c¢,. Com-
pute the covariance between the set of R and hence the
truncation point k by applying the pairing rules and Eqs. (10)
and (12).

(2) Rewrite Eq. (6) to a form that can be computed effi-
ciently at that truncation, given the particular quantum state in
question.

IV. SUPERPOSITION BOSON SAMPLING

Having set up the necessary machinery, we are now ready
to investigate the simulability properties of some optical sys-
tems of interest. We begin with a model which we name super-
position sampling. In this model, there are n photon sources,
each of which emits the quantum state |) = cos(«)|0) +
sin(a)|1). These sources form a product state at the input of
the interferometer: |Wy,s) = [)®?|0)®¥~", Since each source
can emit at most one photon, the set of £ is given by the
(:1) ways of selecting m photons from n sources. Since all
configurations are equally likely and all multiplicities are
equal to 1, we can normalize the probabilities assuming that
exactly m photons are detected, in which case they are given

by cp, =4/ (:1)71 for all p.

This problem is motivated by two facts. First, it is of
interest in its own right, due to the fact that it can be im-
plemented using quantum dot sources [44]. Second, it will
provide a helpful stepping stone to the analysis of Gaussian
boson sampling further on.

To analyze the simulability of this model, we compute
var(c;) by counting the number of ways in which the pairing
rules are satisfied for a given j, as a function of m, n, and j.
Since, as we observed in Sec. III, the paring rules split into a
requirement corresponding to o, and one on the fixed points,
we can count the number of ways to satisfy the pairing rules
by first assigning the size of o), then the number of ways to
create 0, and then the number of fixed points.

As an illustration of this combinatorics problem and to
show how the paring rules work in practice, we will fill in
a table of all variables to which we must assign a value
as we go along with our computation of the number of
possible assignments. An example of a valid assignment of
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all variables is given by

£, 1 2 3 45 6

o (&) _ 1 4 2 3 6 5 a4
Xr 2 3 45 6 7|

T(Xs) 34 2 6 5 7

which meets the condition that o, = T, L

We begin by noting that since the set of £ are symmetric
under permutation of indices, their choice is entirely equiva-
lent. In our table, we can choose &, = & = {1...m} out of all

(Zl) possibilities without loss of generality:
1 2 3 4 5 m
9 v 9 0 06 0 0
9 v v 9 0 0 o)
g v v 0 09 0 0

where the empty set symbol J represents an as-yet-unassigned
value.

Next, we choose the m — j fixed points of o, i.e., the
number of times we will satisfy the first clause of Eq. (13). For
m — j fixed points, this can be done in ('7) ways (choosing the
positions that will not be fixed points), giving a total of (") (’7)
ways of reaching this step, and an example table of

1 2 3 4 5 .. n
1 4 3 0 0 0 0
9 9 0 0 0 0 0
w0 9 9 v 9 0

where we have picked some arbitrary assignment of fixed
points for illustration. Next, we must assign the unpermuted
part of 0. We have already assigned m — j elements, hence
we have ("7';.”” ) ways of choosing the remaining elements,
and we have j! ways of arranging these elements. Note
that we overcount here: We have neglected to exclude those
permutations which introduce additional fixed points. How-
ever, in this we overcount by at most a constant factor: The
probability that a full permutation includes a fixed point is
1/e, and it approaches zero for highly partial permutations,
i.e., when m < n. Therefore, we have (") (’7) ("_'}“L-’) j! ways
of reaching the following table (again with arbitrary numbers
for illustration):

1 2 3 4 5 n
1 4 3 7 6 2
w 4 » 71 6 2
w 2 0 4 5 n

Observe that by fixing o,,, we have fixed the corresponding
elements of 7, as well. What remains to be done is to pick the
remaining fixed points in 7. This can be done independently
of the fixed points in o since the fixed points need not match
between o and t (as noted above), but not independently
from 7, since we cannot reuse elements which we have used
there. Note that any choice of fixed points produces a valid x,
since any choice of m distinct elements from {1...n} is a valid
Xr,» and by construction our method always arrives at such
a choice. In fixing o,, we have used at least j elements, we
have to choose the remaining n — j fixed points from m — j

possible choices, and hence we have () (’:’) ("7’;.”") (;’l:j]) Jj!

ways of filling out the entire table. Therefore, for the case
of superposition sampling, the covariance term in Eq. (12) is
upper bounded by

> covR(Ep, o(80)), R(xrr (X))

p.q.1,s,0,T

n\(m\(n—m+j\(n=i\;
< (m)(])( j ><m_j>1!var(R), (15)

Note that since cov(R, R") <var(R), we can simply ignore
the variance term from Eq. (12) when obtaining an upper
bound, if we allow the covariance term to run over all assign-
ments of p, g, 7, s,0,and .

It is instructive to consider the two extremal cases. If j =
0 (i.e., the classical interference term), then ¢ must consist
entirely of fixed points. This can only be achieved by setting
£, =&, and o =1, leaving only the () choices of &, free.
Similarly, we are free to choose y,, but then the pairing rules
enforce that t = I and x, = x,. For this reason, there are (;’1)2
covariance terms for j = 0. In that case, var(c;) < m!2/N?",

. 2 . -2
since the factor ()" drops out against the factor ¢} = (),

. . " .S 4 n
which arises from the normalization.

For the other extremal case, we have j = m. In this case,
we again have (;’1) ways of choosing &, but now all choices of
&, and o are good (since we are upper bounding, we neglect
those cases where our choice of o introduces further fixed

points). Therefore, we can pick &,, &,, and o without any

constraints, and we have (;‘1)2m! ways of doing so. However,
we now have no freedom left at all in choosing 7, x,, and x;:
We must chose 7 = o1, &p = X5 and &; = x,. Therefore,
there are m! more permutations than in the case j = 0, but
this drops out against the fact that these permutations are each
a factor m! smaller in value as well, as given by Eq. (10).
Hence, for j = m we also have var(c;) = m!>/N*".

To discuss the simulability of superposition sampling with
imperfections, we first observe that the ratio var(c;)/var(co)
is unbounded. If we take the limit m < n and j < m, then the

variance reduces to var(c;) = (;’1:]]) ("";‘ﬂ )(%) T2 N

(’;?)m!z /N*", which becomes arbitrarily large around j = m/2
when m is increased and where the last equality holds at large
n. This leaves open the possibility that superposition sampling
is tolerant to imperfections.

However, numerical simulations suggest this is not the
case: When converting from var(c;) to E(|c;|), the inequality
Vvar(c;) > E(|c;|) becomes less tight as n grows, resulting
in coefficients var(c;j) ~var(co) for all j. We have observed
this effect in simulations from m =2 to m = 6, and from
n = 2 to n = 25 (but not all combinations of both), averaging
over 1000 Haar-random matrices in each case. In those same
simulations, we also computed var(c;) for each n, m, and j,
and we observed that (accounting for some finite-size effects
which give small corrections), our computations of var(c;)
as described above match our simulations. For large n, we
find var(c;) > var(cp), as suggested by Eq. (15). This shows
that the limitations of our method are really in the conversion
from variance to absolute moment. We leave this aspect of the
problem for future study.
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Next, we must rewrite Eq. (6) to a form which can be
efficiently sampled from. In the form in which it is given,
there are exponentially many terms in the sum over &, and
&,, which means that a truncation at j will not lead to efficient
sampling. This can be remedied by the following observation:
For a given o,,, we know that we will encounter every possible
assignment of the (m’i ) remaining possible fixed points, and
with equal weight (since all ¢, are equal). However, each
assignment occurs in a different pair of &, and &,. Grouping
terms, we have

m
P = Z Z Z Perm(M;, ,, o M;p,p)
Jj=0 a;,/ 4

x -+ Perm(Mgy (o), p))/(n — m — j)!, (16)

where I;, denotes the elements of o, in sorted order (i.e.,
the partial identity permutation of the elements of o), where

p is a j partition of m, and where o denotes all possible
partial permutations of size j without fixed points. The matrix
Mgy (0p, p) is an n—2j by n—2j matrix constructed by
the following method: first, construct an m by n matrix of
all norms squared, i.e., My, ;; = |Ml~‘,~|2, where M is defined
according to Sec. I. Then, delete the j rows corresponding
to p, and the 2j columns corresponding to o jp . A matrix of
size m — j by n — 2 j remains. Next, pad out this matrix with
n—m — j rows of ones to make a square matrix. Laplace
expansion along these rows shows that this produces precisely
every way of picking fixed points that is complementary with
a given choice of crjf’ and p, and the factor 1/(n —m — j)!
compensates for the spurious permanents of ones introduced
by this procedure.

Sampling from Eq. (16) can be done efficiently: Since there
are (2”]) ways of choosing o, when truncating at a fixed k = j,

this goes approximately as n’*. Furthermore, the permanent
of My, is a permanent of a positive matrix of size n — j,
so it can be evaluated at a cost polynomial in n. Since the
typical expected number of photons is proportional to n via
m = sin’(a)n, this means that the scheme is polynomial in .

Building on our numerical observations regarding the be-
havior of E(|c;|), we can compute the error level of truncation
of the outer sum of Eq. (16) at a given k. This computation can
be reduced to a known case if we note that we did not move
any terms between different j when going from Eq. (6) to
Eq. (16). Introducing a distinguishability factor x/ and truncat-
ing and summing the series, we find that superposition boson
sampling is as loss tolerant as regular boson sampling, with
an expected error of E(d) = /x2*+D /(1 — x2), as reported
previously for regular boson sampling.

We observe an interesting parallel between superposition
boson sampling and Fock state boson sampling with loss:
In lossy boson sampling, the input density matrix is of the
form p = (]0)(0] 4 [1)(1)®"(]0)(0|®¥~"). In that case, there
is a similar sum over (:r'l) sources as in superposition boson
sampling, representing the (r’:l) ways in which the n sources
could have given rise to the m observed photons. However,
in this case it is a single sum, since the summation sum
is incoherent (i.e., there are no interference terms). When
comparing this case to superposition boson sampling, this

amounts to considering only terms &, = §&,. Interestingly
enough, lossy Fock state boson sampling is known to be
classically simulable because the c¢; decrease exponentially
with j [29]. Therefore, the following physical picture arises:
If we think of superposition boson sampling as a combination
of loss terms (that is, terms which would show up in lossy
Fock state boson sampling, where &, = &) and cross terms
(where &, # £,), then the loss terms are skewed to low photon
number interference, while the cross terms are skewed to high
photon number interference, thereby precisely canceling out
the deleterious effects of the loss terms.

We conclude this section with a few remarks on the viabil-
ity of superposition boson sampling as a quantum advantage
demonstration. The observation that the coefficients of perfect
superposition boson sampling do not decay to zero shows that
it is not simulable by our method in the ideal case and that
the state |Wg,s) might therefore be a valid state to use for
a demonstration of a quantum advantage. However, the fact
that this state is no more loss tolerant than a regular Fock
state means that there is no obvious reason to use this state
to achieve a quantum advantage. Rather, the interest lies in
quantum simulation: It is an open problem of which physical
systems can be simulated with photonics, and any new imput
state which can be shown to have computationally interesting
properties is a potential addition to our simulation arsenal.
The potential arrival of another class of states to sample from
is valuable, since this could broaden the range of problems
which can be simulated in photonics. The question of whether
there are natural problems which can be simulated using
superposition states is of high interest.

We stress that these results do not constitute a hardness
proof; however, the fact that this state passes the most strin-
gent classical simulation criteria known is some cause for
optimism. It is hoped that these results will spur interest in
a hardness proof for superposition sampling.

V. GAUSSIAN BOSON SAMPLING

Finally, we turn our attention to Gaussian boson sampling
(GBS). In GBS, the input quantum state is no longer factoriz-
able across modes, but is instead factorizable over pairs of op-
tical modes: |1/) = cosh(r)~! Z?io[—ei¢ tanh(r)}/|j, j), and
[W) = [)®"|0Y®N~", where r is a parameter that measures
the strength of the optical squeezing, which we shall assume
to be equal for all sources. Again, we have two tasks: first, to
construct the set of &, and ¢, and apply the pairing rules and
Egs. (10) and (12) to determine the simulability criterion, and
second to rewrite Eq. (6) to enable efficient sampling.

We will do these tasks in order. The strategy will be to
build on the results from SBS. We will show that in the
limit of weak squeezing, GBS reduces to SBS with a single
additional constraint. This will enable us to reuse many of the
results from SBS. We will also only consider the limit of weak
squeezing (so that we can neglect multiphoton components).
This is justified since this is the limit in which the hardness of
GBS has been most rigorously demonstrated.

Without loss of generality, we exclusively consider two-
mode squeezed vacuum states here. There also exist single-
mode squeezed vacuum states, in which photon pairs are emit-
ted into a single mode. In boson sampling, the two cases are
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equivalent, as a layer of 50:50 beam splitters converts pairs of
single-mode squeezed states into two-mode squeezed states,
and vice versa. If we think of U as made up of a layer of 50:50
beam splitters and a remaining matrix U’, by the definition of
the Haar measure, the probability density of drawing U is as
large as drawing U’. Hence, every boson sampling experiment
with single-mode squeezers can be thought of as equivalent to
an equiprobable boson sampling experiment with two-mode
squeezers. This shows that the two are equivalent.

We begin by determining the set of £&. We again consider
the case of n modes containing photons and m detected
photons. Compared to SBS, there is an additional constraint
on &, which is due to the bipartite nature of the state: When
choosing a photon from a particular mode, we must also
chose a photon from the conjugate mode. We shall refer to
such a pair of photons as a biphoton. Second, the multipair
terms in |y) mean we also have an additional options in
picking &, because we may now pick more than one photon
pair from a given pair of modes. Therefore, the set of &,
contains ("/ 2:;%2—1) elements, reflecting the fact that we are
picking m/2 biphotons with replacement. To determine the
¢,, we note that due to the exponential prefactors in [/),
all &, occur with the same probability amplitude, namely
tanh(r)"/?; the phases may be absorbed into the action of
the interferometer. However, their multiplicities are no longer
equal: ¢, = tanh(r)’"/z/,/,u(él,).

To simplify our calculations, we will focus on the case of
weak squeezing. We stress that this is also the limit in which
the strongest arguments for hardness of GBS (via reduction
to scattershot boson sampling) hold. If (m/2)*> <« n/2, then
the fraction of &, terms where we pick two biphotons from the
same source can be made arbitrarily small. In that case, we can
ignore the arbitrarily small fraction with nonunit multiplicity
and renormalize the ¢, to postselect on a particular photon

number outcome (as we did for SBS), giving ¢, = (:://22)

Hence, in the limit of low squeezing, there are (:1//22) choices
for &, all equiprobable.

Note that the above shows that in the limit of sufficiently
weak squeezing, GBS strongly resembles SBS. The only
difference is the additional constraint of picking biphotons.
This fact will enable us to use the results from SBS with minor
modifications.

We again seek to compute var(c;) by looking for pairs of
terms with matching permutations. For j = 0 and j = m, our
results from SBS carry over in a straightforward fashion. For
Jj =0, we again have complete freedom in chosing &, and .,
but the remaining variables are fixed by the pairing rules (¢ =
w2
of creating matching R, and var(c;) = m!*/N*", as before.
Similarly for j =m, all §,, &,, and o are allowed, but their
combination completely fixes 7, x,, and ;. Hence, we have
var(c,,) < m!>/N>" as before.

For the case of arbitrary j, the situation is a little more
complex. The biphoton nature of the light field introduces
additional constraints. In particular, if we have biphotons
which are not wholly included in either the fixed points or
in o0p, then these reduce the number of possible covariance
pairings, since the presence of exactly one photon of a pair in

t=1, £ =&, x; = x,). Therefore, we have ( )2 ways

o, implies the presence of its partner photon in the fixed points
(since we must respect the biphoton pairing). Moreover, the
presence of an “incomplete” biphoton in o, implies that the
same biphoton must occur in 7, as well, thereby partially
determining the fixed points of T as well.

This is best illustrated with an example. Consider the
case of j = 2, for large m and n. There are two options for
constructing o,: Either o, contains two complete biphotons,

. 12 . .
one in each row, for example, o, = ( or it contains two

3 4)7

incomplete biphotons, for example, 5, = (; ?) Note that these
are the only options allowed if we take into account the fact
that the remaining elements of o must be fixed points. For
example, if we had o, = (; ?), then we cannot complete the
permutation using only fixed points, since the presence of a
1 in &, implies that mode 2 must be selected as well, but

since mode 2 already enters in o (&,), it cannot also form a

fixed point. Furthermore, for the case of o, = (; ?) we know
that both 7 and ¢ must include the fixed points 2 and 4. This
example illustrates that the constraint placed on o and  is that
biphotons which are not completely in o), (or 7,) must occur
both in ¢ and 7.

Since biphotons which straddle o, and the fixed points
determine a fixed point in both o and t, while biphotons
contained in the fixed points can be independently chosen
between o and t, the leading contribution to the covariance
(expressed in powers of n and m) in Eq. (12) at large m
and n will be the one with the fewest straddling fixed
points. Therefore, for even j, it is the one where no fixed
points are straddling o, and the fixed points, and for odd
Jj, there will be only one. This removes the constraints
between fixed points and o, introduced by the biphotons,
meaning that we can follow the argument from SBS to
count the number of variance pairs, substituting n — n/2,
m — m/2, j— [j/2] in all terms related to filling the fixed
points and o,. This means that the number of terms with

. . o (n)2\ ( m/2\ (n/2—m/2+[j/21\ (n/2—Tj/2]
covariance 15 #R = ! (m/z) ((_,'/2}) ( [j/2] ) (m/2— [‘/‘/2])’
leading to a

covariance of cov(c;) = #Rvar(R) =
G () (B Gl () om = 12

j1?/N*™ < m?/N?" for all j, using the inequality (’j") >
()"

ir2

From this, we conclude that, like superposition boson sam-
pling, the higher order interference terms of Gaussian boson
sampling are at least as sensitive to photon distinguishability
as in regular boson sampling. Note that unlike superposition
boson sampling this derivation does not rely on numerical
results. When we numerically evaluate Eq. (12) for Gaussian
boson sampling, we observe a sawtooth pattern in the cj,
where odd j are strongly suppressed. This is a reflection of
the biphoton nature of the light, and it suggests that further
analysis might develop a tighter bound.

Finally, we turn to the issue of rewriting Eq. (6) into a
form which can be efficiently sampled from. We will see that
it is possible to regroup terms to gather identical quantum
interference terms, as we did for the case of SBS. Further-
more, this results in polynomially many quantum interference
terms of fixed size, which means they can be efficiently com-
puted. Surprisingly, it is the classical interference terms which
are problematic: We obtain an expression for the classical
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interference terms for which no known classical algorithm
exists to compute the output probability.

We begin by following the same strategy as with SBS,
by grouping terms which correspond to the same quantum
interference process (i.e., the same permuted part of the
permutation o,,), but which have different fixed points. This
can be done straightforwardly:

m
P=Y"%"% Perm(M,, ,0oM] ) Perm(|M,, ),
=0 ol P (;;
- a7
where ag is the complement of crpj , in the sense that it contains
a way of choosing fixed points such that the combination of 01{

and a,{ forms a “legal” permutation, i.e., one that corresponds
to a particular choice of &,, &,, and o. Note that there are
multiple ways of completing a permutation from its unfixed

points, and hence there is a sum over the various possible cr,{
in Eq. (17).
To assess the complexity of sampling from Eq. (17), many

of the arguments from Eq. (16) carry over: There are (Z)

ways of choosing o,f, and hence there are polynomially many

quantum interference terms of size at most j. However, the

classical interference term Z(;,- Perm(|M; |?) cannot be com-
> P

puted efficiently. This can be seen already when considering
Jj = 0: In this case, there are ("7%%“) ways of picking sets
of m fixed points, which grows exponentially with m.

As we have done with Eq. (16), we will try to recast each
classical interference term in Eq. (17) as a permanent of a
positive matrix. We will not succeed because of the biphoton

nature of the light field, which places additional constraints

on a,{ . This is in contrast to SBS, where every choice of fixed
points was allowed.

For biphotons which belong half to a fixed point, half to
oy, a straightforward construction similar to that described for
SBS can be followed. For the fixed points where both parts
of the biphoton belong to the fixed points, a more elaborate
construction is necessary, which we will show for the case
Jj = 0. Define an m + n by m + n matrix Mgy, :

My = (Alf g) (18)

with M an m by n matrix containing the mod-squared values
of the elements of M. P is an n by n matrix of the following
form:

1 1 0 O 0 0 0 O
1 1 0 O 0 0 0 O
0 0 1 1 0 0 0 O
0 0 1 1 0 0 0 O
P=f: oo i a9
0 0 0 O 1 1 0 O
0 0 0 O 1 1 0 O
0 0 0 O 0 0 1 1
0 0 0 O 0 0 1 1

and S and n by m matrix of the following form:
1 r -1 1

S = : : : : N (20)

The remaining quadrant of Mg is composed of zeros.
We can show that Perm (Mg, )/2"m! = Zag- Perm(lMUpj %) by
recursively Laplace expansion along the ith and @i+ 1)-st
rows of P and § simultaneously, for odd i. If we do this,
the only 2 minors which have a nonzero prefactor are either
those where we pick columns i and i + 1, which corresponds
to deleting a pair of columns from M, or those where we pick
any pair of columns from S, which only deletes zeros in the
upper m rows. Either of these picks up a factor of 2, since

Perm(i }) = Perm(fl1 Jl) = 2. Any choice which mixes

P and § has a zero prefactor, since Perm(: _1]) = 0. There-

fore, we can see that this construction respects the pairing of
modes which arises from the biphoton nature of the light field:
Either it deletes a pair of photons from consideration, or it
“skips a turn” and deletes no photons. This ensures that when
the auxilliary matrices P and S are exhausted via repeated
pairwise Laplace expansion, only pairs of terms in M which
correspond to the same biphoton remain, which completes the
proof.

The reason why this expression for Mg, does not result
in an efficient algorithm is that in order to cast the classical
interference as the permanent of a single matrix Mgp,, we
needed to introduce negative numbers in that matrix to make
this construction work. This means that we cannot apply the
approximation algorithm of Jerrum et al. [48] to efficiently
approximate the permanent of Mgp,, since that algorithm
requires a matrix with only positive elements.

We leave the question of whether such an algorithm to
efficiently approximate M,f, exists as an open problem for
the theory of matrix permanents. We can, however, show that
the worst-case complexity of approximating M, is at least
as that of approximately counting perfect matchings in an
arbitrary graph, which is an open problem [51]. This reduction
was found by M. Jerrum [52]. The construction is as follows:
Consider a graph with m vertices and n/2 edges, where m and
n define the size of M as above. Construct M as follows: Index
the rows by the vertices and the columns (pairwise) by the
edges. Passing along each pair of columns, place a 1 whenever
the incident vertex corresponding to that column is identical to
the vertex in the row indexation, and a O otherwise. If we now
embed M in Mg, as above and evaluate the permanent, each
nonzero term in the permanent either contains both vertices
of a given edge or neither. Hence, each nonzero term contains
a different set of edges of size m/2, which do not share any
vertices, which is a perfect matching in m. We note that this is
not the first time Gaussian boson sampling has been associated
with counting perfect matchings in arbitrary graphs: A scheme
to embed this quantity in the output of a Gaussian boson
sampler has been proposed previously [53].

Unfortunately, this worst-case result is not a full answer:
We are interested in the average case complexity of computing
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M,g, when M is a matrix of independent and identically dis-
tributed Gaussian variables, and the above argument requires
M to be of a very specific form. It would be fine for our pur-
poses if the approximation algorithm failed for some values of
M, provided that set had measure zero under the probability
distribution of M. On physical grounds, however, it is entirely
possible that such an approximate algorithm exists, since the
probability which we are interested in corresponds to classical
transmission, and this also holds for all cases which arise
when j # 0, which can be accounted for with a construction
analogous to the one presented above. We note that nothing in
the hardness proof of the original Fock state boson sampling
proposal hinges on the existence of the JSV algorithm. How-
ever, as we noted above, at finite levels of imperfection, all
quantum interference effects are accounted for by the quantum
interference terms, which are of size k or smaller. It would
be strange if the hardness of simulating boson sampling,
which we think of as an intrinsically quantum phenomenon,
depends on the hardness of computing a classical transmission
probability.

We also briefly consider the scenario where such an effi-
cient algorithm for approximating Mg, could be proven not
to exist. In that case, this would of course not constitute
a hardness proof for noisy GBS, but it would show that
the state of the art approach to simulating boson sampling
does not work for this specific case. This would substantially
enhance the interest in Gaussian boson sampling as a quantum
advantage demonstration.

Another way to solve the difficulty of the classical in-
terference terms would be to construct an algorithm that
directly samples from an approximation of the state taking
into account the effects of noise, instead of approximating
an output probability and feeding that to an Markov Chain
Monte Carlo sampler. This was recently achieved for Fock
state boson sampling [30], although in the resulting algorithm,
the truncation point k is a rising function of m, meaning that
the algorithm is not efficient. Since Perm(M,s,) represents a
convex sum over positive terms, such a sampling algorithm
would remove the need to compute the entire sum. Instead,
a sample from the classical interference term would suffice,
which can be produced readily by selecting one of the terms
and simulating sending photons through the interferometer
one by one [5].

Finally, we note that our noise model for Gaussian boson
sampling does not capture all sources of imperfections. There
are two effects which we did not consider and which we would
like to highlight. First, we considered a limit in which double
pair emission is negligible, i.e., in which all multiplicities
are equal to one. Since double pairs reduce the complexity
of the sampling problem by introducing repeated rows in
the permanent, they constitute an imperfection. The second
imperfection which we did not consider is an effect which we
name layer mixing. This occurs when sampling from any input
state with an indeterminate photon number, in the presence of
loss. At the beginning of our derivation, we assumed that we
knew the number of photons generated by the sources. In the
presence of loss, this knowledge is imperfect; there is mixed-
ness between the process where m photons are generated and
none are lost, m + 1 and 1 is lost, and so on. This effect, which
is not present for Fock state sampling, should not be confused
with the quantum interference between photons originating

from different sources. The presence of layer mixing suggests
that perhaps both GBS and SBS are more susceptible to loss
than regular Fock state boson sampling. We leave these issues
to future study.

However, since all previous examples of noise analysis in
boson sampling have shown that noise sources compound, we
speculate that the addition of these sources of noise will not
reduce, but rather increase, the simulability of Gaussian boson
sampling under imperfections. This means that until further
results on this topic arise, it is not unreasonable to assume
that our bound will also hold outside of the weak-squeezing
regime for which it was derived.

VI. CONCLUSIONS

In this section, we briefly reprise the results of this work.
First, we have demonstrated how to extend the analysis of
the effect of imperfections on boson sampling to the case
of arbitrary input states. We used this method to show that
for two particular choices of input states, namely Gaussian
states and superposition states, the output probability without
noise cannot be efficiently approximated by our methods. This
is a necessary but not sufficient condition for computational
hardness of sampling problems using these states. For super-
position sampling, this is an indication that this problem is of
interest for sampling.

Then, we introduced the effects of noise. Using a combina-
tion of analytic results and numerical simulations, we showed
that the effect of noise on both these sampling protocols is
identical to that of regular boson sampling, at least for the par-
ticular type of noise (distinguishability) under consideration
here; they are no more or less resilient to this kind of noise
than Fock state boson sampling is. For superposition states,
this leads immediately to a classical algorithm which can
efficiently simulate imperfect superposition boson sampling.
For Gaussian states, the existence of such an algorithm de-
pends on a not-implausible conjecture in the theory of matrix
permanents.

As a final warning not to take our results as a hardness
proof for either Gaussian boson sampling or superposition
boson sampling, we give an explicit example [54] where
there is no computational complexity but where our simu-
lation strategy does not work. This is the case where weak
coherent states are incident on the interferometer. In this case,
phases and amplitudes can be propagated efficiently through
the interferometer, no entanglement builds up, and we can
sample efficiently from the output distribution. However, if we
follow the analysis outlined above, we would find that perfect
coherent state sampling is not susceptible to our algorithm.
In this case, the very first step in our approach, namely the
projection onto Fock states, destroys the structure (namely the
coherent state amplitudes and phases) which enables efficient
classical simulation. This emphasizes the point that failure of
any one simulation strategy is no guarantee that all simulation
strategies will fail.

Finally, we address some open problems. There are two
major open problems raised by this work. The first is to find a
better way to compute E(|c;|), which does not depend on the
inequality ,/var(c;) > E(|c;|), which is insufficiently tight for
our purposes. The second open problem is how to compute the
permanent of Mg, efficiently.
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