
PHYSICAL REVIEW A 101, 063839 (2020)

General bounded corner states in the two-dimensional Su-Schrieffer-Heeger model
with intracellular next-nearest-neighbor hopping
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We investigate corner states in a photonic two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model on a
square lattice with zero gauge flux. By considering intracelluar next-nearest-neighbor (NNN) hoppings, we
discover a broad class of corner states in the 2D SSH model and show that they are robust against certain
fabrication disorders. Moreover, these corner states are located around the corners but not at the corner points.
We analytically identify that these corner states are induced by the intracelluar NNN hoppings (long-range
interactions) and split off from the edge-state bands. Thus, we refer to them as general bounded corner states. Our
paper shows a simple way to induce unique corner states by the long-range interactions and offers opportunities
for designing novel photonic devices.
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I. INTRODUCTION

Topological photonics is a rapidly emerging research field
based on topological band theory [1], inspired by topological
phases and phase transitions in solid-state electron systems. It
provides us the geometrical and topological ideas to design
and control the behavior of photons, leading to interesting
phenomena, such as the properties of against backscattering
and robust to defects and disorders. To highlight one important
example, topologically protected photonic modes have been
used both theoretically and experimentally to demonstrate a
topological insulator laser in a topological edge state (ES)
[2–6]. In recent years, a class of interesting topological
phases has been introduced in photonic topological systems,
such as topological phases of non-Hermitian systems [7–25],
a nonlinear-photonic topological phase [26–32], topological
quantum matter in synthetic dimensions [33–40], and higher-
order topological insulators (HOTIs) [41–47].

In contrast to conventional (first-order) topological states,
higher-order topological (HOT) states two or more dimen-
sions lower than the system are hosted in HOTIs [48–54].
To date, the HOT states (e.g., corner states) have been im-
plemented in many different types of photonic lattices, such
as the honeycomb lattice [55–57], the kagome lattice [58–61],
and the square lattice [62–70].

In this paper, we will focus on corner states in two-
dimensional (2D) Su-Schrieffer-Heeger (SSH) model on a
square lattice. It has been demonstrated experimentally that
the standard 2D SSH model can not support robust corner
states for the zero-energy modes are located in the bulk band
[66]. To observe a topologically protected corner state in the
photonic 2D SSH model, a synthetic magnetic flux of π per
plaquette, i.e., negative coupling, was proposed theoretically
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[41] and demonstrated experimentally [62–66] in some recent
works. Besides, topologically protected corner states also
have been observed in the band gap in 2D dielectric photonic
crystals on the SSH model [67–70], which can be understood
by considering the higher-order couplings, such as the next-
nearest-neighbor (NNN) coupling between the dielectric rods
which inevitably break the chiral symmetry. However, the
effects of NNN coupling on topological phases are still an
open question at the moment.

Here, we will investigate how to observe corner states
in the 2D SSH model with intracelluar NNN hopping in
a tight-binding representation. We note that the effects of
NNN coupling on topological phases have been explored in
bipartite lattices for reconfigurable topological phases [71]
and topological defect states [72]. Nevertheless, we find that
intracellular NNN coupling can induced new corner states
in the 2D SSH model. Different from the conventional cor-
ner states observed before, the intracelluar NNN coupling-
induced corner states appear around the corners but not at the
corner points. We also note that these corner states are similar
to the type-II corner states observed in photonic kagome crys-
tals very recently [73]. However, we show that there is a broad
class of corner states splitting from the topological edge-state
bands with the increasing of the intracelluar NNN coupling
not just two type-II corner states observed in Ref. [73]. Thus,
we refer to them as general bounded corner states in this
paper. Moreover, the general bounded corner states can be
understood intuitively by the separate model fragments of the
2D SSH model. Our paper broadens the concept of corner
states and provides new ideas for designing novel photonic
devices, e.g., a high-Q photonic nanocavity [68,69].

II. TWO-DIMENSIONAL SSH MODEL

We consider a photonic 2D SSH model with N×M unit
cells as shown in Fig. 1. There are four modes A–D in one
unit cell with eigenfrequencies ωa, ωb, ωc, and ωd , where γ

2469-9926/2020/101(6)/063839(6) 063839-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5160-7393
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.063839&domain=pdf&date_stamp=2020-06-29
https://doi.org/10.1103/PhysRevA.101.063839


XU, LI, LIU, AND CHEN PHYSICAL REVIEW A 101, 063839 (2020)

(a)

(b) (c)

FIG. 1. (a) Schematic of a photonic 2D SSH model on a square
lattice. There are four modes (A–D) in one unit cell with lattice
constant 2a, and the amplitudes of intracelluar and intercelluar
nearest-neighbor hoppings are γ and λ, respectively. The red oblique
lines represent intercelluar NNN hoppings in unit cells with strength
J . The possible realistic physical systems to implement one unit cell
of the photonic 2D SSH model: (b) network of coupled supercon-
ducting transmission line resonators [74–76] and (c) 2D lattice of
nanophotonic silicon ring resonators [66].

and λ are the amplitudes of intralar and intercellular (nearest-
neighbor) hoppings, and J is the strength of the intracellular
NNN hopping (long-range interaction) in unit cells. Different
from the model studied in Refs. [62–66], where a synthetic
magnetic flux of π per plaquette, i.e., negative coupling, is
applied to the square lattices, here, all the hoppings γ , λ, and
J are positive, that is, it is a 2D SSH model on a square lattice
with zero gauge flux. In the rotating frame with respect to the
frequency of all the optical modes ωa = ωb = ωc = ωd = ω,
the Hamiltonian for the 2D SSH model is described by (h̄ = 1)

H =
N∑

n=1

M∑

m=1

[γ (an,m + dn,m)(b†
n,m + c†

n,m) + Jbn,mc†
n,m]

+
N∑

n=2

M∑

m=1

[λ(an,mc†
n−1,m + bn,md†

n−1,m )]

+
N∑

n=1

M∑

m=2

[λ(an,mb†
n,m−1 + cn,md†

n,m−1)] + H.c., (1)

where q†
n,m (qn,m) with q = {a, b, c, d} representing the cre-

ation (annihilation) operator for the photonic mode (A–D) at
lattice site (n, m). To detect the robustness of the system, in the
numerical calculations, we will consider the disorder effect of
the parameters with ω + ε, γ + ε, λ + ε, and J + ε, where
ε ∈ [−λ/100, λ/100] is randomly distributed.

The 2D SSH model can be implemented in a network of
coupled superconducting transmission line resonators [74–76]
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FIG. 2. (a) Energy spectrum for a 2D SSH model with a 20×20
array of unit cells with γ = λ/5 and J = 0. The orange (gray) bands
denote the the topological ESs of the lattice, the bulk states (BSs)
are depicted by yellow (light gray) bands and the four degenerate
zero-energy corner states (ZECSs) appear at zero energy with a red
(dark gray) point. (b) The local density of states (LDOS) with where
the ZECS for mode A at lattice site (1,1), the ES for mode A at lattice
site (1,11), and the BS for mode A at lattice site (11,11). The field
profiles of the corner states without disorder in (c) and with disorder
ε ∈ [−λ/100, λ/100] in (d).

as schematically shown in Fig. 1(b). Resonators B and C
are connected by an auxiliary capacitor (in red) as shown in
Fig. 1(c). The 2D SSH model can also be realized using a 2D
lattice of nanophotonic silicon ring resonators as reported in
Ref. [66]. These ring B’s and ring C’s can be coupled to each
other using an auxiliary ring (in red) as shown in Fig. 1(d).

III. GENERAL BOUNDED CORNER STATES

First of all, let us review the corner state in the 2D SSH
model without intracellular NNN hopping, i.e., J = 0. The
energy spectrum for a 2D SSH model without intracellular
NNN hopping is shown in Fig. 2(a). There are five bands,
two orange (gray) are edge-state bands and three yellow
(light gray) are bulk-state bands. The energy bands can be
reflected in the LDOS as shown in Fig. 2(b). The LDOS can
be calculation based on the Green’s function in frequency
space (see Ref. [77] or the Appendix), and the photonic
LDOS is experimentally accessible via reflection/transmission
measurements.

Figure 2(c) shows that the 2D SSH model with zero gauge
flux hosts zero-energy states localized at the corners, similar
to those of the 2D SSH model with π gauge flux [62–64,66].
However, there is no band gap at zero energy in the energy
spectrum of the model as shown in Fig. 2(b), which indicates
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FIG. 3. (a) Energy spectrum for a 2D SSH model with a 20×20
array of unit cells with γ = λ/5 and J = λ/2. (b) Corresponding
LDOS with κ = λ/20. The general bounded corner states [CS1–
CS4, LDOS for mode B at lattice site (1,1)] appear in the band
gaps between the edge and bulk bands. The field profiles of the
general bounded corner states CS1–CS4 in (c)–(f) with disorder
ε ∈ [−λ/100, λ/100].

that this zero-energy corner states are not topologically pro-
tected and are susceptible to the fabrication disorders. Conse-
quently, the disorder, which is a very common phenomenon in
the experimental setups, can easily couple these corner states
to the bulk states located near zero energy as shown in the
field profiles of the zero-energy corner states with disorder
ε ∈ [−λ/100, λ/100] in Fig. 2(d). These agree with a recently
experimental result [66]. As this type of zero-energy corner
state is susceptible to the fabrication disorders and appears
even in the absence of intracellular NNN hoppings, we will
not explore it in the following.

Next, we demonstrate that new corner states can be induced
by the intracellular NNN hopping, even if there is no gauge
flux through the lattice of the 2D SSH model. As shown in
the energy spectrum [Fig. 3(a)] and LDOS [Fig. 3(b)], besides
the corner states at zero energy (in red), there are four double
degenerate corner states CS1–CS4 (highlighted in blue or dark
gray) that appear in the band gaps between the edge and the
bulk bands. Similar corner states have been observed in a

(a) (b)

(c) (d)

FIG. 4. (a) Energy spectrum of a 2D SSH model with vary-
ing intercellular NNN hopping J/λ with γ = λ/5. (b) Illustration
of coupling between modes around the corners forming general
bounded corner states with γ = 0. (c) Energy spectrum of a 2D SSH
model with varying intercellular NNN hopping J/λ with γ = λ/20.
(d) Enlarged section of (c) showing the emergence of more corner
states from the bands of edge states as J increases where the colored
(dotted orange, short dashed blue, dash-dotted green, and dashed red)
curves show the analytical result for the energies of corner states
obtained with modes around the corners highlighted in the same
color in (b).

2D topological photonic crystal with a kagome lattice very
recently [73].

Here, we analyze the characteristics of the new corner
states with the field profiles shown in Figs. 3(c)–3(f). (i) Dif-
ferent from the conventional corner states observed before, the
new corner states are localized around the corners but not at
the four corner points (x/a, y/a) = {(1, 1), (1, 2M ), (2N, 1),
(2N, 2M )}. The highest values of the field profiles appear
around the points (x/a, y/a) = {(1, 2), (1, 3), (2, 1), (3, 1)}
or (x/a, y/a) = {(2N − 1, 2M ), (2N − 2, 2M ), (2N, 2M − 1),
(2N, 2M − 2)} (not shown in the figures). Physically, the
conventional corner states appear in the HOTIs, but the new
corner states are the stable bounded states split off from the
edge-state bands by the intracellular NNN hoppings (we will
show later on). Thus, we refer to these new corner states as
general bounded corner states. (ii) The field profiles show
that the general bounded corner states are robust to random
noises. This point is also evident in the energy spectrum
and LDOS of the system where the general bounded corner
states are separated from the edge and bulk bands [Figs. 3(a)
and 3(b)].

To reveal the origin of general bounded corner states, the
energy spectrum of a 2D SSH model are plotted with varying
intracellular NNN hopping J/λ in Fig. 4(a). It is obvious that,
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FIG. 5. (a) Energy spectrum for a 2D SSH model with a 20×20 array of unit cells with γ = λ/20 and J = 0.8λ. (b) Enlarged section of
(a) showing four general bounded corner states: CS1–CS4. (c) LDOS of the general bounded corner states CS1–CS4 with κ = λ/20 for mode
B at lattice sites (1,1), (2,2), (3,3), and (4,4) respectively. (d)–(g) Corresponding field profiles of the corner states CS1–CS4 with disorder
ε ∈ [−λ/100, λ/100].

the general bounded corner states split off from the edge-
state bands with the increasing of J/λ. The general bounded
corner states can be understood from the model in the case
of γ = 0 as shown in Fig. 4(b) where the 2D SSH model
has been divided into separate model fragments highlighted in
different colors. The dashed orange lines in Fig. 4(a) show the
analytical result for the energies of corner states obtained with
modes around the corners highlighted in orange, which agree
with the energy spectrum of general bounded corner states,
and the subtle differences are induced by the intracellular
hopping γ .

To show the general bounded corner states induced by
the other separate model fragments in different colors, the
energy spectrum of a 2D SSH model with γ = λ/20 is
plotted as a function of J/λ in Figs. 4(c) and 4(d). Inter-
estingly, more general bounded corner states split off from
the edge-state bands with the increasing of the intracellular
NNN hopping J/λ. The energy of the general corner states
agree well with analytical results (dotted orange, short dashed
blue, dash-dotted green, and dashed red curves) obtained with
modes around the corners highlighted in the same color in
Fig. 4(b).

To further explore the characteristics of the general
bounded corner states, the energy spectrum for a 2D SSH
model are shown in Figs. 5(a) and 5(b) with γ = λ/20 and
J = 0.8λ. There are four double degenerate corner states
CS1–CS4 that appear in the band gap between the edge and
the bulk bands. These general bounded corner states can be
observed by the LDOS of the system as shown in Fig. 5(c).
The corresponding field profiles of the general bounded corner

states are shown in Figs. 5(d)–5(g), which agree well with the
separate model fragments in Fig. 4(b).

IV. CONCLUSIONS

In conclusion, we have demonstrated that the 2D SSH
model on a square lattice without gauge flux can support
robust general bounded corner states by considering the intra-
cellular NNN hoppings. We have analytically determined that
the intracellular NNN hoppings can result in the formation of
a broad class of general bounded corner states, which can be
understood intuitively by the separate model fragments of the
2D SSH model. We believe that our paper opens important
directions in inducing unique corner states by the intracellular
NNN hoppings (long-range interactions) and offering possi-
bilities to control photons in novel ways.
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APPENDIX: CALCULATION OF THE LDOS

Substituting the Hamiltonian (1) into the Heisenberg equa-
tion and taking into account the damping of the modes with
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damping rate κ and the corresponding quantum noises, we get
the quantum Langevin equations (QLEs) for the operators in
the unit cell with cell index (n, m) as

i
d

dt
an,m = −i

κ

2
an,m + γ (bn,m + cn,m) + λ(bn,m−1 + cn−1,m)

+ i
√

κa(in)
n,m, (A1)

i
d

dt
bn,m = −i

κ

2
bn,m + γ (an,m + dn,m) + λ(an,m+1 + dn−1,m)

+ Jcn,m + i
√

κb(in)
n,m, (A2)

i
d

dt
cn,m = −i

κ

2
cn,m + γ (an,m + dn,m) + λ(an+1,m + dn,m−1)

+ Jbn,m + i
√

κc(in)
n,m, (A3)

i
d

dt
dn,m = −i

κ

2
dn,m + γ (bn,m + cn,m) + λ(bn+1,m + cn,m+1)

+ i
√

κd (in)
n,m , (A4)

where q(in)
n,m (q = a, b, c, d ) is the input quantum noise

operators.
In order to calculate LDOS numerically in a finite system

with N×M unit cells, the QLEs can be concisely expressed as

i
dC

dt
= AC + i

√
κCin, (A5)

where C = (. . . , al , bl , cl , dl , . . .)T and Cin = (. . . , a(in)
l , b(in)

l ,

c(in)
l , d (in)

l , . . .)T are 4NM-dimensional vectors with the cell
index l = (n, m), and A is the 4NM×4NM coefficient matrix.
The Green’s function for photons with relative energy E is
given by

G = 1

E − A
. (A6)

The LDOS is determined by

ρ(E , lq ) = −2 Im G(E , lq, lq), (A7)

with subscript q = a, b, c, d .
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