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Quantum optomechanics of a two-dimensional atomic array
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We demonstrate that a two-dimensional atomic array can be used as a platform for quantum optomechanics.
Such arrays feature both nearly perfect reflectivity and ultralight mass, leading to significantly enhanced
optomechanical phenomena. Considering the collective atom-array motion under continuous laser illumination,
we study the nonlinear optical response of the array. We find that the spectrum of light scattered by the
array develops multiple sidebands, corresponding to collective mechanical resonances, and exhibits nearly
perfect quantum-noise squeezing. Possible extensions and applications for quantum nonlinear optomechanics
are discussed.
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I. INTRODUCTION

The study of radiation pressure plays an important role in
science and emerging technologies, from the manipulation of
ions in quantum information processing [1,2] to cooling and
monitoring the motion of solid mirrors [3]. These examples
demonstrate the two extreme limits of light-induced motion,
which are typically studied; namely, that of single atoms and
that of bulk objects. Situated between these two extremes, this
work deals with the optomechanics of a nearly perfect mirror
made of a single dilute layer of optically trapped atoms.

It is well known that light can dramatically influence the
motion of individual atoms, as demonstrated by laser cooling
of atoms [4]. However, due to the small absorption cross
section of individual atoms, efficient optomechanical coupling
typically requires interfacing light with highly reflective ob-
jects, such as optical cavities [5–9]. Most optomechanical
systems involve the motion of bulk solid objects, such as a
movable mirror or membrane inside a cavity, that are coupled
to light via radiation pressure [3,10–12]. While light can be
strongly scattered in this way, its effect on the motion of
such macroscopic objects is very limited, due to the extremely
small zero-point motion of the latter. Although ground-state
cooling of the mechanical state [13–17] and the generation
of squeezed light [18–25] were recently achieved, reaching
the single-photon optomechanical regime [26,27] remains an
outstanding challenge.

In this work, we explore the optomechanics of a single two-
dimensional (2D) ordered array of optically trapped atoms,
as can be realized, e.g., in optical lattices, in a cavity-free
environment. It was recently shown that such a 2D atom
array can act as a nearly perfect mirror, for light whose
frequency matches the cooperative dipolar resonance sup-
ported by the array [28–30]. The mirror formed by such an
array is easily pushed by the reflected light. Its zero-point
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motion is set by the depth of the atomic traps, which even
for tight trapping (Lamb-Dicke regime) becomes 10−8 m to
10−7 m, much larger than the 10−15 m to 10−13 m zero-point
motion of suspended bulk mirrors or membranes [3,12,31].
Therefore, by combining nearly perfect reflectivity with a high
mechanical susceptibility, 2D atomic arrays could lead to very
large optomechanical couplings.

We use a quantum-mechanical treatment to study the mo-
tion of atoms close to their equilibrium trap positions, under a
continuous-wave laser illumination, which is weak enough to
neglect internal-state saturation (Fig. 1). Cooperative effects
due to dipole-dipole interactions play a central role in this
system. First, they lead to a collective dipolar resonance of the
internal state of the atoms and, second, laser-induced dipolar
forces between atoms lead to the formation of collective
mechanical modes. We show that the light-induced motion
of this cavity-free many-atom system can be characterized by
its mapping to a standard cavity optomechanics model in its
bad-cavity, unresolved sideband regime. We then consider the
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FIG. 1. Light scattering and optomechanics in an ordered 2D
atomic array. (a) The atoms are spanning the xy plane at equilib-
rium position z = 0 for all atoms, with interatomic spacing a �
λ, λ being the wavelength of the incident light. For nonsaturated
atoms (linear response), and ignoring their motion, full reflection
is observed (r = −1, t = 0) when the frequency of the incident
light matches the cooperative resonance of the array [28]. (b) With
longitudinal, light-induced atomic motion (zn for an atom n), a
nonlinear component (ENL) is added to the reflected field, due to the
optomechanical coupling.
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back-action of this motion on the light, due to the optome-
chanical response of the array. In particular, we find that the
collective mechanical modes imprint multiple sidebands on
the spectrum of the light scattered by the array, and that this
output light contains quantum correlations in both space and
time, exhibiting large spatiotemporal squeezing.

These results provide a promising starting point and bench-
mark for further studies of optomechanics using ordered
arrays of trapped atoms. They reveal that significant optome-
chanical couplings are achievable already at the level of a
“bare,” cavity-free system of a single 2D array of dozens of
atoms. More elaborate schemes may therefore enable reaching
novel regimes of nonlinear and few-photon quantum optome-
chanics, as discussed below.

The article is organized as follows. Our theory of optome-
chanics of 2D atom arrays is presented in Secs. II and III.
This includes the description of the system and its collective
motion induced by light (Sec. II) and the characterization of
the atom array system, via its mapping to the standard cavity
optomechanical model (Sec. III). The theory is then applied
to predict nonlinear optical phenomena, resulting from light-
induced atomic motion: Sec. IV presents the analysis of
the intensity spectrum of the output light, whereas Sec. V
studies its quantum noise and correlation properties. Finally,
we discuss some conclusions and future prospects in Sec. VI.

II. LIGHT-INDUCED COLLECTIVE MOTION

We consider a 2D array of trapped atoms n = 1, . . . , N
at positions r̂n = (r⊥

n , ẑn), illuminated by a right-propagating
continuous-wave laser with wavelength λ (Fig. 1). Motion is
considered only along the longitudinal axis z, with ẑn around
the equilibrium position z = 0, whereas the transverse posi-
tions r⊥

n are assumed fixed (deep transverse trapping), forming
a 2D lattice in the xy space, e.g., a square lattice with lattice
spacing a � λ. Our theory below assumes an infinite array, but
in practice it is valid for finite mesoscopic arrays (

√
N � 1,

e.g., N ∼ 102) [32]. The atoms are modelled as two-level
systems with transition frequency ωa and radiative width γ .
Dipolar interactions between the array atoms, however, lead
to a cooperative shift � and width � of the atomic transition,
reflecting the fact that the atomic dipoles respond collectively
to light [28]. Nevertheless, for our purposes, these collective
dipole modes effectively behave as individual atoms with
a “renormalized” (cooperative) resonance frequency ωa + �

and width γ + � [32]. In the following, we discuss the
light-induced collective motion of the array atoms. This dis-
cussion derives largely from Ref. [32], briefly reviewed in
Appendix A.

The derivation of the governing equation of atomic mo-
tion is based on the following considerations. First, we take
advantage of the separation of timescales between the fast
internal and slow external atomic degrees of freedom, given
by the cooperative decay rate γ + � = γ 3

4π
(λ2/a2) [28] and

the recoil energy ER = h̄2q2/(2M ), respectively (q = ωL/c =
2π/λ being the laser wave number and M the atom mass).
This allows us to adiabatically eliminate the internal degrees
of freedom, obtaining a dynamical equation for the external,
motional degrees of freedom ẑn. Second, we assume that the
atoms remain inside the optical traps of length <λ, allowing
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FIG. 2. Collective mechanical response of the array. (a) Coupled
mechanical oscillators model corresponding to Eq. (1): each atom
is found in a potential with trap frequency ν (thin black “springs”)
and coupled via laser-induced dipolar interactions Knm to the rest
of the atoms (thick blue “springs” connecting different atoms).
(b) Eigenfrequencies ν j of the resulting mechanical collective normal
modes j = 1, . . . , 196, for N = 142 atoms, lattice constant a/λ =
0.2 and detuning δL − � = −(γ + �)/4. (c, d) Spatial profile of
the mechanical collective modes j = 2 (c) and j = 196 (d) from
the example in panel (b). The incident beam, with waist w0/λ =
1.5, is smaller than the array; therefore the profile of the highest
frequency mode j = 196 is highly oscillatory around the center of
the array, where the beam intensity and the interactions it induces are
strongest. Other physical parameters: incident beam strength at the
center 
 = 1.1γ (
 � γ + �), recoil energy ER/(h̄γ ) = 1/1620
(corresponding to 87Rb), and Lamb-Dicke parameter η = qx0 = 0.12
(corresponding to, e.g., a potential depth V = 1500ER, trap length
l = 400 nm, and wavelength λ = 780 nm).

us to approximate |ẑn| � λ. Considering also atoms far from
saturation (linearly responding, γ + � � 
, 
 being the
Rabi frequency), we finally obtain (Appendix A):

˙̂pn = −Mν2ẑn + f̄n − αn p̂n + f̂n(t ) +
∑
m �=n

Knm(ẑn − ẑm),

(1)
˙̂zn = p̂n/M,

with p̂n the momentum of atom n. This equation describes a
collective Brownian motion, with the explicit expressions for
the coefficients f̄n, αn, f̂n(t ), Knm given in Appendix A. The
first term in Eq. (1) is the restoring force due to the individual
trap of an atom (longitudinal trap frequency ν), whereas the
next three terms account for light-induced forces including the
average force f̄n, and the scattering-induced friction αn and
corresponding Langevin force f̂n(t ). The expressions for f̄n,
αn and f̂n(t ) resemble those from known single-atom theories
of light-induced motion [4], except that here the atom-laser
detuning δL and width γ are modified by their cooperative
counterparts δL − � and γ + �, respectively.

The term with coefficient Knm gives rise to a mechanical
coupling between the atoms originating in the laser-induced
dipole-dipole forces between pairs of atoms [33]. It reflects
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that the motion of individual atoms is not independent, result-
ing in collective mechanical modes. Since Knm ∝ 
∗

n
m, with

n the Rabi frequency on atom n, the collective mechanical
modes crucially depend on the spatial profile of the incident
light. To find the modes, we diagonalize Eq. (1) in the ab-
sence of forces f̄n, f̂n and friction αn, which amounts to the
system of coupled oscillators from Fig. 2(a). The collective
mechanical normal modes of a square array with N = 142

atoms, illuminated by a normal-incident Gaussian beam with
waist smaller than the array size, are shown in Fig. 2(b)
(eigenfrequencies) and Figs. 2(c) and 2(d) (spatial profiles).

For times t longer than 1/αn, the atomic motion in fre-
quency domain becomes (Appendix A),

ẑn(ω) =
∑

j

Ujnẑ j (ω),

ẑ j (ω) = z̄ j2πδ(ω) + 1

Mν2
j

χ j (ω) f̂ j (ω),

χ j (ω) = − ν2
j

ω2 − ν2
j + iα jω

, z̄ j = f̄ j

Mν2
j

. (2)

Here Ujn is the matrix element of the unitary transformation
from the real-space lattice basis n to the collective normal
mode basis j with eigenfrequencies ν j , Xj = ∑

n U ∗
jnXn for

X = f̄ , f̂ , ẑ and α j = ∑
j |Ujn|2αn. The solution ẑ j (ω) for

each normal mechanical mode j consists of an average shift z̄ j

due to the static force f̄n and a fluctuating part due to the linear
mechanical response χ j (ω) to the corresponding Langevin
force f̂ j (ω).

Throughout this work, we assume that the atoms remain
trapped, requiring that the potential depth V of the traps is
larger than the effective temperature Te associated with the
Langevin force (Appendix A),

Te = h̄γ

2

(δL − �)2 + (
γ+�

2

)2

(� − δL )(γ + �)
. (3)

We note that for the atoms to remain trapped, Te has to be
positive (and lower than the trapping potential), leading to the
requirement of red cooperative detuning, δL < �.

III. MAPPING TO CAVITY OPTOMECHANICS

Typical optomechanical systems can be modeled by a
single optical cavity (boson mode ĉ) whose resonant fre-
quency linearly depends on the position of a moving mirror
(harmonic-oscillator coordinate ẑ ∝ b̂ + b̂†), as depicted in
Fig. 3(a), and with the Hamiltonian

H = h̄ωcĉ†ĉ+ h̄νb̂†b̂+ h̄gĉ†ĉ(b̂ + b̂†) + (ĉ†
ce−iωLt +H.c.),

(4)

g being the bare optomechanical coupling and 
c the input
field. It is therefore instructive to relate this simple standard
model to the optomechanics of the atom array: Although the
latter system does not include an optical cavity, it does include
a resonator in the form of the internal degrees of freedom
of the atoms. To this end, we consider the linearized regime
of the cavity optomechanics model, wherein the quantum
fluctuations in the cavity and the motion are assumed to be

(
(a) (b)

FIG. 3. Comparison with cavity optomechanics. (a) Standard
cavity optomechanics model, Eq. (4): a cavity mode ĉ (resonant
frequency ωc and width κ) is formed by two mirrors, one of which is
movable (coordinate ẑ). (b) 2D atom array: dipole-dipole interactions
between the atoms form a collective dipole of the array atoms (σ̂ )
with a resonant frequency shifted by � and widened by � from the
single-atom resonance ωa and γ . Longitudinal motion of an atom n
inside the trap is described by the coordinate ẑn. The analogy between
the systems is captured by the mapping from Table I.

much smaller than their corresponding classical steady-state
values, and the Hamiltonian in a laser-rotated frame becomes
[3,10]

H ≈ −h̄δcĉ†ĉ + h̄νb̂†b̂ + h̄(ḡ∗ĉ + ḡĉ†)(b̂ + b̂†), (5)

where δc is a shifted laser-cavity detuning [3], ḡ = gc̄ with c̄
the classical steady-state value of the cavity field (c-number),
and ĉ and b̂ the quantum fluctuations of the field and motion,
respectively.

In contrast, consider now a light-matter interaction
Hamiltonian, such as that used to derive Eq. (1), Hint ∼
σ̂ †

n h̄
neiqẑn + H.c., with σ̂n the atomic-transition lowering
operator and 
n the Rabi frequency at atom n. For |ẑn| � λ,
its relevant optomechanical coupling becomes

Hint ∼ h̄σ̂ †
n 
nqẑn + H.c. = h̄(η
∗

nσ̂n + H.c.)(b̂n + b̂†
n), (6)

where η = qx0 is the Lamb-Dicke parameter, with x0 =√
h̄/(2Mν) the zero-point motion of an atom inside the

trap and ẑn = x0(b̂n + b̂†
n). The form of Hint is identical to

that of the interaction term in (5), with the internal, dipolar
resonances of the linearly responding atoms in the former,
replacing the optical cavity resonator in the latter. Focusing,
for now, on a single motional degree of freedom of the array
(e.g., a single atom), this suggests the mapping in Table I
between the 2D atom array and the cavity optomechanics
models [Fig. 3(b)]. Here we recall the renormalized (coop-
erative) resonance of the array atoms with frequency ωa + �

and width γ + � (δL = ωL − ωa being the “bare” laser-atom
detuning).

More formally, this mapping can be justified by deriving
the equations of motion for the coordinate ẑ and resonator ĉ

TABLE I. Mapping to cavity optomechanics.

Cavity model Atom array

Resonator mode ĉ σ̂

Optomechanical coupling ḡ η


Laser detuning δc δL − �

Resonator damping rate κ γ + �
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of the standard cavity model, and comparing them with the
analogous equations for ẑn and σ̂n of the atom array. In Ap-
pendix B we show that these two sets of equations are indeed
equivalent, by considering the mapping in Table I. Moreover,
for the specific case of a bad cavity in the weak-coupling and
unresolved sideband regimes, κ � ḡ, ν, the resonator mode
ĉ can be adiabatically eliminated, and the resulting equation
of motion for ẑ is essentially identical to Eq. (1), for a single
atom.

The multimode, many-atom collective mechanics, i.e., in-
cluding the term Knm in Eq. (1), can also be captured by
the cavity model: It requires us to include multiple mechan-
ical modes in the Hamiltonian (4) via an interaction term
h̄

∑
n gnĉ†ĉ(b̂n + b̂†

n), resulting in an effective coupling pa-
rameter K ′

nm ∝ ḡnḡm (Appendix B). In contrast to the cavity
model, however, the multimode character of the 2D atom array
also extends to the output field, resulting in qualitatively new
features as explored in the following.

IV. MECHANICAL SIDEBANDS IN OUTPUT LIGHT

We now turn to study the optomechanical back-action on
the light, in the form of nonlinear optical phenomena. For
nonsaturated atoms, for which the polarizability is linear,
optical nonlinearity originates only in the motion, via the
following mechanism: The light pushes the atoms, whose
positions are then determined by the intensity of light. In turn,
the phase of the light that is scattered off the atoms depends on
their positions. This leads to an intensity-dependent phase, as
in an optical Kerr medium. More formally, the reflected field
from an atomic array is given by the scattered fields from all
atoms, each of which is proportional to a phase factor ei2qzn .
For an incident field E , radiation pressure leads to zn ∝ |E |2
and hence to intensity-dependent phase factors.

In this section we show that the multimode nature of the
atom array optomechanics discussed above manifests itself in
the form of sidebands in the spectrum of the output light.
The sidebands are located at the resonant frequencies ν j

of the collective mechanical modes j at which the motion
ẑn, and hence the phase factors ei2qzn , are modulated; and
the corresponding weights of these sidebands depend on the
spatial profiles of these modes.

A. Output light and nonlinearity

The field scattered off an array of atoms has the form∑
n e−ikz ẑn σ̂n. Using the adiabatic solution for the linearly

responding atomic dipoles, σ̂n(t ), we obtain the output field
in the paraxial approximation (Appendix C)

ãk⊥ks = βk⊥δs,+δkq + âk⊥ks − g∗
0

∫ ∞

−∞
dtei(ck−ωL )t

×
∑

n

e−ik⊥·r⊥
n

∑
s′=±

e−i(s−s′ )qẑn (t ) 
̂ns′ (t )

δL − � + i γ+�

2

. (7)

Here the “output field,” ãk⊥ks ≡ âk⊥ks(t = τ )eikcτ , is the slow
envelope of the lowering operator of the right- or left-
propagating (s → ±) photon mode with wave vector k =
(k⊥, kz = sk) (k � |k⊥|), evaluated at the final time τ → ∞,
much after the atom-laser interaction ends. The “input fields,”

âk⊥ks ≡ âk⊥ks(t = −τ )e−ikcτ , are in turn evaluated at the
initial time −τ → −∞ before the atom-laser interaction
begins and are hence equal to vacuum fields satisfying
âk⊥ks|0〉 = 0. The coherent laser input is represented by the
average amplitude (c-number) βk⊥ = (1/N )

∑
n e−ik⊥·r⊥

n βn,
which is related to the Rabi frequency via βn = −i
n/g0, with
g0 = √

ωL/(2ε0h̄AL)d the atom-field coupling in the paraxial
approximation (d is the dipole matrix element, and A and L the
quantization area and length). The Kronecker deltas δs,+ and
δkq represent a right-moving laser with frequency ωL = qc,
and 
̂ns′ is the total Rabi frequency operator (including the
input vacuum fluctuations) of the right- and left-propagating
(s′ → ±) incident field.

In the absence of motion, ẑn → 0, the output field is that
due to the mirror-like linear response of the ordered atom
array [28,29] (Appendix C). Frequency components other
than that of the laser appear in the output field due to the
motion-induced phase factors e−i(s−s′ )qẑn(t ) and originate in a
nonlinear optomechanical effect, ẑn(t ) ∼ f̂n(t ) ∼ 
̂†

n(t )
̂n(t ).
They are most dominant in the reflected field, since the phase
factors exist only for s �= s′ (oppositely propagating input and
output). We note that this analysis is valid only for the paraxial
part of the output field and can be therefore understood by
considering the energy-momentum conservation of a photon
colliding with an atom in one dimension, where a forward-
scattered photon cannot change its energy [34].

B. Intensity spectrum of reflected light

Consider now the detection of the left-propagating output
field s → −. Its dominant, average component is the linear
reflection of the normal incident laser (k⊥ ≈ 0). In addition,
there exist nonlinearly scattered field fluctuations at various
transverse wave vectors |k⊥| > 0, which can be detected at the
corresponding far-field angles [Fig. 4(b)]. These components
originate in fluctuations in ẑn which result in an effectively
disordered array and therefore in scattering angles beyond that
of a flat mirror. The relevant spectrum of this detected total
field is defined by

Ik⊥ (ω) = 〈̃a†
k⊥k−ãk⊥k−〉 1

|βk⊥=0|2
L

c
, (8)

where ω = ck − ωL is the frequency of the field envelope
around ωL, and the averaging is performed with respect to
the field vacuum |0〉. The normalization is with respect to the
dominant k⊥ = 0 component of the normal-incident field βk⊥ ,
and with L/c → 2τ (experiment time). We note that this def-
inition coincides with the standard definition, ∝〈Ê†(ω)Ê (ω)〉
for the field component k⊥ (Appendix C).

Inserting the output field, Eq. (7) with s → −, into Eq. (8),
and expanding to lowest order in qẑn (atoms contained in
traps), we find that the nonlinear part of the spectrum origi-
nates from the correlator 〈ẑn(−ω)ẑm(ω)〉, which is evaluated
using the solution (2). Finally, we obtain (Appendix C)

Ik⊥ (ω) = |r|2 |βk⊥|2
|βk⊥=0|2 2πδ(ω)

+ |r|216η4 Te

ER

∑
j j′

Mj j′
α0

ν2
χ∗

j (ω)χ j′ (ω). (9)
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(b) (c)

(a)

FIG. 4. Collective mechanical sidebands in reflected light. (a) In-
tensity spectrum of the normal spatial component of the reflected
light [Eq. (9) for k⊥ = 0, divided by the experiment time L/c].
The central sharp peak at the laser frequency (ω = 0) is due to the
strong linear reflection |r|2 [with the δ(ω) peak approximated here
by a Gaussian of width c/L → α0/3]. The incident light excites
the collective mechanical modes from Fig. 2, which are revealed by
the appearance of sidebands centered around their eigenfrequencies
ν j (same parameters as in Fig. 2, yielding |r|2 = 0.8). (b) The
|k⊥| > 0 nonlinear components of the spectrum can be detected at
the corresponding far-field angles. (c) Zoom-in of the sidebands for
different detection angles: k⊥ = 0 [blue, same as Fig. 4(a)], k⊥ =
(0.2q, 0.2q) (green). Sidebands at higher frequencies ν j are associ-
ated with mechanical mode profiles of higher spatial frequencies and
therefore become more pronounced for larger detection angles |k⊥|.

The first term is the linear reflection with reflection coefficient

r = − i(γ + �)/2

i(γ + �)/2 + δL − �
. (10)

At cooperative resonance, δL = �, the reflection is perfect
[28]. However, realistically, for the atoms to thermalize inside
the traps, we require a small red detuning 0 < � − δL �
γ + �, which may slightly reduce the reflection [Eq. (3), for
finite Te > 0].

The second term describes a nonlinear scattered compo-
nent (ω �= 0), originated in motion fluctuations inside the
traps, which are in turn caused by the light-induced Langevin
force f̂n(t ), with an effective temperature Te. Indeed, the
frequency dependence of this component derives from the
overlap of the collective mechanical responses χ j (ω); its
intensity is proportional to Te and to η4, with α0 = αn=0

being the friction at the center of the array (atom n = 0).
Since χ j (ω) are centered around the collective mechanical
resonances ν j , this gives rise to sidebands, whose weights are
determined by the spatial structure of the modes, contained in
the overlap factors Mj j′ [see Appendix C, Eq. (C7)].

Figure 4(a), plotted for detection at k⊥ = 0 with the atom
array realization of Fig. 2, clearly exhibits these spectral
features. It contains a narrow peak at ω = 0 due to the linear
reflection and two broad sidebands centered around the trap
frequency ±ν. Each sideband, however, exhibits multiple
peaks, with the frequencies ν j from Fig. 2(b), as clearly seen

in the zoom-in, Fig. 4(c) (blue curve). We recall that higher
ν j entail higher spatial frequencies in the structure of the col-
lective mode function [Figs. 2(c) and 2(d)]. Indeed, Fig. 4(c)
(green curve) displays that by increasing the detection angle,
k⊥ > 0, the sideband components ν j beyond ±ν become
much more prominent.

V. QUANTUM SQUEEZING OF OUTPUT LIGHT

Optical nonlinear phenomena, such as the nonlinear scat-
tering revealed in the previous section, may in general lead to
quantum squeezing of the light, namely, to the reduction of
its quadrature quantum noise below that of the vacuum, and
which is associated with the generation of entangled photon
pairs [35,36]. The generation of squeezing in the atom-array
system can be understood by considering the light-induced
motion, zn ∝ |E |2, driven by a field E containing a coher-
ent part Ē , and a small vacuum-fluctuation component Ê .
Then zn ∼ (Ē∗ + Ê†)(Ē + Ê ) ≈ |Ē |2 + Ē∗Ê + Ē Ê†, so that
the phase factor of the output field, ei2qzn , has the Bogoliubov-
transformation form of a squeezed field. Since the system
is inherently multimode along the transverse, array plane,
entanglement is generated not only between different longi-
tudinal (ω = ck − ωL) but also between different transverse
(k⊥) photon modes, giving rise to spatiotemporal quantum
squeezing [37,38]. In this section, we analyze the quantum
noise of the output field and reveal the possibility for nearly
perfect quantum squeezing.

To this end, we consider the quantum fluctuations of the
reflected field (s → −) from Eq. (7), assuming uniform illu-
mination, 
n = 
, for which the collective mechanical modes
are lattice Fourier modes, j → k⊥, with eigenfrequencies νk⊥
and corresponding friction αk⊥ = α (Appendix A). Working
near cooperative resonance, where the reflection r ≈ −1, and
expanding to lowest order in qẑn and in the vacuum field, we
obtain the Bogoliubov-transformation form (Appendix D)

ãk⊥ (ω) = uk⊥ (ω)âk⊥ (ω) + vk⊥ωâ†
−k⊥ (−ω), (11)

with the coefficients

uk⊥ (ω) = −1 + vk⊥ (ω),
(12)

vk⊥ (ω) = i4η4 4|
|2
(γ + �)2

h̄(γ + �)

ER

ν2

ν2
k⊥

χk⊥ (ω).

Here the output field fluctuation ãk⊥ (ω) ≡ ãk⊥k− − rβδk⊥0δkq

is given in terms of the incident vacuum fields of the
right-propagating modes, âk⊥ (ω) = âk⊥,k,+ and âk⊥ (−ω) =
âk⊥,2q−k,+, with ω = ck − ωL. In general, the output field de-
pends on the vacua of both right- and left-propagating photon
modes; however, here we assumed nearly perfect reflection,
r ≈ −1, so that the vacuum fields incident from the right
(left-propagating s → −), are reflected back and do not arrive
to the detector at the left. The general case, beyond nearly
perfect reflection, is discussed in Appendix D and yields
similar results.

The output field fluctuations from Eq. (11) have
the typical form of a squeezed vacuum field, whose
reduced quantum fluctuations can be measured via
homodyne detection, wherein the output field at the
correlated angles ±k⊥ interferes with a strong coherent

063833-5



SHAHMOON, LUKIN, AND YELIN PHYSICAL REVIEW A 101, 063833 (2020)

LO

(a) (b)

(d)(c)

FIG. 5. Quantum squeezing of the reflected field. (a) The correla-
tion between spatiotemporal modes (±k⊥,±ω) can be observed by
homodyne detection at both angles ±k⊥. (b) Squeezing spectrum,
Eq. (13), as a function of ω for fixed ±k⊥ = 0 (S < 1 signifies
quantum noise squeezing). The two dips at the corresponding me-
chanical resonance ±νk⊥=0 = ±ν exhibit very strong squeezing, as
expected from Eq. (14) [e.g., reaching S ∼ 10−3 (see panel d) for
the specific parameters considered here: a/λ = 0.5, V/ER = 1500,
trap length 400 nm (yielding η ≈ 0.12), δL − � = −(γ + �)/4, and
uniform illumination with 
/γ = 0.2]. (c) The bandwidth of the
squeezing-spectrum dip is determined by the parameter Wk⊥ and
can be increased by increasing either a or 
 [Eqs. (14) and (15)].
This is demonstrated by the red (dashed) curve (a/λ increased to
0.55) and the green (dash-dot) curve (
/γ increased to 0.25), as
compared to the blue curve [same as panel (b)]. (d) The dependence
of the squeezing on k⊥ (spatial squeezing) signifies the quantum
correlations generated between the spatial modes ±k⊥, reflecting
the unique multimode and nonlocal optomechanical response of the
array. Here this dependence is plotted as a function of kx for fixed
ω = ν − 12α and ky = 0.

local oscillator field with phase θ (Fig. 5). The
relevant fluctuating part of the detected signal is given
by the quadrature operator, X̂ θ

k⊥ (ω) = e−iθ ãk⊥ (ω) +
eiθ ã†

−k⊥ (−ω), with the corresponding spatiotemporal
noise spectrum, Sθ

k⊥ (ω) ≡ 〈X̂ θ
−k⊥ (−ω)X̂ θ

k⊥ (ω)〉 [36,37]
(Appendix D 4).

For each spatiotemporal frequency, (k⊥, ω), there exists a
local oscillator phase that minimizes the noise Sθ

k⊥ (ω) [36,39].
The resulting spectrum of minimal noise level, the so-called
squeezing spectrum, is given by

Sk⊥ (ω) = (|u−k⊥ (−ω)| − |vk⊥ (ω)|)2

= [
√

|vk⊥ (ω)|2 + 1 + 2Re[vk⊥ (ω)] − |vk⊥ (ω)|]2.

(13)

In the absence of motion, χk⊥ = 0, we have vk⊥ = 0 and
uk⊥ = −1, such that the output is just the reflected vacuum
with the standard vacuum noise level Sk⊥ (ω) = 1. When
motion, and hence nonlinearity exist, we may obtain noise
reduction (squeezing), Sk⊥ (ω) < 1.

A. Squeezing bandwidth and strength

We observe that maximal squeezing (minimal S) is ob-
tained for a large coefficient |vk⊥| � 1, i.e., near the collective
mechanical resonance ω = ±νk⊥ where χk⊥ (ω) is very large
[40], and where the spectrum (13) can be approximated as
Sk⊥ (ω) ≈ 1/(4|vk⊥ (ω)|2), yielding

Sk⊥ (ω) ≈ 1

W 2
k⊥

[(
ω

νk⊥
± 1

)2

+
(

α

2νk⊥

)2
]
. (14)

The quadratic, power-law frequency dependence means that
the bandwidth of the squeezing spectrum near mechanical
resonance ±νk⊥ scales as Wk⊥νk⊥ , with

Wk⊥ = ν2

ν2
k⊥

B, B = 16|η
|2
(γ + �)ν

⇒ 16|ḡ|2
κν

. (15)

As the parameter B increases, so do the bandwidth and
strength of the squeezing, suggesting that this parameter is
related to the motion-induced optical nonlinearity. Indeed,
by using the mapping to cavity optomechanics from Table I
[rightward double arrow in Eq. (15)], we note that B is equal
to the nonlinear frequency shift of the resonator, ∼|ḡ|2/ν,
in units of its linewidth κ [26,27]. For the atom array, we
note that the squeezing bandwidth ∼B can be enlarged by
increasing e.g., the Rabi frequency 
 (avoiding saturation) or
the lattice spacing a (recalling that γ + � ∝ λ2/a2).

The squeezing strength can become arbitrary large in prin-
ciple, with a minimal noise level of order W −2

k⊥ (α/2νk⊥ )2 =
(1/32)(νk/ν)C−2

opt . This is typically a very small number, re-
flecting the mechanical quality factor 2ν/α of trapped atoms,
or, equivalently, the optomechanical cooperativity Copt =
|ḡ|2/(κα).

B. Temporal and spatial squeezing spectra

Fixing the detection angle to k⊥ = 0, we study the de-
pendence of the squeezing on the frequency ω (temporal
squeezing spectrum) in Fig. 5(b). Considering realistic pa-
rameters, we observe very strong noise reduction at the cor-
responding pair of mechanical resonance dips, ±νk⊥=0 = ±ν,
as anticipated above. In Fig. 5(c) we focus on one of the
resonance dips and observe that its bandwidth is much wider
than the mechanical linewidth α/ν ∼ 10−3 (blue solid curve).
Furthermore, it is seen that the squeezing bandwidth widens
by increasing either the lattice spacing (red dashed curve) or
the Rabi frequency (green dash-dot curve), in agreement with
the analysis of Eqs. (14) and (15).

Figure 5(d) displays the dependence of the squeezing on
the spatial frequency kx (spatial squeezing spectrum), by
setting ω = ν − 14α and ky = 0. The dependence on kx is
a signature of an effectively nonlocal optical nonlinearity of
the atom array [41,42], whose nonlocality is originated in the
dipole-dipole interactions between the atoms.

Finally, we address how these results compare with pre-
vious studies. Squeezed light generation via optomechanical
nonlinearities was studied theoretically within the standard
cavity model [43–45] and experimentally with an atom cloud
or a membrane inside a cavity [19–23] or with an elec-
tromechanical resonator [24,25]. Both the cavity model and
the above analysis of the atom array predict arbitrary strong
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squeezing, in principle, with similar scalings of strength and
bandwidth (in the bad-cavity regime) [18,45]. Interestingly,
in our case this is achieved without a cavity and for dozens
of atoms (e.g.,

√
N ∼ 10 � 1). This is in contrast to cavity-

confined and macroscopic objects, such as a membrane or
thousands of atoms. More qualitatively, the atom array op-
tomechanics naturally exhibits spatial squeezing, in addition
to the temporal squeezing discussed in previous works.

VI. DISCUSSION

This work establishes the consideration of an ordered 2D
atomic array as a unique quantum optomechanical system,
relying on its collective properties. We stress that the me-
chanical interactions between the atoms and the subsequent
formation of collective mechanical modes are not inherent
to the atoms, but are rather induced by light [Fig. 2(a)].
Our findings demonstrate that 2D atomic arrays exhibit rich
and qualitatively new multimode optomechanical phenom-
ena, already at the level of the “bare,” cavity-free system.
More quantitatively, the results for squeezing suggest that
the optomechanical response of a single mesoscopic atomic
array can become comparable to or exceed those of current
macroscopic cavity systems.

As an extension of this work, one can interface the atomic
array with a mirror or cavity. This may offer several advan-
tages. First, the ordered array scatters only into the paraxial
cavity mode, unlike the case of a disordered cloud [5,6,8,19],
for which scattering to all directions effectively increases
κ . Second, an atom array inside a cavity or in the vicinity
of a mirror may exhibit a drastic reduction of its radiative
linewidth γ + �. Considering the mapping to the cavity
model, this means that κ can become sufficiently small to
reach the resolved sideband regime. Combined with the strong
optomechanical coupling of the atoms, this may pave the way
to observe optomechanical effects at the few-photon level,
such as photon-blockade and non-Gaussian states [26,27].

Finally, we point out that ordered atomic arrays were
recently proposed as a quantum optical platform enabling
various applications, such as tunable scattering properties
[28,46], topological quantum photonics [47–49], lasing [50],
and enhanced quantum memories and clocks [51–53], all of
which based on their collective internal dipolar response. The
current study thus opens the way to explore new possibilities
by considering and designing both the collective internal and
optomechanical responses of atomic arrays.
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APPENDIX A: LIGHT-INDUCED MOTION

The discussion and derivation of Eq. (1) is presented in
detail in Ref. [32]. Here we review the main results leading to
this equation and provide the expressions for its coefficients.

Beginning with the Hamiltonian for photons and atoms and
eliminating the photon operators (Markov approximation),
we consider the assumptions mentioned in the main text
(nonsaturated two-level atoms, small-amplitude motion, and
paraxial illumination) and obtain [32]

˙̃σn =
[

i(δL − �) − γ + �

2

]
σ̃n + i

∑
s=±

eisqẑn [
ns + δ
̂ns(t )],

˙̂pn = −Mν2ẑn + h̄q
∑
s=±

{iseisqẑn [
ns + δ
̂ns(t )]σ̃ †
n + H.c.}

+ 3

4
h̄qγ

∑
m �=n

[σ̃ †
n Fnmq(ẑn − ẑm)σ̃m + H.c.]. (A1)

Here σ̃n = σ̂neiωLt is the envelope of the lowering operator
of the internal state of atom n, 
ns is the Rabi frequency of
the s → ± propagating incident laser (s → + for single-sided
illumination), and

δ
̂ns(t ) =
∑
k>0

∑
k⊥

ig0eik⊥·r⊥
n e−i(ck−ωL )t âk⊥ks (A2)

is the corresponding Rabi frequency of the vacuum
fluctuations [in the paraxial approximation with g0 =√

ωL/(2ε0h̄AL)d]. The cooperative shift and width are

given by � − i�/2 = −(3/2)γ λ
∑

n �=0 e†
d · G(ωL, r⊥

0 , r⊥
n ) ·

ed (finding � + γ = γ 3
4π

λ2

a2 ), where G(ω, r, r′) is the dyadic
Green’s function [54], ed the orientation of the dipole element
of the atomic transition (taken as circular polarization), and
“n = 0” is the atom at the array center. In the last line, Fnm =
e†

d · F (qr⊥
n − qr⊥

m ) · ed , F being the dimensionless tensor

Fi j (u) = δi j
eiu

u2

[(
i − 1

u

)(
1+ iu − 1

u2

)
+

(
i

u2
− 2

iu − 1

u3

)]
+ uiu j

u2

eiu

u2

[(
i − 3

u

)(
− 1 + 3 − i3u

u2

)
+ 3

(
− i

u2
− 2

1 − iu

u3

)]
, (A3)

with i, j ∈ {x, y, z}, Fi j = e†
i · F · e j , ui = ei · u, and u = |u|.

By considering the separation of timescales, γ + � �
ER/h̄, ν, the adiabatic steady-state solution of the internal
state is found to be [32]

σ̃n(t ) = −
∑
s=±

eisqẑn

[

ns + δ
̄ns(t )

δL − � + i γ+�

2

+ 
ns(sq/M ) p̂n(
δL − � + i γ+�

2

)2

]
,

(A4)

where the last term is a lowest-order correction
due to the Doppler effect. Here δ
̄ns(t ) ≈ δ
̂ns(t ) −

i
δL−�+i(γ+�)/2∂tδ
̂ns(t ) is the vacuum noise in the adiabatic,

coarse-grained dynamical picture. The correction, ∂tδ
̂ns, is
required here to guarantee proper quantum dynamics (see
below) [32].

Inserting Eq. (A4) into the equation for p̂n in (A1), to
lowest order in qẑn, we arrive at Eq. (1), with the following
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coefficients (illumination from the left, 
ns = 
nδs+) [32]:

f̄n = h̄q|
n|2 γ + �

(δL − �)2 + (
γ+�

2

)2 ,

αn = 2
ER

h̄
|
n|2 −2(δL − �)(γ + �)[

(δL − �)2 + (
γ+�

2

)2]2 ,

(A5)

f̂n(t ) = h̄q
∑
s=±

[
iδ
̄†

ns
n + isδ
̂ns

∗
n

δL − � − i γ+�

2

+ H.c.

]
,

Knm = 3

4
h̄q2γ

[
Fnm


∗
n
m

(δL − �)2 + (
γ+�

2

)2 + c.c.

]
.

The Langevin forces f̂n(t ) on different atoms n, m are not
independent, since they are originated in the vacuum field and
its spatial correlations. Their cross-correlation is found to be

〈 f̂n(t ) f̂m(t ′)〉 = 2Dnm
p δ(t − t ′) + i2D̃nm

p δ′(t − t ′),

Dnm
p = (h̄q)2�nm


∗
n
m

(δL − �)2 + (
γ+�

2

)2 , (A6)

with �nm = 3γ λIm[e†
d · G(ωL, r⊥

n , r⊥
m ) · ed ] being the co-

operative decay kernel [55]. The term with D̃nm
p =

−Dnm
p

δL−�
(δL−�)2+(γ+�)2/4 and δ′(t ) = ∂tδ(t ), is due to the cor-

rection ∂tδ
̂ns(t ) discussed below Eq. (A4), and it guarantees
that the dynamics of Eq. (1) preserve commutation relations
and describe genuine quantum Brownian motion [32,56]. For
the calculations in this paper, however, this correction term is
negligible.

For a single atom n, Dnn
p is the momentum diffusion

coefficient [4,32], which can be associated with an effective
temperature of a heat bath formed by the scattering,

Te = Dnn
p

Mαn
. (A7)

Using Dnn
p and αn from Eqs. (A5) and (A6) (noting �nn = γ ),

we obtain Te from Eq. (3).
Performing the transformation to the collective mechanical

modes j, ẑ j = ∑
n U ∗

jnẑn, on Eq. (1), and neglecting the typ-
ically very small off-diagonal friction α j j′ ≈ α jδ j j′ (verified
numerically for a variety of incident Gaussian beams), we
obtain

˙̂p j = −Mν2ẑ j + f̄ j − α j p̂ j + f̂ j (t ), ˙̂z j = p̂ j/M. (A8)

For long times t � 1/α j (assuming α j > 0, i.e., δL < �),
the solution in Fourier space, ẑn(ω) = ∫ ∞

−∞ dteiωt ẑn(t ), yields
Eq. (2). The analysis of the general time-dependent solution
is discussed in Ref. [32].

Finally, consider the case of uniform illumination,

n = 
. The collective mechanical modes j then be-
come 2D lattice Fourier modes, k⊥, with k⊥ = (kx, ky)
inside the Brillouin zone associated with the 2D lattice,
kx,y ∈ {−π/a, π/a}, and the corresponding eigenmodes and

eigenfrequencies [32]

ẑk⊥ = 1√
N

∑
n

e−ik⊥·r⊥
n ẑn, νk⊥ =

√
ν2 + (Kk⊥ − K0)/m.

(A9)

Here Kk⊥ = ∑
n �=0 Kn0e−ik⊥·r⊥

n and νk⊥ can be evaluated by
performing the sum Kk⊥ numerically. The same transforma-
tion, Unk⊥ = (1/

√
N )eik⊥·r⊥

n , also applies for f̄k⊥ and f̂k⊥ (t ).
The friction coefficient α is equal to αn form Eq. (A5) with

n = 
 and is therefore independent of k⊥.

APPENDIX B: ANALOGY TO CAVITY OPTOMECHANICS

In the following, we derive the equations of motion for the
standard cavity optomechanics model in the linearized regime
and discuss the analogy of this model to the atom-array case.

1. Optomechanics in the linearized regime

Beginning from the linearized Hamiltonian (5), we find
the equations of motion for the cavity mode ĉ and mirror
momentum p̂ = iMνx0(b̂† − b̂),

˙̂c =
[

iδc − κ

2

]
ĉ − i

ḡ

x0
ẑ + iδ
̂(t ),

(B1)
˙̂p = −Mν2ẑ − 2Mνx0(ḡ∗ĉ + ḡĉ†),

with ˙̂z = p̂/M and ẑ = x0(b̂ + b̂†). The cavity damping κ and
corresponding quantum-noise field δ
̂(t ) are due to the out-
coupling from the cavity mirror to outside propagating modes,
satisfying [δ
̂(t ), δ
̂†(t ′)] = κδ(t − t ′).

Turning to the atom array, and in analogy to the cav-
ity optomechanics case, we wish to linearize the coupled
equations of motion (A1) around the classical steady-state
solution. To this end, we consider the classical part of the
linear-response solution from (A4) (with 
ns = 
nδs+), σ n =
− 
n

δL−�+i(γ+�)/2 , together with qẑn � 1, and write Eqs. (A1)
to linear order in the operators:

˙̌σn =
[

i(δL − �) − γ + �

2

]
σ̌n − q
nẑn + i

∑
s=±

δ
̂ns(t ),

˙̂pn = − Mν2ẑn − h̄q(i
∗
nσ̌n − i
nσ̌

†
n )

+ f̄n +
∑
m �=n

Knm(ẑn − ẑm) + f̂ (1)
n (t ), (B2)

where σ̌n(t ) = σ̃n(t ) − σ n is the small amplitude of σ̃n(t )
around its steady-state linear solution σ n.

The formal equivalence of the equations for ĉ and σ̌n from
(B1) and (B2) is apparent, considering ḡ = −iη
n and the rest
of the mapping from Table I [recalling η = qx0 and noting
that a phase factor (−i) was dropped in the main text, for
simplicity]. This equivalence holds also by comparing the
equation for p̂ from (B1) with the first line of the equation
for p̂n, using ER/(h̄ν) = η2. The first term in the second line
in the equation for p̂n is the average force f̄n which implicitly
exists also in the dynamics for p̂ in Eq. (B1), since the latter is
written for fluctuations around the average motion [originated
in the linearized Hamiltonian (5)]. The collective mechanical
term Knm from the equation for p̂n does not appear in the
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Eqs. (B1) for the simple cavity model; however, it can be
accounted for by considering a modified cavity model (see
Appendix B 3 below). The last term in Eq. (B2) for p̂n is a
Langevin force, which is absent in the cavity model,

f̂ (1)
n (t ) = h̄q

∑
s=±

[
isδ
̂ns


∗
n

δL − � − i γ+�

2

+ H.c.

]
. (B3)

This extra Langevin force originates in the direct coupling
between motion and the vacuum field, via the phases eikz ẑn of
the photon-atom Hamiltonian. This is in contrast to the cavity
model wherein only the cavity mode is directly coupled to
the vacuum of the outside modes. This means that for the
consideration of quantum noise in the output fields, the two
models may not be exactly equivalent. We note that the force
f̂ (1)
n (t ) appears as a component of the Langevin force from

Eq. (A5).

2. Bad-cavity limit

We shall now consider the bad-cavity limit, where κ is the
fastest timescale, and obtain a Brownian-motion equation for
the cavity model, in analogy to Eq. (1). Formally solving the
equation for ĉ from (B1), within a time interval �t ending at t ,
and denoting the mechanical-mode envelope, b̃(t ) = eiνt b̂(t )
[recalling ẑ = x0(b̂ + b̂†)], we have

ĉ(t ) = ĉ(t − �t )e(iδc− κ
2 )�t + e(iδc− κ

2 )t
∫ t

t−�t
dt ′e−(iδc− κ

2 )t ′

×{−iḡ[b̃(t ′)e−iνt ′ + b̃†(t ′)eiνt ′
] + iδ
̂(t ′)}. (B4)

Next, we assume the separation of timescales between the fast
cavity damping κ and the slow mechanical envelope dynamics
τ−1

m ≡ ˙̃b/b̃. This allows us to move to coarse-grained dynam-
ics with resolution �t satisfying κ−1 � �t � τm, where the
envelope b̃(t ′) ≈ b̃(t ) can be pulled outside of the integral,
obtaining

ĉ(t ) ≈ ḡb̂(t )

δc + ν + iκ/2
+ ḡb̂†(t )

δc − ν + iκ/2
− δ
̂(t )

δc + iκ/2
.

(B5)
Here the Langevin noise is taken within a bandwidth 2π/�t
of the coarse-grained time resolution. Finally, inserting this
result into the equation for p̂ from (B1), we obtain

˙̂p ≈ −Mν2ẑ − αopt p̂ + f̂opt (t ), (B6)

where a correction to ν is neglected here [3]. The resulting
optically induced friction and Langevin force read

αopt = |ḡ|2
[

κ

(δc + ν)2 + (κ/2)2
+ κ

(δc − ν)2 + (κ/2)2

]
≈ −|ḡ|22ν

2δcκ[
δ2

c + (κ/2)2
]2 ,

f̂opt (t ) = h̄

x0

[
ḡδ
̂†(t )

δc − iκ/2
+ ḡ∗δ
̂(t )

δc + iκ/2

]
. (B7)

The second approximate equality in αopt is valid within the
unresolved sideband limit, κ � ν. Coming back to the condi-
tion τ−1

m � κ for existence of separation of timescales (and
coarse-grained dynamics), we can identify from Eq. (B6)

and the expression for αopt (e.g., for κ � ν, δc) that τ−1
m ∼

αopt � |ḡ|2/κ , so that the separation of timescales requires the
so-called weak coupling regime, κ � ḡ.

Considering the mapping from Table I it is easy to verify
that the friction coefficients αn [Eq. (A5), atom-array model]
and αopt [Eq. (B7), cavity model] are identical within the bad-
cavity limit κ � ḡ, ν, wherein κ is the fastest timescale (in
analogy to γ + �, the fastest timescale assumed for the atom
array). The analogy between the Langevin forces, f̂opt (t ) from
Eq. (B7) and f̂n(t ) from Eq. (A5), is apparent if we identify
the input vacuum fluctuations δ
̂ with the vacuum field on a
single atom, δ
̂n. We recall that the absence of an average-
force term, f̄ , in Eq. (B6) is merely due to the fact that it is
already written for fluctuations around the average motion.

3. Collective mechanical coupling

In order to account for the multimode mechanics of the
atom array, we replace the single mode b̂ of the cavity-
optomechanics model by the modes b̂n, such that the cor-
responding mechanical and interaction terms in the Hamil-
tonian (4) become h̄ν

∑
n b̂†

nb̂n and h̄
∑

n gnĉ†ĉ(b̂n + b̂†
n), re-

spectively, with gn the optomechanical coupling between the
mode n and the cavity. The interaction term in Eq. (B1)
for ĉ then becomes −i

∑
n ḡn(b̂†

n + b̂n), with ḡn = gnc̄. This
results in an equation of motion for the momentum p̂n of
the mechanical mode n, in the from of Eq. (B6), but with
an additional interaction term −∑

m �=n K ′
nmẑm. The resulting

mechanical coupling coefficient is found to be

K ′
nm = h̄

x2
0

[
ḡ∗

nḡm

δc − iκ/2
+ ḡnḡ∗

m

δc + iκ/2

]
→ 2h̄q2(δL − �)


n
m

(δL − �)2 + (
γ+�

2

)2 , (B8)

where the expression in the second line is obtained via the
mapping η
n = ḡn and by taking real ḡn. The above coef-
ficient K ′

nm, though not identical to Knm from Eq. (A5), has
a similar structure, suggesting that the multimode cavity op-
tomechanical model can indeed capture the multimode motion
of the atom array from Eq. (1).

APPENDIX C: INTENSITY SPECTRUM

Here we provide more details on the derivation of the
output field, Eq. (7), and the definition and calculation of the
intensity spectrum from Eqs. (8) and (9).

1. Output field

The formal solution for the paraxial photon modes at time
t , evolved from initial time t0, is found as usual from the
original atom-photon Hamiltonian [32], as

ãk⊥ks(t ) = ãk⊥ks(t0) +
∑

n

g∗
0e−ik⊥·r⊥

n

×
∫ t

t0

dt ′ei(ck−ωL )t ′
e−isqẑn (t ′ )σ̃n(t ′), (C1)
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with ãk⊥ks(t ) = âk⊥ks(t )eickt , and where the field is initially in
the vacuum state, âk⊥ks(t0)|0〉 = 0. Since we are interested in
a steady-state solution for the fields, we take the initial time
t0 to be in the far past, t0 = −τ → −∞, whereas the relevant
observation time t is taken at the end of the experiment, t =
τ → ∞. Inserting the steady-state solution for σ̃n from (A4)
into Eq. (C1) (neglecting the Doppler correction and taking
δ
̄ns ≈ δ
̂ns), and adding the laser input βk⊥ , we arrive at
Eq. (7). The laser input is added separately since it was taken
here as an external input, which is nevertheless equivalent to
considering an initial coherent state.

If we neglect the motion, taking ẑn → 0 in Eq. (7), we
arrive at the result,

ãk⊥ks = (βk⊥sδkq + âk⊥ks) + r
∑
s′=±

(βk⊥s′δkq + âk⊥ks′ ). (C2)

Here we used the expressions for r and δ
̂ns [Eqs. (10)
and (A2)], together with βn = −i
n/g0 and g0 =√

ωL/(2ε0h̄AL)d = √
(c/L)(γ+�)/(2N ) (recalling γ + �

= γ 3
4π

(λ2/a2) [28]), and considering an incident field
from both sides s, for generality. This result reflects the
linear response of the mirror to the input from both sides
s → ± (average + vacuum fluctuations), with reflection and
transmission coefficients r and t = 1 + r.

2. Intensity spectrum

The standard definition of the intensity spectrum is given
by the intensity in frequency space,

G(1)
k⊥s = 〈Ê†

k⊥s(ω)Êk⊥s(ω)〉

=
∫

dt
∫

dt ′e−iω(t−t ′ )〈Ê†
k⊥s(t )Êk⊥s(t

′)〉, (C3)

where here the detection of a field propagating in the k⊥s
direction is considered. The general expression for the electric
field operator in the paraxial approximation is given by

Êk⊥s(z, t ) =
∑
k>0

EV eiskzâk⊥ks(t ), EV =
√

h̄kc

2ε0AL
. (C4)

The field operator that enters into the spectrum (C3), however,
is that detected far from the atom array, after the interaction
between the laser pulse, of duration ∼τ , and the atom array
is over, i.e., for t > τ . Therefore, for the duration t − τ after
the “passage time” τ , the field propagates freely, and we can
write

âk⊥ks(t ) = e−ick(t−τ )âk⊥ks(τ ) = e−ickt ãk⊥ks, (C5)

recalling the notation ãk⊥ks = ãk⊥ks(τ ) = eickτ âk⊥ks(τ ). Sub-
stituting (C5) for âk⊥ks(t ) inside the expression for the field
in (C4), and inserting the latter into the spectrum definition
(C3) [with

∑
k → L

2πc

∫
dω and 2πδ(ck − ck′) = δkk′L/c],

we obtain G(1)
k⊥s = |EV |2〈̃a†

k⊥ks̃ak⊥ks〉, which is identical to the
definition from Eq. (8), up to a normalization factor.

Calculation of the spectrum from Eq. (9). Inserting the out-
put field (7) into the spectrum (8) and expanding to second or-
der in qẑn, we need to evaluate the correlator 〈ẑn(−ω)ẑm(ω)〉.
Using the solution (2) for ẑn(ω), this requires the calculation

of 〈 f̂n(−ω) f̂m(ω)〉, which is found from Eq. (A6) as

〈 f̂n(−ω) f̂m(ω)〉 = 2
L

c
Dnm

p

[
1 + ω(δL − �)

(δL − �)2 + (
γ+�

2

)2

]

≈ 2
L

c
Dnm

p . (C6)

The second approximate equality is valid for the frequency
bandwidth of our slow dynamics, wherein ω � γ + �, and
amounts to neglecting the ∝δ′(t − t ′) correction in the cor-
relation of f̂n(t ) from Eq. (A6). By further neglecting small
corrections of order |r|2q2〈ẑ2

n〉 to the amplitude of the linear
spectral peak, we finally obtain the result from Eq. (9), with

Mj j′ = β̃k⊥ jβk⊥ j′

|βk⊥=0|2
ν4

ν2
j ν j′2

∑
n,m

U ∗
jnUj′m

�nm

γ


∗
n
m

|
0|2 , (C7)

and where βk⊥ j = (1/N )
∑

n e−ik⊥·r⊥
n Ujnβn, and β̃k⊥ j =

(1/N )
∑

n eik⊥·r⊥
n Ujnβ

∗
n .

APPENDIX D: QUANTUM SQUEEZING

In the following, we elaborate on several topics related to
the analysis of the quantum squeezing from Sec. V.

1. Output field fluctuations

In order to arrive at Eq. (11) for the quantum fluctuations of
the output field, we first expand Eq. (7) to lowest order in qẑn.
Next, we neglect the term proportional to the product of the
motion and field fluctuations, ∝ f̂nδ
̂n, since it is second order
in the vacuum fluctuations (Bogoliubov-like approximation).
By considering uniform illumination, βs = |βs|eiφs (from both
sides of the array s → ±), we then obtain

ãk⊥ks = (βsδk⊥0δkq+âk⊥ks)+r
∑
s′=±

(βs′δk⊥0δkq + âk⊥ks′ )

− ir
∑
s′=±

[μ̃k⊥kss′ â†
−k⊥,2q−k,s′ +μ̄k⊥kss′ âk⊥,k,s′ ], (D1)

with

μ̃k⊥kss′ = η2 ν2

ν2
k⊥

χk⊥k

∑
pp′

βpβ
∗
p′c

LNν
(s − p)(p′r∗ + s′r)ei2φp′ ,

μ̄k⊥kss′ = η2 ν2

ν2
k⊥

χk⊥k

∑
pp′

βpβ
∗
p′c

LNν
(s − p)(p′r + s′r∗), (D2)

and where we denoted χk⊥k = χk⊥ (kc − ωL ). The first line is
the linear mirror response [Eq. (C2)], whereas the nonlinear,
motion-induced response is described by the second line,
which contains the Bogoliubov-type coupling between annihi-
lation and creation field operators. For illumination only from
the left (βs = βδs+), the above expression for the reflected
field (s → −) becomes [using |β|2c/(LN ) = 2|
|2/(γ + �)],

ãk⊥ks = rβδk⊥0δkq +
∑
s=±

[uk⊥ksâk⊥,k,s + vk⊥ksâ
†
−k⊥,2q−k,s]

(D3)
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with

uk⊥k+ = r + ir′μk⊥k, vk⊥k+ = ir′ei2φμk⊥k,

uk⊥k− = 1 + r − ir′′μk⊥k, vk⊥k− = r′′ei2φμk⊥k, (D4)

where r′ = Re[r], r′′ = Im[r], and μk⊥k = −irvk⊥ (ω) with
vk⊥ (ω) from Eq. (12).

At cooperative resonance, δL = �, we have r′ = r = −1
and r′′ = 0, so that uk⊥k−, vk⊥k− = 0 and the output field
depends only on the s → + fluctuations. However, in practice,
for the atoms to thermalize, we need a nonvanishing friction
α > 0, which requires δL − � < 0 [Eq. (A5)]. In the main
text, we simplify the presentation by considering the regime
|δL − �| � γ + � for which r′ ≈ r ≈ −1 and r′′ � 1, taking
r′′ → 0 in Eq. (D4), thus obtaining the field fluctuations in
Eq. (11) and the resulting nearly perfect squeezing. Allow-
ing for a finite value for r′′ and 1 − r leads to extra noise
inserted by the vacuum modes s → − transmitted from the
right, which may slightly degrade the squeezing. This can
be avoided, however, by considering a modified detection
scheme, as discussed in Appendix D 3 below.

2. Squeezing at mechanical resonance: Discussion

The analysis of the squeezing around the mechani-
cal resonance ω = ±νk⊥ in Sec. V [Eqs. (14), (15), and
Fig. 5(c)] revealed that its bandwidth is typically much greater
than the mechanical width α. Therefore, the value of the
squeezing exactly on mechanical resonance (e.g., within a
width α around it) is unimportant, and the expression from
(14) suffices to discuss the squeezing at the resonance for any
practical purpose.

Nevertheless, and from a purely formal aspect, we now
briefly elaborate on the quantum noise of the field within
a width α from ±νk⊥ , where Eq. (14) is supposedly in-
valid (since Im[χk⊥ (ω)] is large, see comment [40]). We
first note the commutation relation of the output field from
Eq. (11): [̃ak⊥ (ω), ã†

k⊥ (ω)] = 1 − 2Re[vk⊥ (ω)]. This expres-
sion is equal to 1, as it should, for all ω except at a re-
gion of width ∼α around the mechanical resonance, where
Re[vk⊥ (ω)] ∝ Im[χk⊥ (ω)] does not vanish. Formally, this
means that any statement on quantum noise at this narrow
(and practically irrelevant) region is meaningless, since the
commutation relations are wrong. This is an artifact of the adi-
abatic elimination (coarse-grained dynamics) we employed,
where high frequencies of quantum noise are ignored. In
principle, this can be fixed by using a more careful treatment
of the output field [57].

3. Beyond perfect reflection

As explained above, the output field (11) and the result-
ing squeezing discussed in the main text, are obtained from
the more general result of Eq. (D2), by assuming single-
sided illumination and nearly perfect reflection. The latter
assumption amounts to |δL − �| � γ + � and is used above
to neglect the influence of the left-propagating vacuum. In
this way, one remains with a single output port (s → −) and
a single input port (s → +), avoiding an additional input
port whose noise can degrade the squeezing. Nevertheless,
we demonstrate in the following that even if one gives up

FIG. 6. Balanced scheme for the generation and detection of
quantum optical squeezing beyond the nearly perfectly reflecting
case. Laser drive is incident from both sides with equal magnitude

 and a phase difference φ. The detected output field, ãk⊥k , is a
superposition of the outputs fields from both sides, with an adjustable
interference phase ϕ.

nearly perfect reflection, such that two input ports with their
vacuum noises exist, the same optimal squeezing can be
achieved by considering a balanced scheme with two output
ports [58].

To this end, we consider the scheme from Fig. 6: A
uniform incident laser propagates from both sides, with equal
magnitude 
, and a phase difference φ. The detected output
field is given by a superposition of the outputs from both sides,
ãk⊥k = 1√

2
[̃ak⊥k+ + eiϕ ãk⊥k−], with an adjustable interference

phase ϕ. Choosing φ = π and ϕ = 0, and using the expression
for the output fields s → ± from Eq. (D2), we obtain the
detected output field fluctuations (subtracting the average),

ãk⊥k = uk⊥kǎk⊥k + vk⊥kǎ†
−k⊥,2q−k, (D5)

with ǎk⊥k = 1√
2
[âk⊥k+ + âk⊥k−] (satisfying [ǎk⊥k, ǎ†

k⊥k] = 1),
and the Bogoliubov coefficients

uk⊥k = 1 + 2r + r

r∗ vk⊥k,

(D6)

vk⊥k = i|r|24η4 4|
|2
(γ + �)2

h̄(γ + �)

ER

ν2

ν2
k⊥

χk⊥k .

This output field has the same form as that from Eq. (11),
with the vacuum of the superposition mode ǎk⊥k in the former,
replacing that of the âk⊥k+ mode in the latter. For r → −1,
the Bogoliubov coefficients in (D6) become identical to those
from Eq. (12), this time without the need to ignore the noise
from any input port. Moreover, even for smaller |r|, |vk⊥k|
can still get very large and lead to nearly perfect squeezing
as before.

4. Homodyne detection of spatiotemporal squeezing

Here we briefly describe a possible homodyne detection
scheme that allows us to measure the field quadratures,

X̂ θ
±k⊥ (±ω) = e−iθ ã±k⊥ (±ω) + eiθ ã†

∓k⊥ (∓ω), (D7)

whose correlation defines the spatiotemporal noise spectrum
Sθ

k⊥ (ω) = 〈X̂ θ
−k⊥ (−ω)X̂ θ

k⊥ (ω)〉 [36,37].
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Consider the paraxial quantum field at the transverse position r⊥ (e.g., at longitudinal position z = 0),

Ê (r⊥, t ) = e−iωLt ã(r⊥, t ) + eiωLt ã†(r⊥, t ), (D8)

where ã(r⊥, t ) is a slowly varying envelope around the “carrier” frequency ωL. The latter can be expanded in spatial Fourier
space as

ã(r⊥, t ) =
∑
k⊥

eik⊥·r⊥ ãk⊥ (t ). (D9)

At the far-field angle corresponding to k⊥, one measures the spatial Fourier component of the field,

Ê (k⊥, t ) =
∫

dr⊥e−ik⊥·r⊥ Ê (r⊥, t ) ∝ e−iωLt ãk⊥ (t ) + eiωLt ã†
−k⊥ (t ). (D10)

The field at angle k⊥ is then mixed on a beam splitter
with a local oscillator of frequency ωL, ELO = A(eiθ e−iωLt +
e−iθ eiωLt ) [upper arm of Fig. 5(a)], where θ is a constant ad-
justable phase and A is real (in our case, ELO could in principle
be obtained from the same laser used for the light incident on
the atom array). Taking the difference of the intensity signals

from the fields Ê (k⊥) ± ELO at the two beam-splitter ports,
and to first order in the (weak) quantum field, we get the signal
X̂ θ

k⊥ (t ), whose Fourier transform is X̂ θ
k⊥ (ω) from Eq. (D7). Do-

ing the same for the far field at angle −k⊥ we obtain the signal
X̂ θ

−k⊥ (t ), from which X̂ θ
−k⊥ (−ω) is extracted, thus providing a

measurement of both signals X̂ θ
±k⊥ (±ω) from Eq. (D7).
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