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Application of the polaron picture in the two-qubit quantum Rabi model
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The polaron picture is employed to investigate and elucidate the physics of the two-qubit quantum Rabi model,
which describes two identical qubits coupled to a common harmonic oscillator. This approach enables us to
obtain the ground-state energy and some other simpler physical observables with high accuracy in all regimes of
the coupling strengths g, while there is no constraint to the ration of tunneling frequency � and field frequency
ω, which is not simultaneously possible using previous methods. In addition, we also discover a phenomenon
that is not present in the one-qubit Rabi model: with the increase of coupling strength g, there is a transition of
the ground state of the system from a multipolaron state to a bipolaron state. However, the tunneling frequency
� counteracts this process. Specifically, when the tunneling frequency � = 0, the system always stays in the
bipolaron state.
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I. INTRODUCTION

The quantum Rabi model (QRM) [1] is one of the sim-
plest and most basic models of nonrelativistic quantum elec-
trodynamics (QED), which is the basis of quantum op-
tics [2]. In the context of quantum optics, the QRM describes
the interaction of an atom or quantum dot with a single-
mode electromagnetic field tuned to two particular levels
of atoms or quantum dots [3,4]. In recent years, with the
continuous breakthroughs of experimental possibilities, the
ultrastrong coupling regime [5–15] between the two-level
atom and the single-mode cavity field has been achieved
in circuit QED, and even the deep strong-coupling regime
has been achieved [16–20]. Within this range, many novel
physical phenomena, e.g., the phase transitions found in
the QRM [21–23], have been discovered in these strong-
coupling regimes. However, the rotating wave approximation
(RWA) [24] for the QRM breaks down when these strong-
coupling regimes are reached. On the other hand, the fact
that a full QRM has been solved analytically by Braak [25]
indicates that it is possible to accurately explore the physics
involved in the full quantum version of these models. In
particular, the normal (symmetric) and superradiant (symme-
try) broken phases found in these models have a profound
meaning for the understanding of the physics of these models.
Therefore, the full QRM has to be considered and is conse-
quently attracting renewed attention [25–36].

In this paper, we study the two-qubit Rabi model [37–42].
This model describes the coupling between two two-level

*Corresponding author: luohg@lzu.edu.cn

atoms and a single-mode light field. It has been widely
used in cavity QED system [2], superconducting circuit QED
systems [28,43,44], as well as to model systems of quantum
information science [45] and cold-atom physics [46]. For
example, in a cavity QED experiment, the entangled states of
atoms [47,48] can be prepared by having two atoms interact
with the cavity successively. In quantum information science,
double qubit logic gates [49,50] and coherent storage and
transmission between two qubits [51] are realized by optics
cavities.

However, due to the counter-rotating wave terms in the
full QRM, the system is not confined to the Fock state with
a fully determined boson number during its transition from
an up to a down state, which makes it difficult to obtain an
exact solution of the model in the strong-coupling regime.
Many methods have been applied to the two-qubit QRM to
obtain exact or approximate solutions, such as Bargmann-
space techniques [38,40], and approximate methods such as
the adiabatic approximation [52], perturbation theory [37], the
method of extended coherent states [53], the zeroth-order ap-
proximation method [52], and the generalized rotating-wave
approximation (GRWA) [41].

Using all of the above methods, the energy spectrum,
dynamical behavior, and the evolution of entanglement for
the two qubits could be exactly or approximately determined.
However, these methods are not universally applicable to the
two-qubit QRM (or the QRM for that matter). By definition,
the RWA neglects the counter-rotating terms in the interaction,
and it is therefore only valid in the regime g � ω and
|ω − 2�| � |ω + 2�|. The zeroth-order approximation
method works only for tunneling frequencies � much smaller
than the field frequency, i.e., ω � �, and the coupling
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strength is allowed to reach the ultrastrong regime. The
GRWA works for the ultrastrong regime, g < ω, or for the
negative detuning regime, ω > � [41]. However, it will be
unable to produce the correct ground-state energy when the
tunneling frequencies are near the field frequency or when the
system is near the quantum phase transition point [21–23], and
none of these methods give results for correlation functions
and many other simpler physical observables. Therefore, a
method that can be applied to the model in the whole range
of coupling strengths and without limiting the value of �/ω

becomes very urgent.
In the present work, we consider a variational method by

taking the Gaussian states as the starting point of the boson
mode, as was done in many methods reported in the litera-
ture, e.g., the Born-Oppenheimer approximation [27,54,55],
the Holstein-Primakoff transformation [56], as well as the
polaron transformation [57–59], and so on. Likewise, this
is also the starting point for our method, which allows us
to obtain the ground-state energy of the model and other
physical observables in the whole coupling strength g. The key
difference between our approach and the methods mentioned
above is that the Gaussian states we used are deformable by
introducing variational parameters of the frequency and the
positions. As a consequence, one can obtain variationally the
different phases in a unified way.

In Sec. II, we present the basis for selecting variational
wave functions for the two-qubit Rabi model. Then, in
Sec. III, we compare our variational results and the GRWA
results with values from exact diagonalization. The results
show that our method has a high precision within the whole
range of coupling strengths, and that there is no restriction
on the value of �/ω. After that, in Sec. IV, we discuss a
noteworthy phenomenon: with the increase of the coupling
strength, the ground state shows a transition from a four-
polaron ground state

� = 1

2
(ψ1| ↑↑〉 + ψ2| ↓↓〉 − ψ3| ↑↓〉 − ψ4| ↓↑〉) (1)

to a two-polaron ground state

� = 1

2
(ψ1| ↑↑〉 + ψ2| ↓↓〉). (2)

When the tunneling frequency is equal to zero, the system
remains in the two-polaron ground state (2). In Sec. V, we give
a diagrammatic physical explanation of this phenomenon with
the help of a polaron picture [60–62], and we demonstrate
the process of qubits tunneling through the light field. To
provide some perspective, we suggest extending this method
to the multiple-qubit case, i.e., the Dicke model. Lastly, we
summarize and draw the conclusions of our study in Sec. VI.

II. HAMILTONIAN AND TRIAL WAVE FUNCTION

The two-qubit quantum Rabi model consists of two artifi-
cial two-level systems coupled to a single-mode boson field.
The model Hamiltonian reads (we set h̄ = 1)

H = ωa†a +
∑
i=1,2

(
�i

2
σ i

x + giσ
i
z (a† + a)

)
, (3)

where �i (i = 1, 2) is the tunneling frequency of the ith
qubit, σ i

z and σ i
x are Pauli matrices of the ith qubit, a† (a)

denotes the bosonic creation (annihilation) operator of a single
boson model with frequency ω, and gi describes the coupling
strength between the cavity and the ith qubit. Denoting the po-
sition variable by ξ , we introduce the dimensionless position
variable x = ξ

√
mω = ξ/ξ0, where ξ0 = 1/

√
mω. The cre-

ation and annihilation operators of the harmonic oscillator are
then given by a† = (x̂ − i p̂)/

√
2, a = (x̂ + i p̂)/

√
2, where

x̂ = x and p̂ = −i ∂
∂x denote the (dimensionless) position and

momentum operators. The Hamiltonian can now be rewritten
as

H = ω

2
(x̂2 + p̂2) +

∑
i=1,2

(
�i

2
σ i

x + g′
i

2
ωx̂σ i

z

)
− ω

2
, (4)

where g′
i = √

2gi/ω.
In the following, we set g1 = g2 to finally obtain the

Hamiltonian

H =
∑
σz=±

[(
hσzσz − ω

2
g′2

)
|σzσz〉〈σzσz| + hσ̄zσz |σ̄zσz〉〈σ̄zσz|

]

+
∑
σz=±

�1

2
(|σ̄zσz〉〈σzσz| + |σzσz〉〈σ̄zσz|)

+
∑
σz=±

�2

2
(|σzσ̄z〉〈σzσz| + |σzσz〉〈σzσ̄z|) − ω

2
, (5)

where σz = ±, and σ̄z = −σz, hσzσz = ω
2 [ p̂2 + (x̂ ±

g′)2], hσ̄zσz = ω
2 ( p̂2 + x̂2); the +(−) labels the up ↑ (down ↓)

spin in the z direction.
We are now going to discuss how we choose the trial wave

function. First, the trial wave function � should satisfy the
Schrödinger equation H� = E�. Second, we assume that the
trial wave function can be written as a direct product state such
that each of the four basis state | ↑↑〉, | ↓↑〉 | ↑↓〉, | ↓↓〉 of the
two-qubit system is multiplied by a wave function ψn (n =
1, 2, 3, 4) of the single-mode optical field. In view of the fact
that the two-qubit Rabi model possesses parity symmetry [52],
namely [	, H] = 0, with 	 = 	 j=1,2σ̂

x
j exp(iπa†a), the trial

wave function then takes the [as anticipated in Eq. (1)] form

� = 1
2 [ψ1(x)| ↑↑〉 + ψ2(x)| ↓↓〉
−ψ3(x)| ↑↓〉 − ψ4(x)| ↓↑〉], (6)

where ψ1(x) = ψ2(−x), ψ3(x) = ψ4(−x).
To obtain expressions for the wave functions ψn, we ana-

lyzed the ground-state wave function for the model obtained
by numerically exact diagonalization, as shown in Fig. 1.
From the figure, we can see that, upon increasing the cou-
pling strength, the wave function changes from one Gaussian
wave packet (each wave packet represents a polaron) to two
Gaussian wave packets. This observation leads us to set

ψn(x) = αnφαn (x) + βnφβn (x), n = 1, 2, 3, 4,

where one of the Gaussian wave packets is shifted to the
right, the other to the left, and αn and βn are variational
parameters that we can use to adjust the trial wave function.
The expressions for φ(x) take the form of Gaussian functions,

φ(x) = (ξ0
√

π )−
1
2 e−x2/2.

When the wave function changes along with the coupling
strength, our trial wave function will be able to simulate
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FIG. 1. The ground-state wave functions obtained by numerically exact diagonalization for different g. The value of the single mode
frequency is ω = 1.0. Part (a) corresponds to coupling strength g1 = g2 = 0, (b) corresponds to weak coupling, (c) corresponds to strong
coupling, (d) corresponds to the deep-strong coupling regime, (e) corresponds to the ultrastrong coupling regime, and (f) corresponds to
tunneling frequency � = 0, in the strong-coupling regime. The red dotted lines are the wave-function component of the two qubits are in state
| ↑↑〉, the green dot-lines represent the wave function component the two qubits in state | ↑↓〉, the purple dot-lines represent the wave function
component of the two qubits in state | ↓↑〉, and finally the blue dot-lines represent the wave function component of the two qubits in state
| ↓↓〉.

this change. The wave packet’s shape and size can be varied
by means of varying the frequency (ω → εω, ξ0 → √

εξ0)
and shifting the position [x → √

ε(x ± ζg′)]. Thus, we have
introduced two new parameters ε and ζ to adjust φ(x) for each
of the Gaussian functions, i.e.,

φ(x) = ε
1
4 (ξ0

√
π )−

1
2 exp

(
− (x ± ζg′)2ε

2

)
,

so that we can obtain a trial wave function that is closer to the
real ground-state wave function.

We can see that our trial wave function of the two-qubit
system has the same form as the trial wave function of the
one-qubit Rabi model based on the concept of polaron and
antipolaron, which is applied to describe the phase diagram
of the QRM [60–62]. However, our trial wave function is mo-
tivated by the ground-state wave function we obtained from
numerically exact diagonalization. Moreover, inspired by the
frequency-renormalized multipolaron expansion method [61],
in order to improve the accuracy of our results, our trial wave
function ψn can be more generally expanded in N pairs of
Gaussian wave packets as

ψ1(x) = ψ2(−x) =
N∑

i=1

(
α

(i)
1 φ

α
(i)
1

(x) + β
(i)
1 φ

β
(i)
1

(x)
)
,

ψ3(x) = ψ4(−x) =
N∑

i=1

(
γ

(i)
3 φ

γ
(i)
3

(x) + δ
(i)
3 φ

δ
(i)
3

(x)
)
.

(7)

Alternatively, and we have a slight preference in the present
work, we could simply write

ψn(x) =
N∑

i=1

(
α(i)

n φ
α

(i)
n

(x) + β (i)
n φ

β
(i)
n

(x)
)
. (8)

In Sec. III we shall choose N according to the accuracy we
desire.

The average energy of the two-qubit Rabi model is

E = 〈�|H |�〉, (9)

subject to the normalization condition

〈ψ |ψ〉 = 1
2 (〈ψ1|ψ1〉 + 〈ψ3|ψ3〉) = 1. (10)

We obtain the ground-state energy from the condition δE = 0
for a variational extremum.

Inserting a trial wave function with an appropriately chosen
number N of pairs of Gaussian wave functions and the Hamil-
tonian of the two-qubit Rabi model into Eqs. (9) and (10), we
get following the expression for the energy:

E = 1

2
[〈ψ1(x)|h++

1 |ψ1(x)〉 + 〈ψ3(x)|h+−
2 |ψ3(x)〉]

−�〈ψ1(x)|ψ3(x)〉 − ω

2
g′2 − ω

2
, (11)

where we have set �1 = �2 and

h++
1 = ω

2
( p̂2 + (x̂ + 2g′)2), h+−

2 = ω

2
( p̂2 + x̂2 + 4g′2).

III. GROUND-STATE ENERGY AND OBSERVABLES

Let us start by reminding ourselves of the problem that
we described and set out to improve at the beginning of this
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FIG. 2. Ground-state energy and some other physical quantities
as functions of the coupling strength g/gc, where gc = 1

2

√
ω�/2.

Here, �/ω = 10. (a) The ground-state energy. (b) The mean photon
number 〈a†a〉. (c) The tunneling strength 〈σ 1

x + σ 2
x 〉. (d) The cor-

relation function 〈(σ 1
z + σ 2

z )(a† + a)〉. The blue star-lines denote the
numerically exact results as a benchmark. The red circle-lines denote
our results obtained by the variational method.

paper: all approximations collapse when the ratio �/ω grows.
To this end, we compare our results obtained by the proposed
variational method with results from exact numerical diago-
nalization, as shown in Fig. 2. We consider the case of �/ω =
10 [namely, near the phase transition point gc = 1

2

√
ω�/2

(see Ref. [23])], and we take the number of pairs of Gaussian
wave packets N = 2 in Eq. (8). We find that our variational
wave function yields a high accuracy, and the ground-state
energy, the mean photon number 〈a†a〉, the tunneling strength
〈σ 1

x + σ 2
x 〉, and the correlation function 〈(σ 1

z + σ 2
z )(a† + a)〉

are in good agreement with those obtained by exact numerical
diagonalization.

To confirm that our method is better than the GRWA, we
made a comparison of errors of the ground-state energy be-
tween the variational method and GRWA with different values
of �/ω in Fig. 3. The accuracy of GRWA, while reasonable
for small values of the coupling g, deteriorates increasingly
for g approaching gc and for values of the coupling g > gc.
However, we find that our method works very well in all
parameter regimes.

But exactly how accurate is our method? That is a question
in which we have been very interested. In Fig. 4 we show
the errors of the ground-state energy and other physical ob-
servables obtained by the variational method as compared to
results from exact diagonalization for �/ω = 10. We find that
our variational method possesses a high degree of accuracy.
For the ground-state energy, the relative accuracy is as high
as 10−4, and for the other physical observables the relative
accuracy is 10−3. All of these data show that our method is
really very accurate, and our variational wave function also
achieves the precision we need.
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FIG. 3. Comparison of errors of the ground-state energy between
our result and the GRWA. The purple star-lines are the ground-
state energy errors between GRWA and the numerically exact (ED)
results. The cyan dot-lines are the errors between our method and the
ED result. Here we take �/ω = 0.1, 1.0, 2.0, 10 from (a) to (d).

IV. CROSSOVER FROM FOUR POLARONS
TO TWO POLARONS

From Fig. 1, we can also see that there are two distinct
regimes that do not appear in the one-qubit Rabi model. With
increasing coupling strength g, the ground-state wave function
of the system undergoes a transitions from a multipolaron
state,

� = 1
2 (ψ1| ↑↑〉 + ψ2| ↓↓〉 − ψ3| ↑↓〉 − ψ4| ↓↑〉),
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FIG. 4. The errors of the ground-state energy and other physical
observables for �/ω = 10. (a) Error in the ground-state energy with
respect to the ED result �E = EVM − EED. (b) Error in the mean
photon number �〈a†a〉. (c) Error in the tunneling strength �〈σ 1

x +
σ 2

x 〉. (d) Error in the correlation function �〈(σ 1
z + σ 2

z )(a† + a)〉.
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FIG. 5. (a) The probabilities Pn, n = 1, 2, 3, 4 of the compo-
nents of the multipolaron state for � = 1, ω = 1. (b) The probabil-
ities P1 = P2 (blue) and P3 = P4 (red) for � = 0.1, 1, 2, 10; the
single-mode frequency is ω = 1.

to a bipolaron state,

� = 1
2 (ψ1| ↑↑〉 + ψ2| ↓↓〉).

Figures 1(a)–1(d) clearly show the characteristics of multi-
polaron states, while Figs. 1(e) and 1(f) have the characteris-
tics of bipolaron states. The transition from a multipolaron to
a bipolaron state can also be seen from the probabilities Pn =
〈ψn|ψn〉 (n = 1, 2, 3, 4) of the components of the system
being in the qubit states | ↑↑〉, | ↓↑〉, | ↑↓〉, and | ↓↓〉, where
due to the Z2 symmetry of the model, P1 = P2 and P3 = P4.

As can be seen from Fig. 5(a), for g = 0 the state of the
system has equal probability Pn = 1/4 (n = 1, 2, 3, 4) for all
components of the four two-qubit basis states | ↑↑〉, | ↓↓〉,
| ↓↑〉, | ↑↓〉. With increasing coupling strength g, the proba-
bilities P3 and P4 of the components of the multipolaron state
corresponding to the two-qubit basis states | ↑↓〉 and | ↓↑〉 be-
come smaller and smaller and finally they are reduced to zero.
The probabilities P1 and P2 of the components corresponding
to | ↑↑〉 and | ↓↓〉 increase gradually until they are up to 1/2,
as also shown in Fig. 5(b) for different values of �.

An increasing tunneling frequency � suppresses the for-
mation of the bipolaron state. To show this effect, we calculate
the probabilities P1 and P3 for several values of �, displayed
in Fig. 5(b). We can see that, when we increase the tunneling
frequency �, the transition from a multipolaron to a bipolaron
state is less and less pronounced and sets in only for higher
values of the coupling g.

To further demonstrate the accuracy of our trial wave
function and thus the advantages of our variational method,
we use the trial wave function obtained by the variational
method to calculate the probabilities P1 and P3 and compare
with the results obtained by exact numerical diagonalization;
see Fig. 6. We can see that for different values of the tunneling
frequency �, the transition behavior from the multipolaron
to the bipolaron state obtained by the variational method is
completely consistent with that of exact numerical diagonal-
ization, which shows the accuracy of our trial wave function.
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FIG. 6. The probabilities P1 and P3 for different values of �.
Here, ω = 1 and � = 0.1, 1, 2, 10 from (a) to (d). The purple
and cyan dots denote the numerically exact results as a benchmark.
The red and blue circle-lines denote our results obtained for the
variational method.

V. THE PROCESS OF QUBITS TUNNELING
THROUGH THE LIGHT FIELD

For g = 0, the Hamiltonian (5) becomes

H =
∑
σz=±

(hσzσz |σzσz〉〈σzσz| + hσ̄zσz |σ̄zσz〉〈σ̄zσz|)

+
∑
σz=±

�1

2
(|σ̄zσz〉〈σzσz| + |σzσz〉〈σ̄zσz|)

+
∑
σz=±

�2

2
(|σzσ̄z〉〈σzσz| + |σzσz〉〈σzσ̄z|) − ω

2
, (12)

where hσzσz = hσ̄zσz = ω
2 ( p̂2 + x̂2).

Because hσzσz = hσ̄zσz , the potentials [63,64] corresponding
to the four two-qubit basis states | ↑↑〉, | ↓↑〉, | ↑↓〉, and
| ↓↓〉 are equal to V = ω

2 x̂2, as shown in Fig. 7(a). Tunneling
is strongest at this point, and the probabilities Pn correspond-
ing to the two-qubit basis states | ↑↑〉, | ↓↓〉, | ↑↓〉, and
| ↓↑〉 are equal to 1/4. The probability of 1/4 can be seen
from Fig. 5 when g = 0.

When we consider the Hamiltonian (5) for arbitrary cou-
pling strength g, we can see that the potentials depending
on the four two-qubit basis states are schematically shown in
Fig. 7(b),

V|↓↑〉 = V|↑↓〉 = ω

2
x̂2, V|↑↑〉 = ω

2
((x̂ − 2g′)2 − 4g′2),

V|↓↓〉 = ω

2
((x̂ + 2g′)2 − 4g′2).

We can see from the expression of potentials V|↑↑〉 and V|↓↓〉
that the coupling g shifts the vertices of the potential wells to
the left and the right. The vertices of these two wells are also
shifted downward; see the potential wells shown in blue and
red in Fig. 7(b). The potentials V|↑↓〉 and V|↓↑〉 are equal and
independent from g.
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FIG. 7. Schematic diagram of two-qubit tunneling through the potentials created by the light field. These potentials depend on the states
of the two two-lever atoms or qubits. The blue curve represents the potential well ω

2 (x̂2 + 4g′x̂) of | ↑↑〉, the red one represents ω

2 (x̂2 − 4g′x̂)
of | ↓↓〉, the magenta one represents ω

2 x̂2 of | ↑↓〉, and the cyan one represents ω

2 x̂2 of | ↓↑〉; the blue fill indicates where the system is likely
to stay in the potential wells. Parts (a), (b), (c), (d), and (e) are for � �= 0. Part (f) is in the absence of tunneling, i.e., � = 0. Part (a) shows the
special case g = 0; (b), (c), (d), and (e) are for � �= 0, g �= 0. Parts (c),(d) illustrate the process of the two-qubit atoms tunneling through the
potential created by the light field. In (e) the four potential wells are depicted for a larger coupling g, here for g = 1, 2. (f) Tunneling frequency
� = 0, as shown in the diagram of four potential wells.

The schematic diagram shown in Figs. 7(c) and 7(d) sug-
gests an interpretation of the process that takes place as the
coupling strength g increases: the two qubits tunnel between
the potentials by spin-flips brought about by a nonzero tunnel-
ing strength � �= 0.

The first qubit tunnels with a tunneling strength of σ 1
x ,

which can be written as

σ 1
x = σ 1

x1 + σ 1
x2 + σ 1

x3 + σ 1
x4,

0 0.5 1 1.5 2
g/ω

-0.4
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0
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x
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x1

σ1
x2

σ1
x3

σ1
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-0.4
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x1

σ2
x2
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x3

σ2
x4

FIG. 8. The four components of tunneling strength σ 1
x (a) and σ 2

x

(b) varying with the coupling strength g. Here, ω = 1.0, � = 1.0.

as Fig. 8(a) shows, where σ 1
x1 = 1

4 〈ψ1(x)|ψ4(x)〉,
σ 1

x2 = 1
4 〈ψ2(x)|ψ3(x)〉, σ 1

x3 = 1
4 〈ψ3(x)|ψ2(x)〉, and

σ 1
x4 = 1

4 〈ψ4(x)|ψ1(x)〉. For instance, the absolute value
of tunneling strength σ 1

x1 gives the tunneling probability
through | ↑↑〉 to | ↓↑〉, and the other probabilities have
a corresponding interpretation. Analogously, the second
qubit tunnels with a tunneling strength of σ 2

x written in
components as

σ 2
x = σ 2

x1 + σ 2
x2 + σ 2

x3 + σ 2
x4,

as Fig. 8(b) shows, where σ 2
x1 = 1

4 〈ψ1(x)|ψ3(x)〉, σ 2
x2 =

1
4 〈ψ2(x)|ψ4(x)〉, σ 2

x3 = 1
4 〈ψ4(x)|ψ2(x)〉, and σ 2

x4 =
1
4 〈ψ3(x)|ψ1(x)〉.

When the coupling strength g is in the weak coupling, the
separation of potential wells corresponding to the four states
is small, and correspondingly the probability of tunneling for
each state is maximum, as can be seen from Fig. 8.

As the coupling strength increases, the shift of the blue
and red wells to the right and left, respectively, increases,
and the wells become deeper. Thus, the trapping capacity of
these two wells is also strengthened, as shown in Fig. 7(e).
As a result, the probability of the two atoms staying in these
two potential wells increases gradually, and the probability of
the two atoms staying in the middle potential well decreases
gradually. This phenomenon, reflected in the wave function,
is shown in Figs. 1(b)–1(d), and the probability of tunneling
for each state decrease, as can be seen from Fig. 8.

When the deep strong-coupling region is reached, the blue
and red potential wells will be far apart from each other, and
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the wells become deeper and deeper. The two atoms then stay
in the red and blue wells, respectively. This is exhibited in the
wave function as shown in Fig. 1(e).

When the tunneling frequency � = 0, the Hamiltonian of
this model will be

H =
∑
σz=±

(hσzσz − 2ωg′2)|σzσz〉〈σzσz|

+
∑
σz=±

hσ̄zσz |σ̄zσz〉〈σ̄zσz| − ω

2
. (13)

As already mentioned above, the schematic diagram of this
case is shown in Fig. 7(f). Since the tunneling frequency is
zero, the two atoms stay in the blue and red potential wells,
respectively, which also satisfy Hund’s rule. The probabilities
that the two atoms stay in | ↑↓〉 and | ↓↑〉, respectively, are
equal to zero, and the corresponding wave function is shown
in Fig. 1(f).

VI. CONCLUSION

In summary, we demonstrated that the variational method
that we apply to solve the two-qubit Rabi model has the
following advantages. First, both for the coupling strength g
and the ratio of �/ω varying over all regimes, we always
achieve high accuracy, especially near the phase transition
point gc. Under the condition of �/ω � 1, the variational
method can still be successfully applied to the model.

Secondly, the highly accurate values of physical observ-
ables that we achieve with our variational method indicate that

our trial wave function is very close to the real ground-state
wave function.

Last but not least, the polaron picture can provide a helpful
understanding of the transition of the ground state from the
multipolaron state to the bipolaron state: as the coupling
strength increases, the potential wells of states | ↑↑〉 and | ↓↓〉
will become deeper, therefore the trapping capacity of the two
potential wells will be strengthened, and the probability of the
system to stay in | ↑↓〉 and | ↓↑〉 will decrease until it reaches
zero, i.e., the system transition from a multipolaron state to
a bipolaron state. Meanwhile, the tunneling with frequency
� will counteract this process, because when � grows, the
attenuation of the tunneling strength due to the increase of
the coupling strength g will be reduced, which is because the
probability of staying in | ↑↓〉 and | ↓↑〉 is induced by the
tunneling.

Moreover, we expect that our approach can be extended to
the multiple-qubit case, such as the Dicke model.
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